A Critical Analysis of the Automated Hematology Assessment in Pregnant Women at Low and at High Altitude: Association between Red Blood Cells, Platelet Parameters, and Iron Status
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Sample Size Determination
2.3. Enrolment and Variables Measured
2.4. Sample Collection
2.5. Automated Blood Count
2.6. Laboratory Analysis
2.7. Ethical Aspects
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stobdan, T.; Akbari, A.; Azad, P.; Zhou, D.; Poulsen, O.; Appenzeller, O.; Gonzales, G.F.; Telenti, A.; Wong, E.H.M.; Saini, S.; et al. New Insights into the Genetic Basis of Monge’s Disease and Adaptation to High-Altitude. Mol. Biol. Evol. 2017, 34, 3154–3168. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, G.F.; Fano, D.; Vásquez-Velásquez, C. Necesidades de investigación para el diagnóstico de anemia en poblaciones de altura [Diagnosis of anemia in populations at high altitudes]. Rev. Peru. Med. Exp. Salud. Publica 2017, 34, 699–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richalet, J.P. Adaptation à l’hypoxie chronique des populations de haute altitude [Adaption to chronic hypoxaemia by populations living at high altitude]. Rev. Mal. Respir. 2021, 38, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Villafuerte, F.C.; Simonson, T.S.; Bermudez, D.; León-Velarde, F. High-altitude erythrocytosis: Mechanisms of adaptive and mal-adaptive responses. Physiology, 2022; epub ahead of print. [Google Scholar] [CrossRef]
- Costantine, M.M. Physiologic and pharmacokinetic changes in pregnancy. Front. Pharmacol. 2014, 5, 65. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.L.; Nemeth, E. Iron homeostasis during pregnancy. Am. J. Clin. Nutr. 2017, 106 (Suppl. 6), 1567S–1574S. [Google Scholar] [CrossRef] [PubMed]
- Getrajdman, C.; Sison, M.; Lin, H.M.; Katz, D. The effects of hemodilution on coagulation in term parturients: An in vitro study utilizing rotational thromboelastometry. J. Matern. Fetal Neonatal Med. 2022, 35, 1969–1977. [Google Scholar] [CrossRef] [PubMed]
- Moser, G.; Guettler, J.; Forstner, D.; Gauster, M. Maternal Platelets—Friend or Foe of the Human Placenta? Int. J. Mol. Sci. 2019, 20, 5639. [Google Scholar] [CrossRef] [Green Version]
- Aguree, S.; Gernand, A.D. Plasma volume expansion across healthy pregnancy: A systematic review and meta-analysis of longitudinal studies. BMC Pregnancy Childbirth 2019, 19, 508. [Google Scholar] [CrossRef] [Green Version]
- de Haas, S.; Ghossein-Doha, C.; van Kuijk, S.M.; van Drongelen, J.; Spaanderman, M.E. Physiological adaptation of maternal plasma volume during pregnancy: A systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2017, 49, 177–187. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Kasukurti, P.; Murthy, S. Erythrocytes and Platelets: A Critical Analysis of their Ontogenic Relationship through Automated Parameters. J. Clin. Diagn. Res. 2017, 11, EC05. [Google Scholar] [CrossRef] [PubMed]
- Villamonte-Calanche, W.; Lam-Figueroa, N.; Jerí-Palomino, M.; De-La-Torre, C.; Villamonte-Jerí, A.A. Maternal Altitude-Corrected Hemoglobin and at Term Neonatal Anthropometry at 3400 m of Altitude. High Alt. Med. Biol. 2020, 21, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Sun, R.; Liu, Y.; Liu, Z.; Chen, H.; Shen, S.; Wei, Y.; Deng, G. High hemoglobin level is a risk factor for maternal and fetal outcomes of pregnancy in Chinese women: A retrospective cohort study. BMC Pregnancy Childbirth 2022, 22, 290. [Google Scholar] [CrossRef]
- Steer, P.J. Maternal hemoglobin concentration and birth weight. Am. J. Clin. Nutr. 2000, 71 (Suppl. 5), 1285S–1287S. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.I.; Basnyat, B.; Jeong, C.; Di Rienzo, A.; Childs, G.; Craig, S.R.; Sun, J.; Beall, C.M. Ethnically Tibetan women in Nepal with low hemoglobin concentration have better reproductive outcomes. Evol. Med. Public Health 2017, 2017, 82–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, L.D.; Gonzales, G.F.; Tapia, V.L.; Gasco, M.; Sammel, M.D.; Srinivas, S.K.; Ludmir, J. Preterm birth risk at high altitude in Peru. Am. J. Obstet. Gynecol. 2015, 212, 210.e1–210.e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alarcón-Yaquetto, D.E.; Figueroa-Mujica, R.; Valverde-Bruffau, V.; Vásquez-Velásquez, C.; Sánchez-Huamán, J.J.; Jimenez-Troncoso, L.; Rozas-Gamarra, R.; Gonzales, G.F. Hematological Parameters and Iron Status in Adult Men and Women Using Altitude Adjusted and Unadjusted Hemoglobin Values for Anemia Diagnosis in Cusco, Peru (3400 MASL). Physiologia 2022, 2, 1–19. [Google Scholar] [CrossRef]
- Kadikoylu, G.; Yavasoglu, I.; Bolaman, Z.; Senturk, T. Platelet parameters in women with iron deficiency anemia. J. Natl. Med. Assoc. 2006, 98, 398. [Google Scholar]
- Campbell, M.J.; Julious, S.A.; Altman, D.G. Estimating sample sizes for binary, ordered categorical, and continuous outcomes in two group comparisons. BMJ 1995, 311, 1145–1148. [Google Scholar] [CrossRef] [Green Version]
- Martin, D.S.; Cobb, A.; Meale, P.; Mitchell, K.; Edsell, M.; Mythen, M.G.; Grocott, M.P.; Xtreme Alps Research Group. Systemic oxygen extraction during exercise at high altitude. Br. J. Anaesth. 2015, 114, 677–682. [Google Scholar] [CrossRef] [Green Version]
- Moraga, F.A.; Osorio, J.; Jiménez, D.; Calderón-Jofré, R.; Moraga, D. Aerobic Capacity, Lactate Concentration, and Work Assessment During Maximum Exercise at Sea Level and High Altitude in Miners Exposed to Chronic Intermittent Hypobaric Hypoxia (3800 m). Front. Physiol. 2019, 10, 1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viruez-Soto, A.; Jiménez-Torres, F.; Sirpa-Choquehuanca, V.; Casas-Mamani, R.; Cala-Cahuay, J.; Maceda, A.; Vera-Carrasco, O. Gasometría arterial en embarazo a muy alta altitud. Cuad. Hosp. Clínicas 2021, 62, 51–56. Available online: http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S1652-67762021000100008&lng=es&tlng=es (accessed on 21 April 2022).
- McAuliffe, F.; Kametas, N.; Krampl, E.; Ernsting, J.; Nicolaides, K. Blood gases in pregnancy at sea level and at high altitude. BJOG 2001, 108, 980–985. [Google Scholar] [CrossRef] [PubMed]
- Amare, Y.E.; Haile, D. Evaluation of Pulmonary Function Tests among Pregnant Women of Different Trimesters in Debre Berhan Referral Hospital, Shoa, Ethiopia. Int. J. Womens Health 2020, 12, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
- Vargas, M.; Vargas, E.; Julian, C.G.; Armaza, J.F.; Rodriguez, A.; Tellez, W.; Niermeyer, S.; Wilson, M.; Parra, E.; Shriver, M.; et al. Determinants of blood oxygenation during pregnancy in Andean and European residents of high altitude. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 293, R1303–R1312. [Google Scholar] [CrossRef] [Green Version]
- Richlin, S.; Cusick, W.; Sullivan, C.; Dildy, G.; Belfort, M. Normative oxygen saturation values for pregnant women at sea level. Prim. Care Update OB/GYNS 1998, 5, 154–155. [Google Scholar] [CrossRef]
- Bailey, B.; Euser, A.G.; Bol, K.A.; Julian, C.G.; Moore, L.G. High-altitude residence alters blood-pressure course and increases hypertensive disorders of pregnancy. J. Matern. Fetal Neonatal Med. 2022, 35, 1264–1271. [Google Scholar] [CrossRef]
- Grant, I.D.; Giussani, D.A.; Aiken, C.E. Blood pressure and hypertensive disorders of pregnancy at high altitude: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. MFM 2021, 3, 100400. [Google Scholar] [CrossRef]
- Alkhaldy, H.Y.; Awan, Z.A.; Abouzaid, A.A.; Elbahaie, H.M.; Al Amoudi, S.M.; Andarawi, M.; Shehata, S.F. The Prevalence of Isolated Neutropenia at High Altitude in Southern Saudi Arabia: Does Altitude Affect Leucocyte Count? Int. J. Gen. Med. 2020, 13, 1373–1379. [Google Scholar] [CrossRef]
- Bakrim, S.; Motiaa, Y.; Ouarour, A.; Masrar, A. Hematological parameters of the blood count in a healthy population of pregnant women in the Northwest of Morocco (Tetouan-M’diq-Fnideq provinces). Pan Afr. Med. J. 2018, 29, 205. [Google Scholar] [CrossRef]
- Purohit, G.; Shah, T.; Harsoda, J.M. Hematological profile of normal pregnant women in Western India. Sch. J. App. Med. Sci. 2015, 3, 2195–2199. [Google Scholar]
- Hsu, W.Y.; Wu, C.H.; Hsieh, C.T.; Lo, H.C.; Lin, J.S.; Kao, M.D. Low body weight gain, low white blood cell count and high serum ferritin as markers of poor nutrition and increased risk for preterm delivery. Asia Pac. J. Clin. Nutr. 2013, 22, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Grant, I.D.; Giussani, D.A.; Aiken, C.E. Fetal growth and spontaneous preterm birth in high-altitude pregnancy: A systematic review, meta-analysis, and meta-regression. Int. J. Gynaecol. Obstet. 2022, 157, 221–229. [Google Scholar] [CrossRef] [PubMed]
- He, Z.Z.; Ma, S.Q.; Deng, L.; Wang, H.; Li, X.H.; Xu, Y. Microcirculation characteristics and humoral factors of healthy people from different populations at high altitude (4100 m). Sheng Li Xue Bao 2021, 73, 917–925. (In Chinese) [Google Scholar]
- Alarcón-Yaquetto, D.E.; Caballero, L.; Gonzales, G.F. Association between Plasma N-Acylethanolamides and High Hemoglobin Concentration in Southern Peruvian Highlanders. High Alt. Med. Biol. 2017, 18, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, G.F.; Steenland, K.; Tapia, V. Maternal hemoglobin level and fetal outcome at low and high altitudes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 297, R1477–R1485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umar, Z.; Rasool, M.; Asif, M.; Karim, S.; Malik, A.; Mushtaq, G.; Kamal, M.A.; Mansoor, A. Evaluation of hemoglobin concentration in pregnancy and correlation with different altitude: A study from balochistan plateau of Pakistan. Open Biochem. J. 2015, 9, 7–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, A.; Yang, S.; Zhang, J.; Qiao, R. Establishment of reference intervals for complete blood count parameters during normal pregnancy in Beijing. J. Clin. Lab. Anal. 2017, 31, e22150. [Google Scholar] [CrossRef] [Green Version]
- Calis, P.; Karcaaltincaba, D.; Isik, G.; Buyuktaskin, F.; Bayram, M.; Karabacak, O. A cross-sectional study in non-anaemic pregnant women in Turkey to assess necessity of iron supplementation. East Mediterr. Health J. 2020, 26, 1227–1232. [Google Scholar] [CrossRef]
- Beutler, E.; West, C. Hematologic differences between African-Americans and whites: The roles of iron deficiency and alpha-thalassemia on hemoglobin levels and mean corpuscular volume. Blood 2005, 106, 740–745. [Google Scholar] [CrossRef]
- Crispin, P.J.; Sethna, F.; Andriolo, K. Red Cell and Reticulocyte Parameters for the Detection of Iron Deficiency in Pregnancy. Clin. Lab. 2019, 65. [Google Scholar] [CrossRef] [PubMed]
- Paliogiannis, P.; Zinellu, A.; Mangoni, A.A.; Capobianco, G.; Dessole, S.; Cherchi, P.L.; Carru, C. Red blood cell distribution width in pregnancy: A systematic review. Biochem. Med. 2018, 28, 030502. [Google Scholar] [CrossRef] [PubMed]
- Sonaglioni, A.; Esposito, V.; Caruso, C.; Nicolosi, G.L.; Bianchi, S.; Lombardo, M.; Gensini, G.F.; Ambrosio, G. Association between neutrophil to lymphocyte ratio and carotid artery wall thickness in healthy pregnant women. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 255, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Amah-Tariah, F.S.; Ojeka, S.O.; Dapper, D.V. Haematological values in pregnant women in Port Harcourt, Nigeria II: Serum iron and transferrin, total and unsaturated iron binding capacity and some red cell and platelet indices. Niger. J. Physiol. Sci. 2011, 26, 173–178. [Google Scholar]
- Wang, Y.; Huang, X.; Yang, W.; Zeng, Q. Platelets and High-Altitude Exposure: A Meta-Analysis. High Alt. Med. Biol. 2022, 23, 43–56. [Google Scholar] [CrossRef]
- Gonzales, G.F.; Tapia, V.; Vásquez-Velásquez, C. Changes in hemoglobin levels with age and altitude in preschool-aged children in Peru: The assessment of two individual-based national databases. Ann. N. Y. Acad. Sci. 2021, 1488, 67–82. [Google Scholar] [CrossRef]
- Gassmann, M.; Mairbäurl, H.; Livshits, L.; Seide, S.; Hackbusch, M.; Malczyk, M.; Kraut, S.; Gassmann, N.N.; Weissmann, N.; Muckenthaler, M.U. The increase in hemoglobin concentration with altitude varies among human populations. Ann. N. Y. Acad. Sci. 2019, 1450, 204–220. [Google Scholar] [CrossRef] [Green Version]
- Walle, M.; Asrie, F.; Gelaw, Y.; Getaneh, Z. The role of platelet parameters for the diagnosis of preeclampsia among pregnant women attending at the University of Gondar Comprehensive Specialized Hospital antenatal care unit, Gondar, Ethiopia. J. Clin. Lab. Anal. 2022, 36, e24305. [Google Scholar] [CrossRef]
- Sileshi, B.; Urgessa, F.; Wordofa, M. A comparative study of hematological parameters between hypertensive and normotensive individuals in Harar, eastern Ethiopia. PLoS ONE 2021, 16, e0260751. [Google Scholar] [CrossRef]
- Forstner, D.; Guettler, J.; Gauster, M. Changes in Maternal Platelet Physiology during Gestation and Their Interaction with Trophoblasts. Int. J. Mol. Sci. 2021, 22, 10732. [Google Scholar] [CrossRef]
- Wiwanitkit, V. Plateletcrit, mean platelet volume, platelet distribution width: Its expected values and correlation with parallel red blood cell parameters. Clin. Appl. Thromb. Hemost. 2004, 10, 175–178. [Google Scholar] [CrossRef] [PubMed]
- McMullin, M.F.; White, R.; Lappin, T.; Reeves, J.; MacKenzie, G. Haemoglobin during pregnancy: Relationship to erythropoietin and haematinic status. Eur. J. Haematol. 2003, 71, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Milman, N.; Graudal, N.; Nielsen, O.J.; Agger, A.O. Serum erythropoietin during normal pregnancy: Relationship to hemoglobin and iron status markers and impact of iron supplementation in a longitudinal, placebo-controlled study on 118 women. Int. J. Hematol. 1997, 66, 159–168. [Google Scholar] [CrossRef]
- Delaney, K.M.; Guillet, R.; Pressman, E.K.; Ganz, T.; Nemeth, E.; O’Brien, K.O. Serum Erythroferrone During Pregnancy Is Related to Erythropoietin but Does Not Predict the Risk of Anemia. J. Nutr. 2021, 151, 1824–1833. [Google Scholar] [CrossRef] [PubMed]
- Wolfson, G.H.; Vargas, E.; Browne, V.A.; Moore, L.G.; Julian, C.G. Erythropoietin and Soluble Erythropoietin Receptor: A Role for Maternal Vascular Adaptation to High-Altitude Pregnancy. J. Clin. Endocrinol. Metab. 2017, 102, 242–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Q.; Zhao, H.; Jiang, Y.; Guo, J.; Lv, N.; Tang, J.; Li, S.; Zhang, D.; Bai, R.; Chen, G. Association of blood metal exposure with testosterone and hemoglobin: A cross-sectional study in Hangzhou Birth Cohort Study. Environ. Int. 2020, 136, 105451. [Google Scholar] [CrossRef]
- Gonzales, G.F.; Chaupis, D. Higher androgen bioactivity is associated with excessive erythrocytosis and chronic mountain sickness in Andean Highlanders: A review. Andrologia 2015, 47, 729–743. [Google Scholar] [CrossRef]
- Firestein, M.R.; Romeo, R.D.; Winstead, H.; Goldman, D.A.; Grobman, W.A.; Haas, D.; Mercer, B.; Parker, C.; Parry, S.; Reddy, U.; et al. Elevated prenatal maternal sex hormones, but not placental aromatase, are associated with child neurodevelopment. Horm. Behav. 2022, 140, 105125. [Google Scholar] [CrossRef]
- Bitsko, R.H.; Holbrook, J.R.; O’Masta, B.; Maher, B.; Cerles, A.; Saadeh, K.; Mahmooth, Z.; MacMillan, L.M.; Rush, M.; Kaminski, J.W. A Systematic Review and Meta-analysis of Prenatal, Birth, and Postnatal Factors Associated with Attention-Deficit/Hyperactivity Disorder in Children. Prev. Sci. 2022. [Google Scholar] [CrossRef]
- Dybdahl, M.; Dalgård, C.; Glintborg, D.; Andersen, M.S.; Christesen, H.T. Maternal Testosterone Concentrations in Third Trimester and Offspring Handgrip Strength at 5 Years: Odense Child Cohort. J. Clin. Endocrinol. Metab. 2022, dgac143. [Google Scholar] [CrossRef]
- Charles, S.M.; Julian, C.G.; Vargas, E.; Moore, L.G. Higher estrogen levels during pregnancy in Andean than European residents of high altitude suggest differences in aromatase activity. J. Clin. Endocrinol. Metab. 2014, 99, 2908–2916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, M.; Kotwal, J.; Kotwal, A.; Mishra, P.; Dutta, V.; Chopra, S. Correlation of haemoglobin and red cell indices with serum ferritin in Indian women in second and third trimester of pregnancy. Med. J. Armed. Forces India 2013, 69, 31–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Cho, S.Y. Investigation of Iron Metabolism for Regulating Megakaryopoiesis and Platelet Count According to the Mechanisms of Anemia. Clin. Lab. 2018, 64, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Brissot, E.; Troadec, M.B.; Loréal, O.; Brissot, P. Iron and platelets: A subtle, under-recognized relationship. Am. J. Hematol. 2021, 96, 1008–1016. [Google Scholar] [CrossRef] [PubMed]
- Park, M.J.; Park, P.W.; Seo, Y.H.; Kim, K.H.; Park, S.H.; Jeong, J.H.; Ahn, J.Y. The relationship between iron parameters and platelet parameters in women with iron deficiency anemia and thrombocytosis. Platelets 2013, 24, 348–351. [Google Scholar] [CrossRef] [PubMed]
- Huamaní, C.; Sarmiento, W.; Cordova-Heredia, G.; Cruz-Huanca, L.; Damian-Saavedra, P.; Antonio, D. Prediction of Blood Viscosity Based on Usual Hematological Parameters in a Clinically Healthy Population Living in a High-Altitude City. High Alt. Med. Biol. 2022, 23, 78–84. [Google Scholar] [CrossRef]
- Julian, C.G.; Wilson, M.J.; Lopez, M.; Yamashiro, H.; Tellez, W.; Rodriguez, A.; Bigham, A.W.; Shriver, M.D.; Rodriguez, C.; Vargas, E.; et al. Augmented uterine artery blood flow and oxygen delivery protect Andeans from altitude-associated reductions in fetal growth. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 296, R1564–R1575. [Google Scholar] [CrossRef] [Green Version]
- Browne, V.A.; Julian, C.G.; Toledo-Jaldin, L.; Cioffi-Ragan, D.; Vargas, E.; Moore, L.G. Uterine artery blood flow, fetal hypoxia and fetal growth. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140068. [Google Scholar] [CrossRef] [Green Version]
- Viteri, F.E.; Casanueva, E.; Tolentino, M.C.; Díaz-Francés, J.; Erazo, A.B. Antenatal iron supplements consumed daily produce oxidative stress in contrast to weekly supplementation in Mexican non-anemic women. Reprod. Toxicol. 2012, 34, 125–132. [Google Scholar] [CrossRef]
- Casanueva, E.; Viteri, F.E. Iron and oxidative stress in pregnancy. J. Nutr. 2003, 133 (Suppl. 2), 1700S–1708S. [Google Scholar] [CrossRef]
Low Altitude (N = 233) | High Altitude (N = 211) | |
---|---|---|
Age (years) | 29.3 ± 0.47 | 27.30 ± 0.43 * |
BMI (Kg/m2) | 27.37 ± 0.65 | 26.78 ± 0.27 |
Gestational age (weeks) | 27.37 ± 0.65 | 21.65 ± 0.72 * |
Pulse oxygen saturation (%) | 98.08 ± 0.05 | 94.91 ± 0.18 * |
Arterial oxygen content (CaO2) (mL/dL) | 12.60 ± 0.11 | 18.53 ± 0.10 * |
Systolic blood pressure (mm Hg) | 103 ± 0.74 | 98.73 ± 0.61 * |
Diastolic blood pressure (mm Hg) | 70 ± 0.62 | 63.12 ± 0.42 |
Drink alcohol | 0/197 (0%) | 0/210 (0%) |
Smoke | 1/197 (0.5%) | 1/210 (0.47%) |
Place of birth of pregnant women | ||
Low altitude | 161 (75%) | 2 (1%) |
High altitude | 55 (25%) | 209 (99%) * |
Marital status | ||
0. Single | 46 (21%) | 13 (6.3%) * |
1. Married | 48 (22%) | 17 (8.2%) |
2. Partner | 124 (56.6%) | 176 (85.4%) |
3. Divorced | 1 (0.4%) | 0 (0%) |
Number of live children | 1.54 ± 0.03 | 0.76 ± 0.06 * |
Stillbirths | 0.03 ± 0.01 | 0.03 ± 0.01 |
Age at menarche (years) | 12.60 ± 0.11 | 12.86 ± 0.19 |
WBC (103/uL) | 8.81 ± 0.14 | 7.79 ± 0.11 * |
Neutrophils (103/uL) | 6.10 ± 0.11 | 5.50 ± 0.09 * |
Lymphocytes (103/uL) | 1.91 ± 0.03 | 1.86 ± 0.03 |
Monocytes (103/uL) | 0.53 ± 0.01 | 0.22 ± 0.01 * |
Eosinophiles (103/uL) | 0.18 ± 0.01 | 0.16 ± 0.02 |
Basophils (103/uL) | 0.07 ± 0.01 | 0.04 ± 0.02 |
RBC (106/uL) | 3.99 ± 0.02 | 4.56 ± 0.25 * |
Hb (g/dL) | 11.67 ± 0.08 | 14.44 ± 0.08 * |
Hct (%) | 36.75 ± 0.25 | 42.35 ± 0.21 * |
MCV (fL) | 92.22 ± 0.39 | 92.92 ± 0.38 |
MCH (pg) | 29.32 ± 0.16 | 31.69 ± 0.15 * |
MCHC (g/dL) | 31.76 ± 0.08 | 34.07 ± 0.06 * |
RDW-CV (%) | 13.44 ± 0.12 | 12.54 ± 0.07 * |
Platelets (103/uL) | 245.9 ± 3.84 | 273 ± 4.19 * |
MPV (fL) | 8.42 ± 0.12 | 9.10 ± 0.06 * |
PCT (%) | 0.20 ± 0.01 | 0.25 ± 0.01 * |
PDW (%) | 20.18 ± 0.09 | 15.96 ± 0.02 * |
Ferritin (ng/mL) | 16.10 ± 0.87 | 24.15 ± 0.77 * |
Testosterone (ng/mL) | 0.54 ± 0.02 | 0.61 ± 0.02 * |
Estradiol (pg/mL) | 1627 ± 47 | 1649 ± 65 |
Erythropoietin (mU/mL) | 13.45 ± 0.91 | 13.77 ± 0.53 |
sTfR(ug/mL) | 2.86 ± 0.22 | 1.02 ± 0.03 * |
IL-6 (pg/mL) | 22.53 ± 3.00 | 18.73 ± 1.37 |
Hepcidin (ng/mL) | 4.35 ± 0.43 | 6.33 ± 0.48 * |
First Trimester (N = 31) | Second Trimester (N = 52) | Third Trimester (N = 149) | |
---|---|---|---|
Age (years) | 32.01 ± 0.97 ** | 29.12 ± 0.97 | 28.8 ± 0.62 && |
Gestational age (weeks) | 9.29 ± 0.39 * | 19.27 ± 0.59 # | 34.05 ± 0.25 & |
SpO2 (%) | 98.2 ± 0.07 | 98.19 ± 0.07 | 98.01 ± 0.07 |
SBP (mm Hg) | 106 ± 2.65 | 104 ± 1.7 | 102 ± 0.83 |
DBP (mm Hg) | 72.7 ± 2.07 | 68 ± 1.22 | 70.1 ± 0.75 |
CaO2 (mL/dL) | 16.48 ± 0.21 * | 15.34 ± 0.23 | 15.53 ± 0.15 & |
WBC (103/uL) | 8.37 ± 0.38 | 8.94 ± 0.28 | 8.86 ± 0.18 |
Neutrophils (103/uL) | 5.51 ± 0.31 | 6.17 ± 0.24 | 6.21 ± 0.14 && |
Lymphocytes (103/uL) | 2.08 ± 0.10 | 1.96 ± 0.07 | 1.86 ± 0.04 && |
Monocytes (103/uL) | 0.50 ± 0.02 | 0.51 ± 0.02 | 0.55 ± 0.02 |
Eosinophiles (103/uL) | 0.21 ± 0.04 | 0.23 ± 0.03 ## | 0.16 ± 0.01 |
Basophils (103/uL) | 0.06 ± 0.004 | 0.06 ± 0.004 | 0.07 ± 0.002 |
RBC (106/uL) | 4.17 ± 0.06 * | 3.86 ± 0.05 ## | 3.99 ± 0.03 & |
Hb (g/dL) | 12.30 ± 0.16 * | 11.46 ± 0.17 | 11.61 ± 0.11 & |
Hct (%) | 38.31 ± 0.54 * | 35.73 ± 0.48 | 36.78 ± 0.33 && |
MCV (fL) | 91.97 ± 0.78 | 92.58 ± 0.81 | 92.14 ± 0.53 |
MCH (pg) | 29.56 ± 0.28 | 29.70 ± 0.32 | 29.12 ± 0.22 |
MCHC (g/dL) | 32.15 ± 0.18 | 32.05 ± 0.17 ## | 31.56 ± 0.10 && |
RDW-CV (%) | 12.6 ± 0.19 | 13.01 ± 0.21 # | 13.79 ± 0.17 & |
Platelets (103/uL) | 271.4 ± 9.56 ** | 241.3 ± 7.96 | 241.8 ± 4.9 & |
MPV (fL) | 7.78 ± 0.26 | 8.41 ± 0.29 | 8.57 ± 0.14 & |
PCT (%) | 0.21 ± 0.007 | 0.20 ± 0.005 | 0.20 ± 0.003 |
PDW (%) | 19.49 ± 0.24 | 19.98 ± 0.18 # | 20.40 ± 0.11 & |
Ferritin (ng/mL) | 25.49 ± 4.12 | 16.91 ± 1.70 ## | 13.03 ± 0.65 & |
Testosterone (ng/mL) | 0.73 ± 0.05 | 0.59 ± 0.06 ## | 0.43 ± 0.03 & |
Estradiol (pg/mL) | 1038 ± 131 | 1317 ± 78 # | 2028 ± 45 & |
Erythropoietin (mU/mL) | 15.18 ± 4.10 | 16.35 ± 2.38 | 11.62 ± 0.61 |
sTfR(ug/mL) | 2.02 ± 0.21 | 3.41 ± 0.68 | 2.84 ± 0.21 & |
IL-6 (pg/mL) | 18.28 ± 2.17 | 21.63 ± 3.06 | 24.75 ± 5.12 |
Hepcidin (ng/mL) | 9.67 ± 2.06 ** | 4.43 ± 0.56 # | 2.85 ± 0.39 & |
First Trimester (N = 58) | Second Trimester (N = 81) | Third Trimester (N = 69) | |
---|---|---|---|
Age (years) | 27.31 ± 0.86 | 27.11 ± 0.71 | 27.31 ± 0.76 |
Gestational age (weeks) | 9.34 ± 0.32 * | 19.86 ± 0.52 # | 34.12 ± 0.44 & |
SpO2 (%) | 95.05 ± 0.46 | 95.45 ± 0.26 # | 94.14 ± 0.26 |
SBP (mm Hg) | 97.05 ± 1.00 | 97.85 ± 0.85 ## | 101.16 ± 1.32 && |
DBP (mm Hg) | 62.95 ± 0.74 | 62.22 ± 0.63 ## | 64.40 ± 0.83 |
CaO2 (mL/dL) | 20.14 ± 0.17 | 20.10 ± 0.19 # | 18.09 ± 0.15 & |
WBC (103/uL) | 7.70 ± 0.20 | 7.93 ± 0.20 | 7.68 ± 0.18 |
Neutrophils (103/uL) | 5.30 ± 0.14 | 5.71 ± 0.18 | 5.42 ± 0.17 |
Lymphocytes (103/uL) | 1.94 ± 0.07 | 1.76 ± 0.06 | 1.90 ± 0.07 |
Monocytes (103/uL) | 0.22 ± 0.01 | 0.22 ± 0.01 | 0.23 ± 0.01 |
Eosinophiles (103/uL) | 0.22 ± 0.05 | 0.17 ± 0.02 # | 0.11 ± 0.02 & |
Basophils (103/uL) | 0.02 ± 0.001 | 0.02 ± 0.001 | 0.02 ± 0.001 |
RBC (106/uL) | 4.88 ± 0.04 * | 4.43 ± 0.04 | 4.46 ± 0.04 & |
Hb (g/dL) | 15.19 ± 0.14 * | 14.08 ± 0.13 | 14.20 ± 0.11 & |
Hct (%) | 44.31 ± 0.37 * | 41.35 ± 0.34 | 41.83 ± 0.31 & |
MCV (fL) | 90.87 ± 0.66 ** | 93.55 ± 0.70 | 93.87 ± 0.59 & |
MCH (pg) | 31.16 ± 0.28 | 31.89 ± 0.28 | 31.89 ± 0.25 |
MCHC (g/dL) | 34.27 ± 0.11 | 34.03 ± 0.10 | 33.96 ± 0.08 && |
RDW-CV (%) | 12.39 ± 0.14 | 12.68 ± 0.13 | 12.51 ± 0.10 |
Platelets (103/uL) | 291.88 ± 9.36 | 276 ± 5.7 ## | 255.4 ± 7.11 & |
MPV (fL) | 8.86 ± 0.10 | 9.01 ± 0.1 ## | 9.42 ± 0.11 & |
PCT (%) | 0.26 ± 0.01 | 0.25 ± 0.001 | 0.24 ± 0.01 |
PDW (%) | 15.84 ± 0.05 | 15.86 ± 0.03 # | 16.19 ± 0.04 & |
Ferritin (ng/mL) | 29.85 ± 1.90 * | 23.72 ± 1.20 ## | 19.89 ± 0.75 & |
Testosterone (ng/mL) | 0.69 ± 0.06 | 0.67 ± 0.05 ## | 0.49 ± 0.05 && |
Estradiol (pg/mL) | 968 ± 63 * | 1753 ± 60 ## | 2113 ± 156 & |
Erythropoietin (mU/mL) | 10.84 ± 0.66 * | 15.40 ± 1.12 | 14.45 ± 0.72 & |
sTfR(ug/mL) | 0.90 ± 0.05 | 0.97 ± 0.05 ## | 1.15 ± 0.07 && |
IL-6 (pg/mL) | 17.34 ± 2.87 | 16.51 ± 1.10 | 22.64 ± 3.21 |
Hepcidin (ng/mL) | 10.01 ± 1.21 * | 5.73 ± 0.67 | 4.00 ± 0.58 & |
Platelet (103/uL) r-Value p-Value | PCT (%) r-Value p-Value | MPV (FL) r-Value p-Value | PDW (%) r-Value p-Value | |||||
---|---|---|---|---|---|---|---|---|
LA | HA | LA | HA | LA | HA | LA | HA | |
RBC (106/uL) | +0.05 NS | +0.23 S | +0.18 S | +0.28 S | +0.11 NS | −0.01 NS | +0.06 NS | −0.01 NS |
Hb (g/dL) | −0.11 NS | −0.07 NS | −0.04 NS | −0.08 NS | +0.08 NS | +0.01 NS | +0.10 NS | +0.27 * S |
HcT (%) | −0.09 NS | +0.01 NS | +0.04 NS | +0.02 NS | +0.13 NS | +0.03 NS | +0.12 NS | +0.18 S |
MCV (FL) | −0.21 S | −0.30 S | −0.20 S | −0.37 S | +0.03 NS | +0.06 NS | +0.07 NS | +0.20 S |
MCH (pg) | −0.28 S | −0.34 S | −0.27 S | −0.39 S | +0.03 NS | +0.03 NS | +0.03 NS | +0.14 S |
MCHC (g/dL) | −0.05 NS | −0.26 S | −0.24 S | −0.35 S | −0.11 NS | −0.07 NS | −0.04 NS | −0.03 NS |
RDW-CV (%) | 0.28 * S | +0.16 S | 0.02 S | +0.23 S | +0.13 NS | +0.07 NS | −0.08 NS | −0.14 S |
Blood Marker | GA at Low Altitude | GA at High Altitude |
---|---|---|
RBC (106/uL) | −0.28 * S | −0.41 S |
Hb (g(dL) | −0.23 * S | −0.33 S |
Hct (%) | −0.22 * S | −0.31 S |
MCV (fL) | +0.11 NS | +0.18 S |
MCH (pg) | −0.14 S | +0.08 NS |
MCHC (g/dL) | −0.25 S | −0.19 S |
RDW-CV (%) | +0.33 * S | +0.08 NS |
CaO2 (mL/dL) | −0.23 * S | −0.39 S |
Ferritin (ng/mL) | −0.30 S | −0.36 S |
sTfR (ug/nL) | +0.09 NS | +0.24 S |
EPO (mU/mL) | −0.11 NS | +0.27 S |
Hepcidin (ng/mL) | −0.33 # S | −0.37 # S |
Hematological Marker/Serum Ferritin | Low Altitude | High Altitude |
---|---|---|
RBC (106/uL) | +0.01 (NS) | +0.22 (S) |
Hb (g/dL) | +0.22 (S) | +0.29 (S) |
Hct (%) | +0.19 (S) | +0.26 (S) |
MCV (fL) | +0.12 (NS) | +0.01 (NS) |
MCH (pg) | +0.15 (S) | +0.07 (NS) |
MCHC (g/dL) | +0.11 (NS) | +0.21 (S) |
RDW-CV (%) | −0.30 * (S) | −0.25 * (S) |
Platelets (103/uL) | −0.10 (NS) | 0.10 (NS) |
MPV (fL) | −0.08 (NS) | −0.09 (NS) |
PCT (%) | 0.06 (NS) | 0.05 (NS) |
PDW (%) | −0.185 * (S) | −0.16 (S) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figueroa-Mujica, R.; Ccahuantico, L.A.; Ccorahua-Rios, M.S.; Sanchez-Huaman, J.J.; Vásquez-Velasquez, C.; Ponce-Huarancca, J.M.; Rozas-Gamarra, R.E.; Gonzales, G.F. A Critical Analysis of the Automated Hematology Assessment in Pregnant Women at Low and at High Altitude: Association between Red Blood Cells, Platelet Parameters, and Iron Status. Life 2022, 12, 727. https://doi.org/10.3390/life12050727
Figueroa-Mujica R, Ccahuantico LA, Ccorahua-Rios MS, Sanchez-Huaman JJ, Vásquez-Velasquez C, Ponce-Huarancca JM, Rozas-Gamarra RE, Gonzales GF. A Critical Analysis of the Automated Hematology Assessment in Pregnant Women at Low and at High Altitude: Association between Red Blood Cells, Platelet Parameters, and Iron Status. Life. 2022; 12(5):727. https://doi.org/10.3390/life12050727
Chicago/Turabian StyleFigueroa-Mujica, Ramón, Luis Angel Ccahuantico, Maycol Suker Ccorahua-Rios, Juan José Sanchez-Huaman, Cinthya Vásquez-Velasquez, Jorge M. Ponce-Huarancca, Rodrigo E. Rozas-Gamarra, and Gustavo F. Gonzales. 2022. "A Critical Analysis of the Automated Hematology Assessment in Pregnant Women at Low and at High Altitude: Association between Red Blood Cells, Platelet Parameters, and Iron Status" Life 12, no. 5: 727. https://doi.org/10.3390/life12050727
APA StyleFigueroa-Mujica, R., Ccahuantico, L. A., Ccorahua-Rios, M. S., Sanchez-Huaman, J. J., Vásquez-Velasquez, C., Ponce-Huarancca, J. M., Rozas-Gamarra, R. E., & Gonzales, G. F. (2022). A Critical Analysis of the Automated Hematology Assessment in Pregnant Women at Low and at High Altitude: Association between Red Blood Cells, Platelet Parameters, and Iron Status. Life, 12(5), 727. https://doi.org/10.3390/life12050727