Ser/Thr Protein Kinase SpkI Affects Photosynthetic Efficiency in Synechocystis sp. PCC 6803 upon Salt Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Culture Conditions
2.2. Transposon-Insertion Mutant Library Construction and Screening
2.3. Oxygen Evolution/Uptake Measurements
2.4. RNA Isolation and Quantification
2.5. Protein Isolation and Immunodetection
2.6. Chlorophyll Fluorescence Measurements
2.7. P700 and Cytochrome b6f Measurements
3. Results
3.1. Identification of SpkI under High Salt Condition
3.2. Accumulation of Major Photosynthetic Proteins in WT, ΔspkI and PpetJ::spkI
3.3. Chlorophyll Fluorescence in WT, ΔspkI and PpetJ::spkI
3.4. Activities of PSI and Cytochrome b6f in WT, ΔspkI and PpetJ::spkI
3.5. The Redox State of PQ Pool in WT, ΔspkI and PpetJ::spkI
4. Discussion
4.1. SpkI Is Crucial for Optimal Photochemistry of PSII under High Salt Condition
4.2. SpkI Modifies Electron Transport of PSI and Cytochrome b6f Complex under High Salt Condition
4.3. SpkI Is Involved in Regulating Redox State of PQ Pool under High Salt Condition
4.4. SpkI Is Involved in Photoprotection Mechanisms in Synechocystis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sui, N.; Wang, Y.; Liu, S.; Yang, Z.; Wang, F.; Wan, S. Transcriptomic and Physiological Evidence for the Relationship between Unsaturated Fatty Acid and Salt Stress in Peanut. Front. Plant Sci. 2018, 9, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendrik, S.; Martin, H. Salt effects on 77k fluorescence and photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol. Lett. 2010, 71, 169–172. [Google Scholar]
- Whitton, B.A.; Potts, M. The Ecology of Cyanobacteria. Their Diversity in Time and Space; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Stanier, R.Y.; Kunisawa, R.; Mandel, M.; Cohen-Bazire, G. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 1971, 35, 171–205. [Google Scholar] [CrossRef] [PubMed]
- Reed, R.H.; Stewart, W.D.P. Osmotic adjustment and organic solute accumulation in unicellular cyanobacteria from freshwater and marine habitats. Mar. Biol. 1985, 88, 1–9. [Google Scholar] [CrossRef]
- Kirsch, F.; Klähn, S.; Hagemann, M. Salt-Regulated Accumulation of the Compatible Solutes Sucrose and Glucosylglycerol in Cyanobacteria and Its Biotechnological Potential. Front. Microbiol. 2019, 10, 2139. [Google Scholar] [CrossRef] [Green Version]
- Inaba, M.; Sakamoto, A.; Murata, N. Functional expression in Escherichia coli of low-affinity and high-affinity Na(+)(Li(+))/H(+) antiporters of Synechocystis. J. Bacteriol. 2001, 183, 1376–1384. [Google Scholar] [CrossRef] [Green Version]
- Jeanjean, R.; Matthijs, H.; Onana, B.; Havaux, M.; Joset, F. Exposure of the cyanobacterium Synechocystis sp. PCC 6803 to salt stress induces concerted changes in respiration and photosynthesis. Plant Cell Physiol. 1993, 34, 1073–1079. [Google Scholar]
- Bohnert, H.J.; Ayoubi, P.; Borchert, C.; Bressan, R.A.; Zhu, J.K. A genomics approach towards salt stress tolerance. Plant Physiol. Biochem. 2001, 39, 295–311. [Google Scholar] [CrossRef]
- Nariya, H.; Inouye, S. Modulating factors for the Pkn4 kinase cascade in regulating 6-phosphofructokinase in Myxococcus xanthus. Mol. Microbiol. 2005, 56, 1314–1328. [Google Scholar] [CrossRef]
- Hussain, H.; Branny, P.; Allan, E. A eukaryotic-type serine/threonine protein kinase is required for biofilm formation, genetic competence, and acid resistance in Streptococcus mutans. J. Bacteriol. 2006, 188, 1628–1632. [Google Scholar] [CrossRef] [Green Version]
- Zorina, A.A. Eukaryotic protein kinases in cyanobacteria. Russ. J. Plant Physiol. 2013, 60, 589–596. [Google Scholar] [CrossRef]
- Xu, W.; Wang, Y. Sequences, Domain Architectures, and Biological Functions of the Serine/Threonine and Histidine Kinases in Synechocystis sp. PCC 6803. Appl. Biochem. Biotechnol. 2019, 188, 1022–1065. [Google Scholar] [CrossRef] [PubMed]
- Kamei, A.; Yoshihara, S.; Yuasa, T.; Geng, X.; Ikeuchi, M. Biochemical and functional characterization of a eukaryotic-type protein kinase, SpkB, in the cyanobacterium, Synechocystis sp. PCC 6803. Curr. Microbiol. 2003, 46, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Mata-Cabana, A.; García-Domínguez, M.; Florencio, F.J.; Lindahl, M. Thiol-based redox modulation of a cyanobacterial eukaryotic-type serine/threonine kinase required for oxidative stress tolerance. Antioxid. Redox Signal. 2012, 17, 521–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinetova, M.A.; Los, D.A. New insights in cyanobacterial cold stress responses: Genes, sensors, and molecular triggers. Biochim. Biophys. Acta 2016, 1860 Pt A, 2391–2403. [Google Scholar] [CrossRef]
- Laurent, S.; Jang, J.; Janicki, A.; Zhang, C.C.; Bédu, S. Inactivation of spkD, encoding a Ser/Thr kinase, affects the pool of the TCA cycle metabolites in Synechocystis sp. strain PCC 6803. Microbiology 2008, 154 Pt 7, 2161–2167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zorina, A.A.; Bedbenov, V.S.; Novikova, G.V.; Panichkin, V.B.; Los, D.A. Involvement of serine/threonine protein kinases in cold stress response in the cyanobacterium Synechocystis sp. PCC 6803: Functional characterization of a protein kinase Spke. Mol. Biol. 2014, 48, 452–462. [Google Scholar] [CrossRef]
- Liang, C.; Zhang, X.; Chi, X.; Guan, X.; Li, Y.; Qin, S.; Shao, H.B. Serine/threonine protein kinase SpkG is a candidate for high salt resistance in the unicellular cyanobacterium Synechocystis sp. PCC 6803. PLoS ONE 2011, 6, e18718. [Google Scholar] [CrossRef]
- Angeleri, M.; Zorina, A.; Aro, E.M.; Battchikova, N. Interplay of SpkG kinase and the Slr0151 protein in the phosphorylation of ferredoxin 5 in Synechocystis sp. strain PCC 6803. FEBS Lett. 2018, 592, 411–421. [Google Scholar] [CrossRef] [Green Version]
- Galkin, A.N.; Mikheeva, L.E.; Shestakov, S.V. Insertional inactivation of genes encoding eukaryotic type serine/threonine protein kinases in cyanobacterium Synechocystis sp. PCC 6803. Mikrobiologiia 2003, 72, 64–69. [Google Scholar]
- Eisenhut, M.; Sakurai, I.; Mustila, H.; Zhang, P.; Hess, W.R.; Aro, E.M. The antisense RNA As1_flv4 in the Cyanobacterium Synechocystis sp. PCC 6803 prevents premature expression of the flv4-2 operon upon shift in inorganic carbon supply. J. Biol. Chem. 2012, 287, 33153–33162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozaki, H.; Ikeuchi, M.; Ogawa, T.; Fukuzawa, H.; Sonoike, K. Large-scale analysis of chlorophyll fluorescence kinetics in Synechocystis sp. PCC 6803: Identification of the factors involved in the modulation of photosystem stoichiometry. Plant Cell Physiol. 2007, 48, 451–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Ge, H.; Zhang, Y.; Wang, Y.; Zhang, P. Slr0320 Is Crucial for Optimal Function of Photosystem II during High Light Acclimation in Synechocystis sp. PCC 6803. Life 2021, 11, 279. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Allahverdiyeva, Y.; Eisenhut, M.; Aro, E.M. Flavodiiron proteins in oxygenic photosynthetic organisms: Photoprotection of photosystem II by Flv2 and Flv4 in Synechocystis sp. PCC 6803. PLoS ONE 2009, 4, e5331. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Battchikova, N.; Jansen, T.; Appel, J.; Ogawa, T.; Aro, E.M. Expression and functional roles of the two distinct NDH-1 complexes and the carbon acquisition complex NdhD3/NdhF3/CupA/Sll1735 in Synechocystis sp. PCC 6803. Plant Cell 2004, 16, 3326–3340. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Frankel, L.K.; Bricker, T.M. Integration of apo-α-phycocyanin into phycobilisomes and its association with FNRL in the absence of the phycocyanin α-subunit lyase (CpcF) in Synechocystis sp. PCC 6803. PLoS ONE 2014, 9, e105952. [Google Scholar] [CrossRef] [Green Version]
- Calzadilla, P.I.; Zhan, J.; Sétif, P.; Lemaire, C.; Solymosi, D.; Battchikova, N.; Wang, Q.; Kirilovsky, D. The Cytochrome b6f Complex Is Not Involved in Cyanobacterial State Transitions. Plant Cell 2019, 31, 911–931. [Google Scholar] [CrossRef] [Green Version]
- Vass, I.; Kirilovsky, D.; Etienne, A.L. UV-B radiation-induced donor- and acceptor-side modifications of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803. Biochemistry 1999, 38, 12786–12794. [Google Scholar] [CrossRef]
- Bennoun, P. Evidence for a respiratory chain in the chloroplast. Proc. Natl. Acad. Sci. USA 1982, 79, 4352–4356. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.; Strasser, R.J.; Govindjee. Polyphasic rise of chlorophyll a fluorescence in herbicide-resistant D1 mutants of Chlamydomonas reinardtii. Photosynth. Res. 1995, 43, 131–141. [Google Scholar] [CrossRef]
- Zorina, A.; Stepanchenko, N.; Novikova, G.V.; Sinetova, M.; Panichkin, V.B.; Moshkov, I.E.; Zinchenko, V.V.; Shestakov, S.V.; Suzuki, I.; Murata, N.; et al. Eukaryotic-like Ser/Thr protein kinases SpkC/F/K are involved in phosphorylation of GroES in the Cyanobacterium Synechocystis. DNA Res. 2011, 18, 137–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fork, D.C.; Herbert, S.K. Electron transport and photophosphorylation by Photosystem I in vivo in plants and cyanobacteria. Photosynth. Res. 1993, 36, 149–168. [Google Scholar] [CrossRef] [PubMed]
- Munekage, Y.; Hashimoto, M.; Miyake, C.; Tomizawa, K.-I.; Endo, T.; Tasaka, M.; Shikanai, T. Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 2004, 429, 579–582. [Google Scholar] [CrossRef] [PubMed]
- Hibino, T.; Lee, B.H.; Rai, A.K.; Ishikawa, H.; Kojima, H.; Tawada, M.; Shimoyama, H.; Takabe, T. Salt enhances photosystem I content and cyclic electron flow via NAD(P)H dehydrogenase in the halotolerant cyanobacterium Aphanothece halophytica. Aust. J. Plant Physiol. 1996, 23, 321–330. [Google Scholar] [CrossRef]
- Allen, J.F.; Santabarbara, S.; Allen, C.A.; Puthiyaveetil, S. Discrete redox signaling pathways regulate photosynthetic light-harvesting and chloroplast gene transcription. PLoS ONE 2011, 6, e26372. [Google Scholar] [CrossRef] [Green Version]
- Khorobrykh, S.; Tsurumaki, T.; Tanaka, K.; Tyystjärvi, T.; Tyystjärvi, E. Measurement of the redox state of the plastoquinone pool in cyanobacteria. FEBS Lett. 2020, 594, 367–375. [Google Scholar] [CrossRef]
- Wollman, F.A. State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO J. 2001, 20, 3623–3630. [Google Scholar] [CrossRef] [Green Version]
- Muzzopappa, F.; Kirilovsky, D. Changing Color for Photoprotection: The Orange Carotenoid Protein. Trends Plant Sci. 2020, 25, 92–104. [Google Scholar] [CrossRef]
- Genty, B.; Harbinson, J.; Briantais, J.M.; Baker, N.R. The relationship between non-photochemical quenching of chlorophyll fluorescence and the rate of photosystem 2 photochemistry in leaves. Photosynth. Res. 1990, 25, 249–257. [Google Scholar] [CrossRef]
- Erickson, E.; Wakao, S.; Niyogi, K.K. Light stress and photoprotection in Chlamydomonas reinhardtii. Plant J. Cell Mol. Biol. 2015, 82, 449–465. [Google Scholar] [CrossRef]
- El Bissati, K.; Delphin, E.; Murata, N.; Etienne, A.; Kirilovsky, D. Photosystem II fluorescence quenching in the cyanobacterium Synechocystis PCC 6803: Involvement of two different mechanisms. Biochim. Biophys. Acta 2000, 1457, 229–242. [Google Scholar] [CrossRef] [Green Version]
- Kirilovsky, D.; Kerfeld, C.A. Cyanobacterial photoprotection by the orange carotenoid protein. Nat. Plants 2016, 2, 16180. [Google Scholar] [CrossRef] [Green Version]
- Boulay, C.; Wilson, A.; D’Haene, S.; Kirilovsky, D. Identification of a protein required for recovery of full antenna capacity in OCP-related photoprotective mechanism in cyanobacteria. Proc. Natl. Acad. Sci. USA 2010, 107, 11620–11625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calzadilla, P.I.; Kirilovsky, D. Revisiting cyanobacterial state transitions. Photochem. Photobiol. Sci. 2020, 19, 585–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellafiore, S.; Barneche, F.; Peltier, G.; Rochaix, J.D. State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 2005, 433, 892–895. [Google Scholar] [CrossRef] [PubMed]
- Zito, F.; Finazzi, G.; Delosme, R.; Nitschke, W.; Picot, D.; Wollman, F.A. The Qo site of cytochrome b6f complexes controls the activation of the LHCII kinase. EMBO J. 1999, 18, 2961–2969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wollman, F.A.; Lemaire, C. Studies on kinase-controlled state transitions in photosystem II and b6f mutants from Chlamydomonas reinhardtii which lack quinone-binding proteins. Biochim. Biophys. Acta 1988, 933, 85–94. [Google Scholar] [CrossRef]
- Zhang, S.; Scheller, H.V. Light-harvesting complex II binds to several small subunits of photosystem I. J. Biol. Chem. 2004, 279, 3180–3187. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, A.; Kennelly, P.J. A low molecular weight protein tyrosine phosphatase from Synechocystis sp. strain PCC 6803: Enzymatic characterization and identification of its potential substrates. J. Biochem. 2011, 149, 551–562. [Google Scholar] [CrossRef] [Green Version]
- Kondo, K.; Mullineaux, C.W.; Ikeuchi, M. Distinct roles of CpcG1-phycobilisome and CpcG2-phycobilisome in state transitions in a cyanobacterium Synechocystis sp. PCC 6803. Photosynth. Res. 2009, 99, 217–225. [Google Scholar] [CrossRef]
- Fujimori, T.; Hihara, Y.; Sonoike, K. PsaK2 subunit in photosystem I is involved in state transition under high light condition in the cyanobacterium Synechocystis sp. PCC 6803. J. Biol. Chem. 2005, 280, 22191–22197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daddy, S.; Zhan, J.; Jantaro, S.; He, C.; He, Q.; Wang, Q. A novel high light-inducible carotenoid-binding protein complex in the thylakoid membranes of Synechocystis PCC 6803. Sci. Rep. 2015, 5, 9480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Hall, C.L.; Al-Adami, M.Z.; He, Q. IsiA is required for the formation of photosystem I supercomplexes and for efficient state transition in Synechocystis PCC 6803. PLoS ONE 2010, 5, e10432. [Google Scholar] [CrossRef] [PubMed]
- Bolychevtseva, Y.V.; Kuzminov, F.I.; Elanskaya, I.V.; Gorbunov, M.Y.; Karapetyan, N.V. Photosystem activity and state transitions of the photosynthetic apparatus in cyanobacterium Synechocystis PCC 6803 mutants with different redox state of the plastoquinone pool. Biochemistry 2015, 80, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Lunde, C.; Jensen, P.E.; Rosgaard, L.; Haldrup, A.; Gilpin, M.J.; Scheller, H.V. Plants impaired in state transitions can to a large degree compensate for their defect. Plant Cell Physiol. 2003, 44, 44–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Strain | Oxygen Evolution/Uptake (μmol O2·mg−1 Chlorophyll·h−1) | |||
---|---|---|---|---|
Net Photosynthesis | PSII Activity | PSI Activity | Respiration | |
Control | ||||
WT | 415 ± 1 | 734 ± 4 | −185 ± 11 | −32 ± 4 |
ΔspkI | 410 ± 5 | 770 ± 10 | −150 ± 6 | −31 ± 1 |
PpetJ::spkI | 395 ± 10 | 713 ± 5 | −165 ± 6 | −32 ± 1 |
+NaCl | ||||
WT | 322 ± 9 | 759 ± 5 | −158 ± 11 | −48 ± 1 |
ΔspkI | 259 ± 5 | 530 ± 17 | −161 ± 4 | −59 ± 2 |
PpetJ::spkI | 355 ± 4 | 729 ± 13 | −168 ± 11 | −51 ± 1 |
Strain | Fast Phase | Middle Phase | Slow Phase | |||
---|---|---|---|---|---|---|
A1 (%) | T1 (μs) | A2 (%) | T2 (ms) | A3 (%) | T3 (s) | |
Control | ||||||
WT | 51 ± 0.4 | 681 ± 20 | 29 ± 1.6 | 4.7 ± 0.2 | 20 ± 2.0 | 9.1 ± 0.5 |
ΔspkI | 54 ± 0.3 | 747 ± 1 | 27 ± 0.1 | 5.2 ± 0.1 | 19 ± 0.4 | 8.6 ± 0.1 |
PpetJ::spkI | 51 ± 1.1 | 633 ± 16 | 31 ± 1.0 | 3.9 ± 0.2 | 19 ± 0.4 | 7.1 ± 0.7 |
+NaCl | ||||||
WT | 58 ± 2.4 | 530 ± 6 | 23 ± 1.6 | 6.5 ± 0.7 | 19 ± 0.8 | 5.5 ± 0.8 |
ΔspkI | 47 ± 2.8 | 769 ± 39 | 32 ± 2.8 | 5.1 ± 0.3 | 20 ± 0.4 | 4.1 ± 0.2 |
PpetJ::spkI | 56 ± 1.6 | 580 ± 11 | 24 ± 0.4 | 5.6 ± 0.4 | 20 ± 1.3 | 4.2 ± 1.0 |
Growth Condition | Cytochrome f | Plastocyanin | P700 | |||
---|---|---|---|---|---|---|
Oxidation | Reduction | Oxidation | Reduction | Oxidation | Reduction | |
Control | ||||||
WT | 0.238 ± 0.005 | 1.351 ± 0.049 | 0.341 ± 0.002 | 1.175 ± 0.003 | 0.362 ± 0.002 | 0.585 ± 0.004 |
ΔspkI | 0.335 ± 0.016 | 1.118 ± 0.047 | 0.438 ± 0.001 | 1.182 ± 0.006 | 0.590 ± 0.013 | 0.630 ± 0.010 |
PpetJ::spkI | 0.265 ± 0.001 | 1.386 ± 0.169 | 0.386 ± 0.001 | 1.110 ± 0.040 | 0.412 ± 0.005 | 0.552 ± 0.001 |
+NaCl | ||||||
WT | 0.261 ± 0.002 | 1.712 ± 0.132 | 0.381 ± 0.007 | 1.533 ± 0.030 | 0.550 ± 0.004 | 0.885 ± 0.007 |
ΔspkI | 0.738 ± 0.018 | 0.627 ± 0.004 | 0.651 ± 0.015 | 0.583 ± 0.005 | 0.918 ± 0.007 | 0.451 ± 0.010 |
PpetJ::spkI | 0.272 ± 0.001 | 1.416 ± 0.050 | 0.368 ± 0.002 | 1.290 ± 0.015 | 0.664 ± 0.001 | 0.774 ± 0.047 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Ge, H.; Zhang, Y.; Wang, Y.; Zhang, P. Ser/Thr Protein Kinase SpkI Affects Photosynthetic Efficiency in Synechocystis sp. PCC 6803 upon Salt Stress. Life 2022, 12, 713. https://doi.org/10.3390/life12050713
Wang X, Ge H, Zhang Y, Wang Y, Zhang P. Ser/Thr Protein Kinase SpkI Affects Photosynthetic Efficiency in Synechocystis sp. PCC 6803 upon Salt Stress. Life. 2022; 12(5):713. https://doi.org/10.3390/life12050713
Chicago/Turabian StyleWang, Xiaoting, Haitao Ge, Ye Zhang, Yingchun Wang, and Pengpeng Zhang. 2022. "Ser/Thr Protein Kinase SpkI Affects Photosynthetic Efficiency in Synechocystis sp. PCC 6803 upon Salt Stress" Life 12, no. 5: 713. https://doi.org/10.3390/life12050713
APA StyleWang, X., Ge, H., Zhang, Y., Wang, Y., & Zhang, P. (2022). Ser/Thr Protein Kinase SpkI Affects Photosynthetic Efficiency in Synechocystis sp. PCC 6803 upon Salt Stress. Life, 12(5), 713. https://doi.org/10.3390/life12050713