Is Cervical Stabilization Exercise Immediately Effective in Patients with Chronic Neck Pain and Upper Cervical Spine Dysfunction? Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample
2.3. Measurements
2.4. Intervention
2.4.1. Exercise Group
2.4.2. Manual Therapy and Exercise Group (MT + E)
2.5. Statistical Analysis
3. Results
3.1. Cervical Range of Motion
3.2. Flexion-Rotation Test
3.3. Pressure Pain Threshold
3.4. VAS
4. Discussion
4.1. Cervical Range of Motion
4.2. Flexion-Rotation Test
4.3. Pressure Pain Threshold
4.4. VAS
4.5. Clinical Implications
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Côté, P.; Cassidy, J.D.; Carroll, L.J.; Kristman, V. The annual incidence and course of neck pain in the general population: A population-based cohort study. Pain 2004, 112, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Balagué, F. The Bone and Joint Decade (2000–2010) Task Force on Neck Pain and Its Associated Disorders. A Clinician’s Perspective. J. Manip. Physiol. Ther. 2009, 32, S5. [Google Scholar] [CrossRef] [PubMed]
- Gross, A.; Kay, T.M.; Paquin, J.-P.; Blanchette, S.; Lalonde, P.; Christie, T.; Dupont, G.; Graham, N.; Burnie, S.J.; Gelley, G.; et al. Exercises for mechanical neck disorders. Cochrane Database Syst. Rev. 2015, 1, CD004250. [Google Scholar] [CrossRef]
- O’Leary, S.; Falla, D.; Jull, G. The relationship between superficial muscle activity during the cranio-cervical flexion test and clinical features in patients with chronic neck pain. Man. Ther. 2011, 16, 452–455. [Google Scholar] [CrossRef] [PubMed]
- Celenay, S.T.; Akbayrak, T.; Kaya, D.O. A comparison of the effects of stabilization exercises plus manual therapy to those of stabilization exercises alone in patients with nonspecific mechanical neck pain: A randomized clinical trial. J. Orthop. Sports Phys. Ther. 2016, 46, 44–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorås, H.; Østerås, B.; Torstensen, T.A.; Østerås, H. Medical Exercise Therapy for Treating Musculoskeletal Pain: A Narrative Review of Results from Randomized Controlled Trials with a Theoretical Perspective. Physiother. Res. Int. 2015, 20, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Gross, A.R.; Paquin, J.P.; Dupont, G.; Blanchette, S.; Lalonde, P.; Cristie, T.; Graham, N.; Kay, T.M.; Burnie, S.J.; Gelley, G.; et al. Exercises for mechanical neck disorders: A Cochrane review update. Man. Ther. 2016, 24, 25–45. [Google Scholar] [CrossRef]
- O’Leary, S.; Falla, D.; Hodges, P.W.; Jull, G.; Vicenzino, B. Specific therapeutic exercise of the neck induces immediate local hypoalgesia. J. Pain 2007, 8, 832–839. [Google Scholar] [CrossRef]
- Vernon, H.; Humphreys, B.K. Chronic mechanical neck pain in adults treated by manual therapy: A systematic review of change scores in randomized controlled trials of a single session. J. Man. Manip. Ther. 2008, 16, E42–E52. [Google Scholar] [CrossRef] [Green Version]
- Erdem, E.U.; Ünver, B.; Akbas, E.; Kinikli, G.I. Immediate effects of thoracic manipulation on cervical joint position sense in individuals with mechanical neck pain: A randomized controlled trial. J. Back Musculoskelet. Rehabil. 2021, 34, 735–743. [Google Scholar] [CrossRef]
- Petersen, S.; Domino, N.; Postma, C.; Wells, C.; Cook, C. Scapulothoracic Muscle Strength Changes Following a Single Session of Manual Therapy and an Exercise Programme in Subjects with Neck Pain. Musculoskelet. Care 2016, 14, 195–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falla, D.L.; Campbell, C.D.; Fagan, A.E.; Thompson, D.C.; Jull, G.A. Relationship between cranio-cervical flexion range of motion and pressure change during the cranio-cervical flexion test. Man. Ther. 2003, 8, 92–96. [Google Scholar] [CrossRef]
- Rodríguez-Sanz, J.; Malo-Urriés, M.; Lucha-López, M.O.; López-De-Celis, C.; Pérez-Bellmunt, A.; Corral-De-Toro, J.; Hidalgo-García, C. Comparison of an exercise program with and without manual therapy for patients with chronic neck pain and upper cervical rotation restriction. Randomized controlled trial. PeerJ 2021, 9, e12546. [Google Scholar] [CrossRef] [PubMed]
- Merskey, H.E. Classification of chronic pain: Descriptions of chronic pain syndromes and definitions of pain terms. Pain 1986, 3 (Suppl. S3), 226. [Google Scholar]
- Miller, J.; Gross, A.; D’Sylva, J.; Burnie, S.J.; Goldsmith, C.H.; Graham, N.; Haines, T.; Brønfort, G.; Hoving, J.L. Manual therapy and exercise for neck pain: A systematic review. Man. Ther. 2010, 15, 334–354. [Google Scholar] [CrossRef]
- Kaltenborn, F. Manual Mobilization of the Joints. Volume II. The Spine; OMT España: Zaragoza, Spain, 2010. [Google Scholar]
- Zito, G.; Jull, G.; Story, I. Clinical tests of musculoskeletal dysfunction in the diagnosis of cervicogenic headache. Man. Ther. 2006, 11, 118–129. [Google Scholar] [CrossRef]
- Hall, T.; Briffa, K.; Hopper, D.; Robinson, K. Long-term stability and minimal detectable change of the cervical flexion-rotation test. J. Orthop. Sports Phys. Ther. 2010, 40, 225–229. [Google Scholar] [CrossRef]
- Rodríguez-Sanz, J.; Malo-Urriés, M.; Corral-De-toro, J.; López-De-Celis, C.; Lucha-López, M.O.; Tricás-Moreno, J.M.; Lorente, A.I.; Hidalgo-García, C. Does the addition of manual therapy approach to a cervical exercise program improve clinical outcomes for patients with chronic neck pain in short-and mid-term? A randomized controlled trial. Int. J. Environ. Res. Public Health 2020, 17, 6601. [Google Scholar] [CrossRef]
- Cook, C.; Brismée, J.M.; Fleming, R.; Sizer, P.S. Identifiers suggestive of clinical cervical spine instability: A Delphi study of physical therapists. Phys. Ther. 2005, 85, 895–906. [Google Scholar] [CrossRef]
- Rushton, A.; Rivett, D.; Carlesso, L.; Flynn, T.; Hing, W.; Kerry, R. International framework for examination of the cervical region for potential of Cervical Arterial Dysfunction prior to Orthopaedic Manual Therapy intervention. Man. Ther. 2014, 19, 222–228. [Google Scholar] [CrossRef]
- Chesterton, L.S.; Sim, J.; Wright, C.C.; Foster, N.E. Interrater reliability of algometry in measuring pressure pain thresholds in healthy humans, using multiple raters. Clin. J. Pain 2007, 23, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Sanz, J.; Carrasco-Uribarren, A.; Cabanillas-Barea, S.; Hidalgo-Garcia, C.; Fanlo-Mazas, P.; Lucha-Lopez, M.O.; Tricas-Moreno, J.M. Validity and reliability of two Smartphone applications to measure the lower and upper cervical spine range of motion in subjects with chronic cervical pain. J. Back Musculoskelet. Rehabil. 2019, 32, 619–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González Rueda, V.; López De Celis, C.; Barra López, M.E.; Carrasco Uribarren, A.; Castillo Tomás, S.; Hidalgo García, C. Effectiveness of a specific manual approach to the suboccipital region in patients with chronic mechanical neck pain and rotation deficit in the upper cervical spine: Study protocol for a randomized controlled trial. BMC Musculoskelet. Disord. 2017, 18, 384. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.A.; Williamson, E.; Gates, S.; Cooke, M.W. Reproducibility of the cervical range of motion (CROM) device for individuals with sub-acute whiplash associated disorders. Eur. Spine J. 2012, 21, 872–878. [Google Scholar] [CrossRef] [Green Version]
- Tousignant, M.; De Bellefeuille, L.; O’Donoughue, S.; Grahovac, S. Criterion validity of the Cervical Range of Motion (CROM) goniometer for cervical flexion and extension. Spine 2000, 25, 324–330. [Google Scholar] [CrossRef]
- Tousignant, M.; Duclos, E.; Laflèche, S.; Mayer, A.; Tousignant-Laflamme, Y.; Brosseau, L.; O’Sullivan, J.P. Validity study for the cervical range of motion device used for lateral flexion in patients with neck pain. Spine 2002, 27, 812–817. [Google Scholar] [CrossRef]
- Tousignant, M.; Smeesters, C.; Breton, A.-M.; Breton, E.; Corriveau, H. Criterion validity study of the cervical range of motion (CROM) device for rotational range of motion on healthy adults. J. Orthop. Sports Phys. Ther. 2006, 36, 242–248. [Google Scholar] [CrossRef]
- Fletcher, J.P.; Bandy, W.D. Intrarater reliability of CROM measurement of cervical spine active range of motion in persons with and without neck pain. J. Orthop. Sports Phys. Ther. 2008, 38, 640–645. [Google Scholar] [CrossRef]
- Celenay, S.T.; Kaya, D.O.; Akbayrak, T. Cervical and scapulothoracic stabilization exercises with and without connective tissue massage for chronic mechanical neck pain: A prospective, randomised controlled trial. Man. Ther. 2016, 21, 144–150. [Google Scholar] [CrossRef]
- De Las Peñas, C.F.; Cleland, J.; Huijbregts, P.A. Sindromes Dolorosos En El Cuello y En El Mirembro Superior; Elsevier Churchill Livingstone: Barcelona, Spain, 2013; ISBN 8490221502. [Google Scholar]
- Borisut, S.; Vongsirinavarat, M.; Vachalathiti, R.; Sakulsriprasert, P. Effects of strength and endurance training of superficial and deep neck muscles on muscle activities and pain levels of females with chronic neck pain. J. Phys. Ther. Sci. 2013, 25, 1157–1162. [Google Scholar] [CrossRef] [Green Version]
- Kaltenborn, F. Fisioterapia Manual. Volumen III: Manipulación-Tracción de las Extremidades y la Columna; OMT España: Zaragoza, Spain, 2009. [Google Scholar]
- Krauss, J.; Evjenth, O.; Creighton, D. Manipulación Vertebral Translatoria; OMT España: Zaragoza, Spain, 2009. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 2013. [Google Scholar]
- Oh, S.H.; Yoo, K.T. The effects of stabilization exercises using a sling and stretching on the range of motion and cervical alignment of straight neck patients. J. Phys. Ther. Sci. 2016, 28, 372–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogduk, N.; Mercer, S. Biomechanics of the cervical spine. I: Normal kinematics. Clin. Biomech. 2000, 15, 633–648. [Google Scholar] [CrossRef]
- Hidalgo García, C.; Cabanillas Barea, S.; Malo Urriés, M.; Fanlo Mazas, P.; Jiménez Del Barrio, S.; Carrasco Uribarren, A. Estudio descriptivo de la relación entre la inclinación cervical y rotación cervical superior en sujetos con hipomovilidad cervical superior. Cuest. Fisioter. Rev. Univ. Inf. Investig. Fisioter. 2015, 44, 143–150. [Google Scholar]
- Hall, T.; Chan, H.T.; Christensen, L.; Odenthal, B.; Wells, C.; Robinson, K. Efficacy of a C1–C2 self-sustained natural apophyseal glide (SNAG) in the management of cervicogenic headache. J. Orthop. Sports Phys. Ther. 2007, 37, 100–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malo-Urriés, M.; Tricás-Moreno, J.M.; Estébanez-de-Miguel, E.; Hidalgo-García, C.; Carrasco-Uribarren, A.; Cabanillas-Barea, S. Immediate Effects of Upper Cervical Translatoric Mobilization on Cervical Mobility and Pressure Pain Threshold in Patients with Cervicogenic Headache: A Randomized Controlled Trial. J. Manip. Physiol. Ther. 2017, 40, 649–658. [Google Scholar] [CrossRef] [Green Version]
- Hidalgo-García, C.; Tricás-Moreno, J.M.; Lucha-López, O.; Miguel, E.E.; Bueno-Gracia, E.; Pérez-Guillén, S.; Fanlo-Mazas, P.; Ruiz-de-Escudero, A.; Krauss, J. Short term Efficacy of C0–C1 Mobilization in the Cervical Neutral Position in Upper Cervical Hypomobility: A Randomized Controlled Trial. J. Int. Acad. Phys. Ther. Res. 2016, 7, 908–914. [Google Scholar] [CrossRef]
- Hidalgo-García, C.; Lorente, A.I.; López-de-Celis, C.; Lucha-López, O.; Malo-Urriés, M.; Rodríguez-Sanz, J.; Maza-Frechín, M.; Tricás-Moreno, J.M.; Krauss, J.; Pérez-Bellmunt, A. Effects of occipital-atlas stabilization in the upper cervical spine kinematics: An in vitro study. Sci. Rep. 2021, 11, 10853. [Google Scholar] [CrossRef]
- Hidalgo-García, C.; Lorente, A.I.; Rodríguez-Sanz, J.; Miguel Tricás-Moreno, J.; Simon, M.; Maza-Frechín, M.; Lopez-de-Celis, C.; Krauss, J.; Pérez-Bellmunt, A. Effect of alar ligament transection in side-bending stress test: A cadaveric study. Musculoskelet. Sci. Pract. 2020, 46, 102110. [Google Scholar] [CrossRef]
- Hidalgo-García, C.; Lorente, A.I.; Lucha-López, O.; Auría-Apilluelo, J.M.; Malo-Urriés, M.; Rodríguez-Sanz, J.; López-de-Celis, C.; Maza-Frechín, M.; Krauss, J.; Pérez-Bellmunt, A. The effect of alar ligament transection on the rotation stress test: A cadaveric study. Clin. Biomech. 2020, 80, 105185. [Google Scholar] [CrossRef]
- Skyba, D.A.; Radhakrishnan, R.; Rohlwing, J.J.; Wright, A.; Sluka, K.A. Joint manipulation reduces hyperalgesia by activation of monoamine receptors but not opioid or GABA receptors in the spinal cord. Pain 2003, 106, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Bialosky, J.E.; Bishop, M.D.; Price, D.D.; Robinson, M.E.; George, S.Z. The mechanisms of manual therapy in the treatment of musculoskeletal pain: A comprehensive model. Man. Ther. 2009, 14, 531–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farì, G.; Santagati, D.; Pignatelli, G.; Scacco, V.; Renna, D.; Cascarano, G.; Vendola, F.; Bianchi, F.P.; Fiore, P.; Ranieri, M.; et al. Collagen Peptides, in Association with Vitamin C, Sodium Hyaluronate, Manganese and Copper, as Part of the Rehabilitation Project in the Treatment of Chronic Low Back Pain. Endocr. Metab. Immune Disord. Drug Targets 2022, 22, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Coulter, I.D.; Crawford, C.; Vernon, H.; Hurwitz, E.L.; Khorsan, R.; Booth, M.S.; Herman, P.M. Manipulation and Mobilization for Treating Chronic Nonspecific Neck Pain: A Systematic Review and Meta-Analysis for an Appropriateness Panel. Pain Physician 2019, 22, E55–E70. [Google Scholar] [CrossRef] [PubMed]
- Oliva-Pascual-Vaca, Á.; González-González, C.; Oliva-Pascual-Vaca, J.; Piña-Pozo, F.; Ferragut-Garcías, A.; Fernández-Domínguez, J.C.; Heredia-Rizo, A.M. Visceral Origin: An Underestimated Source of Neck Pain. A Systematic Scoping Review. Diagnostics 2019, 9, 186. [Google Scholar] [CrossRef] [Green Version]
E Group (n = 29) | MT + E Group (n = 29) | p Value | |
---|---|---|---|
Clinical Features | |||
Age (years) | 49.72 ± 17.56 | 48.76 ± 14.53 | 0.820 t |
Sex | 7 M; 22 F | 10 M; 19 F | 0.565 C |
Duration of Symptoms (months) | 124.38 ± 148.17 | 96.97 ± 96.73 | 0.502 M |
Current Pain Intensity (mm) | 37.55 ± 25.32 | 33.62 ± 19.70 | 0.512 t |
Cervical ROM (°) | |||
Cervical Flexion | 48.10 ± 10.93 | 47.48 ± 12.85 | 0.844 t |
Cervical Extension | 51.48 ± 12.66 | 53.59 ± 14.36 | 0.557 t |
Cervical Side-bending (R) | 27.97 ± 8.59 | 32.03 ± 9.93 | 0.101 t |
Cervical Side-bending (L) | 29.38 ± 9.12 | 30.28 ± 9.83 | 0.720 t |
Cervical Rotation (R) | 53.97 ± 12.32 | 55.66 ± 16.07 | 0.429 M |
Cervical Rotation (L) | 55.28 ± 14.34 | 58.14 ± 16.37 | 0.482 t |
Upper Cervical Flexion | 10.59 ± 4.39 | 11.45 ± 4.24 | 0.450 t |
Upper Cervical Extension | 24.14 ± 8.12 | 28.28 ± 7.56 | 0.070 M |
FRT ROM (°) | |||
FRT (R) | 16.70 ± 9.52 | 21.26 ± 10.71 | 0.092 t |
FRT (L) | 19.01 ± 10.33 | 23.12 ± 8.98 | 0.094 M |
Pressure Pain Threshold (Kpa) | |||
First MCJ (R) | 359.14 ± 175.98 | 395.93 ± 195.23 | 0.504 M |
Trapezius (R) | 192.17 ± 88.42 | 208.00 ± 98.75 | 0.523 t |
Elevator of Scapula (R) | 180.69 ± 105.62 | 213.45 ± 132.29 | 0.259 M |
C5–6 (R) | 152.86 ± 63.17 | 177.59 ± 84.66 | 0.39 M |
C2–3 (R) | 173.76 ± 87.92 | 208.69 ± 114.53 | 0.347 M |
Suboccipital (R) | 186.10 ± 75.34 | 211.45 ± 91.57 | 0.255 t |
First MCJ (L) | 364.34 ± 155.47 | 339.90 ± 184.74 | 0.222 M |
Trapezius (L) | 213.28 ± 97.49 | 237.97 ± 113.66 | 0.437 M |
Elevator of Scapula (L) | 190.24 ± 122.36 | 223.62 ± 141.34 | 0.287 M |
C5–6 (L) | 153.90 ± 72.56 | 175.76 ± 76.25 | 0.253 M |
C2–3 (L) | 174.59 ± 90.02 | 206.38 ± 113.72 | 0.256 M |
Suboccipital (L) | 180.59 ± 79.85 | 207.90 ± 105.33 | 0.494 M |
Outcome/Group | Pre-Treatment | Post-Treatment | Within-Group | Between-Group |
---|---|---|---|---|
Cervical Flexion (°) | ||||
E Group | 48.10 ± 10.93 | 44.04 ± 10.65 | p < 0.004 *↓W | p = 0.167 t d = 0.37 |
d = −0.38 | ||||
MT + E Group | 47.48 ± 12.85 | 48.03 ± 10.89 | p = 0.759 t | |
d = 0.05 | ||||
Cervical Extension (°) | ||||
E Group | 51.48 ± 12.66 | 48.71 ± 10.25 | p < 0.003 *↓t | p < 0.014 *t d = 0.68 |
d = −0.24 | ||||
MT + E Group | 53.59 ± 14.36 | 56.38 ± 12.34 | p = 0.064 t | |
d = 0.21 | ||||
Cervical Side-Bending (R) (°) | ||||
E Group | 27.97 ± 8.59 | 27.71 ± 8.29 | p = 0.152 t | p = 0.109 M d = 0.50 |
d = −0.03 | ||||
MT + E Group | 32.03 ± 9.93 | 31.90 ± 8.43 | p = 0.910 t | |
d = −0.01 | ||||
Cervical Side-Bending (L) (°) | ||||
E Group | 29.38 ± 9.12 | 27.61 ± 8.51 | p < 0.003 *↓t | p < 0.006 *t d = 0.76 |
d = −0.20 | ||||
MT + E Group | 30.28 ± 9.83 | 33.83 ± 7.88 | p < 0.001 *↑t | |
d = 0.40 | ||||
Cervical Rotation (R) (°) | ||||
E Group | 53.97 ± 12.32 | 52.54 ± 12.13 | p < 0.028 *↓W | p < 0.031 *M d = 0.44 |
d = −0.12 | ||||
MT + E Group | 55.66 ± 16.07 | 58.24 ± 13.97 | p = 0.508 W | |
d = 0.17 | ||||
Cervical Rotation (L) (°) | ||||
E Group | 55.28 ± 14.34 | 53.43 ± 13.43 | p < 0.050 *↓t | p < 0.024 *t d = 0.62 |
d = −0.13 | ||||
MT + E Group | 58.14 ± 16.37 | 61.76 ± 13.58 | p = 0.135 t | |
d = 0.24 | ||||
Upper Cervical Flexion (°) | ||||
E Group | 10.59 ± 4.39 | 10.18 ± 3.92 | p = 0.471 t | p < 0.001 *t d = 1.11 |
d = −0.10 | ||||
MT + E Group | 11.45 ± 4.24 | 14.38 ± 3.68 | p < 0.004 *↑t | |
d = 0.74 | ||||
Upper Cervical Extension (°) | ||||
E Group | 23.14 ± 8.12 | 22.57 ± 8.46 | p = 0.492 t | p = 0.627 M d = 0.45 |
d = −0.07 | ||||
MT + E Group | 29.28 ± 7.56 | 27.10 ± 11.35 | p = 0.265 W | |
d = −0.23 |
Outcome/Group | Pre-Treatment | Post-Treatment | Within-Group | Between-Group |
---|---|---|---|---|
FRT (R) (°) | ||||
E Group | 16.70 ± 9.52 | 15.61 ± 10.03 | p < 0.028 *↓W | p < 0.001 *t d = 1.79 |
d = −0.11 | ||||
MT + E Group | 21.26 ± 10.71 | 32.91 ± 9.29 | p < 0.001 *↑W | |
d = 1.16 | ||||
FRT (L) (°) | ||||
E Group | 19.01 ± 10.33 | 18.04 ± 11.04 | p < 0.022 *↓W | p < 0.001 *M d = 1.39 |
d = −0.09 | ||||
MT + E Group | 23.12 ± 8.98 | 32.26 ± 9.32 | p < 0.001 *↑W | |
d = 1.00 |
Outcome/Group | Pre-Treatment | Post-Treatment | Within-Group | Between-Group |
---|---|---|---|---|
First MCJ (R) (Kpa) | ||||
E Group | 359.14 ± 175.98 | 325.64 ± 166.49 | p < 0.003 *↓t | p = 0.190 M d = 0.34 |
d = −0.20 | ||||
MT + E Group | 395.93 ± 195.23 | 385.62 ± 188.31 | p = 0.658 W | |
d = −0.05 | ||||
Trapezius (R) (Kpa) | ||||
E Group | 192.17 ± 88.42 | 183.86 ± 91.02 | p = 0.278 t | p = 0.225 M d = 0.31 |
d = −0.09 | ||||
MT + E Group | 208 ± 98.75 | 213.07 ± 99.04 | p = 0.646 t | |
d = 0.05 | ||||
Elevator of Scapula (R) (Kpa) | ||||
E Group | 180.69 ± 105.62 | 162.64 ± 84.42 | p < 0.004 *↓W | p = 0.076 t d = 0.48 |
d = −0.19 | ||||
MT + E Group | 213.45 ± 132.29 | 212.1 ± 118.62 | p = 0.585 W | |
d = −0.01 | ||||
C5–6 (R) (Kpa) | ||||
E Group | 152.86 ± 63.17 | 138.32 ± 60.34 | p < 0.003 *↓t | p < 0.039 *t d = 0.56 |
d = −0.24 | ||||
MT + E Group | 177.59 ± 84.66 | 179.76 ± 85.29 | p = 0.405 W | |
d = 0.03 | ||||
C2–3 (R) (Kpa) | ||||
E Group | 173.76 ± 87.92 | 161.36 ± 78.84 | p = 0.076 W | p < 0.025 *M d = 0.59 |
d = −0.15 | ||||
MT + E Group | 208.69 ± 114.53 | 221.79 ± 119.76 | p = 0.336 W | |
d = 0.11 | ||||
Suboccipital (R) (Kpa) | ||||
E Group | 186.1 ± 75.34 | 153.25 ± 79.66 | p < 0.001 *↓W | p < 0.004 *M d = 0.74 |
d = −0.42 | ||||
MT + E Group | 211.45 ± 91.57 | 227.41 ± 117.72 | p = 0.193 t | |
d = 0.15 | ||||
First MCJ (L) (Kpa) | ||||
E Group | 364.34 ± 155.47 | 300.96 ± 142.8 | p < 0.001 *↓t | p = 0.384 M d = 0.28 |
d = −0.42 | ||||
MT + E Group | 339.9 ± 184.74 | 342.55 ± 151.68 | p = 0.658 W | |
d = 0.02 | ||||
Trapezius (L) (Kpa) | ||||
E Group | 213.28 ± 97.49 | 177.96 ± 89.33 | p < 0.001 *↓W | p < 0.034 *t d = 0.58 |
d = −0.38 | ||||
MT + E Group | 237.97 ± 113.66 | 234.31 ± 105.56 | p = 0.698 t | |
d = −0.03 | ||||
Elevator of Scapula (L) (Kpa) | ||||
E Group | 190.24 ± 122.36 | 157.25 ± 83.64 | p < 0.001 *↓W | p < 0.012 *M d = 0.66 |
d = −0.31 | ||||
MT + E Group | 223.62 ± 141.34 | 222.76 ± 112.67 | p = 0.509 W | |
d = −0.01 | ||||
C5–6 (L) (Kpa) | ||||
E Group | 153.9 ± 72.56 | 130.89 ± 65.49 | p < 0.001 *↓t | p < 0.018 *t d = 0.65 |
d = −0.33 | ||||
MT + E Group | 175.76 ± 76.25 | 175.34 ± 71.71 | p = 0.871 W | |
d = −0.01 | ||||
C2–3 (L) (Kpa) | ||||
E Group | 174.59 ± 90.02 | 146.54 ± 78.57 | p < 0.003 *↓t | p < 0.015 *t d = 0.67 |
d = −0.33 | ||||
MT + E Group | 206.38 ± 113.72 | 208.24 ± 103.84 | p = 0.665 W | |
d = 0.02 | ||||
Suboccipital (L) (Kpa) | ||||
E Group | 180.59 ± 79.85 | 152.46 ± 70.75 | p < 0.001 *↓t | p < 0.022 *M d = 0.68 |
d = −0.37 | ||||
MT + E Group | 207.9 ± 105.33 | 214.38 ± 107.5 | p = 0.456 W | |
d = 0.06 |
Outcome/Group | Pre-Treatment | Post-Treatment | Within-Group | Between-Group |
---|---|---|---|---|
EVA (mm) | ||||
E Group | 37.55 ± 25.32 | 37.9 ± 24.3 | p = 0.965 t | p < 0.001 *M d = 1.01 |
d = −0.01 | ||||
MT + E Group | 33.62 ± 19.70 | 16.0 ± 18.6 | p < 0.001 *↑w | |
d = 0.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Sanz, J.; Malo-Urriés, M.; Lucha-López, M.O.; Corral-de-Toro, J.; González-Rueda, V.; López-de-Celis, C.; Pérez-Bellmunt, A.; Hidalgo-García, C. Is Cervical Stabilization Exercise Immediately Effective in Patients with Chronic Neck Pain and Upper Cervical Spine Dysfunction? Randomized Controlled Trial. Life 2022, 12, 714. https://doi.org/10.3390/life12050714
Rodríguez-Sanz J, Malo-Urriés M, Lucha-López MO, Corral-de-Toro J, González-Rueda V, López-de-Celis C, Pérez-Bellmunt A, Hidalgo-García C. Is Cervical Stabilization Exercise Immediately Effective in Patients with Chronic Neck Pain and Upper Cervical Spine Dysfunction? Randomized Controlled Trial. Life. 2022; 12(5):714. https://doi.org/10.3390/life12050714
Chicago/Turabian StyleRodríguez-Sanz, Jacobo, Miguel Malo-Urriés, María Orosia Lucha-López, Jaime Corral-de-Toro, Vanessa González-Rueda, Carlos López-de-Celis, Albert Pérez-Bellmunt, and César Hidalgo-García. 2022. "Is Cervical Stabilization Exercise Immediately Effective in Patients with Chronic Neck Pain and Upper Cervical Spine Dysfunction? Randomized Controlled Trial" Life 12, no. 5: 714. https://doi.org/10.3390/life12050714
APA StyleRodríguez-Sanz, J., Malo-Urriés, M., Lucha-López, M. O., Corral-de-Toro, J., González-Rueda, V., López-de-Celis, C., Pérez-Bellmunt, A., & Hidalgo-García, C. (2022). Is Cervical Stabilization Exercise Immediately Effective in Patients with Chronic Neck Pain and Upper Cervical Spine Dysfunction? Randomized Controlled Trial. Life, 12(5), 714. https://doi.org/10.3390/life12050714