Aliphatic Aldehydes in the Earth’s Crust—Remains of Prebiotic Chemistry?
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Drill Core Sample
2.2. Sample Preparation
2.3. Determination of Organic Compounds by GC Q-TOF MS
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, H.A.; Murphy, R.C. Working towards an exegesis for lipids in biology. Nat. Chem. Biol. 2009, 5, 602–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, H.A.; Marnett, L.J. Introduction to lipid biochemistry, metabolism and signaling. Chem. Rev. 2011, 111, 5817–5820. [Google Scholar] [CrossRef] [PubMed]
- Fritz, K.S.; Petersen, D.R. An overview of the chemistry and biology of reactive aldehydes. Free Radic. Biol. Med. 2013, 59, 85–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awasthi, Y.C.; Srivastava, S.K. Structure, function and metabolism of glyco-sphingolipids. In Biochemistry of Brain; Kumar, S., Ed.; Elsevier: Amsterdam, The Netherlands, 1980; pp. 1–20. [Google Scholar]
- Deamer, D.; Dworkin, J.P.; Sandford, S.A.; Bernstein, M.P.; Allamandola, L.J. The First Cell Membranes. Astrobiology 2002, 2, 371–381. [Google Scholar] [CrossRef]
- Sakuma, Y.; Imai, M. From Vesicles to Protocells: The Roles of Amphiphilic Molecules. Life 2015, 5, 651–675. [Google Scholar] [CrossRef]
- Deamer, D. The Role of Lipid Membranes in Life’s Origin. Life 2017, 7, 5. [Google Scholar] [CrossRef]
- Aponte, J.C.; Whitaker, D.; Powner, M.W.; Elsila, J.E.; Dworkin, J.P. Analyses of Aliphatic Aldehydes and Ketones in Carbonaceous Chondrites. ACS Earth Space Chem. 2019, 3, 463–472. [Google Scholar] [CrossRef]
- Schreiber, U.; Mayer, C.; Schmitz, O.J.; Rosendahl, P.; Bronja, A.; Greule, M.; Keppler, F.; Mulder, I.; Sattler, T.; Schöler, H.F. Organic compounds in fluid inclusions of Archean quartz—Analogues of prebiotic chemistry on early Earth. PLoS ONE 2017, 12, e0177570. [Google Scholar]
- Mißbach, H.; Duda, J.-P.; van den Kerkhof, A.M.; Lüders, V.; Pack, A.; Reitner, J.; Thiel, V. Ingredients for microbial life preserved in 3.5 billion-year-old fluid inclusions. Nat. Commun. 2021, 12, 1101. [Google Scholar] [CrossRef]
- Durham, E.; Zhang, S.; Roberts, C. Diesel-length aldehydes and ketones via supercritical Fischer Tropsch Synthesis on an iron catalyst. In Applied Catalysis A: General; Kung, H., Ahn, W.-S., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 65–73. [Google Scholar]
- Xiang, Y.; Kruse, N. Tuning the catalytic CO hydrogenation to straight- and long-chain aldehydes/alcohols and olefins/paraffins. Nat. Commun. 2016, 7, 13058. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, U.; Locker-Grütjen, O.; Mayer, C. Hypothesis: Origin of Life in Deep-Reaching Tectonic Faults. Orig. Life Evol. Biosph. 2012, 42, 47–54. [Google Scholar] [CrossRef]
- Mayer, C.; Schreiber, U.; Dávila, M.J. Selection of Prebiotic Molecules in Amphiphilic Environments. Life 2017, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- van den Bogaard, P.; Hall, C.H.; Schmincke, H.U.; York, D. Precise single-grain 40Ar/39Ar dating of a cold to warm climate transition in Central Europe. Nature 1989, 342, 523–525. [Google Scholar] [CrossRef]
- Wörner, G.; Viereck, L.; Plaumann, S.; Pucher, R.; van den Bogaard, P.; Schmincke, H.-U. The Quaternary Wehr Volcano: A multiphase evolved eruption center in the East Eifel Volcanic field (FRG). Neues Jahrb. Miner. Abh. 1988, 159, 73–99. [Google Scholar]
- Durham, E.; Stewart, C.; Roe, D.; Xu, R.; Zhang, S.; Roberts, C.B. Supercritical Fischer-Tropsch Synthesis: Heavy Aldehyde Production and the Role of Process Conditions. Ind. Eng. Chem. Res. 2014, 53, 9695–9702. [Google Scholar] [CrossRef]
- McCollom, T.; Ritter, G.; Simoneit, B.R.T. Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-Type reactions. Orig. Life Evol. Biosph. 1999, 29, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Iuga, C.; Vivier-Bunge, A. Physisorption of aliphatic aldehydes on a model silicate Brønsted site: A quantum chemistry study. In Proceedings of the 9th WSEAS International Conference on Mathematics & Computers in Biology & Chemistry, Bucharest, Romania, 24–26 June 2008; pp. 118–122. [Google Scholar]
- Hakim, S.S.; Olsson, M.H.M.; Sørensen, H.O.; Bovet, N.; Bohr, J.; Feidenhans’l, R.; Stipp, S.L.S. Interactions of the Calcite {10.4} Surface with Organic Compounds: Structure and Behaviour at Mineral—Organic Interfaces. Sci. Rep. 2017, 7, 7592. [Google Scholar] [CrossRef] [Green Version]
- Mayer, C.; Schreiber, U.; Dávila, M.J. Periodic Vesicle Formation in Tectonic Fault Zones—An Ideal Scenario for Molecular Evolution. Orig. Life Evol. Biosph. 2015, 45, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Mayer, C.; Schreiber, U.; Dávila, M.J.; Schmitz, O.J.; Bronja, A.; Meyer, M.; Klein, J.; Meckelmann, S.W. Molecular Evolution in a Peptide-Vesicle System. Life 2018, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- Dávila, M.J.; Mayer, C. Membrane Structure Obtained in an Experimental Evolution Process. Life 2022, 12, 145. [Google Scholar] [CrossRef]
- Mayer, C. Spontaneous Formation of Functional Structures in Messy Environments. Life 2022, 12, 720. [Google Scholar] [CrossRef] [PubMed]
Aldehyde | Chemical Formula | Mass [g/mol] | Rtsample [min] | RSDRt (n = 3) [%] | Rtref [min] | NIST [%] |
---|---|---|---|---|---|---|
Octanal | C8H16O | 128.2144 | 7.12 | 0.02 | 7.12 | 90.8 |
Nonanal | C9H18O | 142.2413 | 8.72 | 0.02 | 8.72 | 89.2 |
Decanal | C10H20O | 156.2682 | 10.26 | 0.01 | 10.27 | 88.8 |
Undecanal | C11H22O | 170.2951 | 11.71 | 0.02 | 11.71 | 90.1 |
Dodecanal | C12H24O | 184.3220 | 13.08 | 0.01 | 13.08 | 81.7 |
Tridecanal | C13H26O | 198.3449 | 14.37 | 0.01 | 14.37 | 91.2 |
Tetradecanal | C14H28O | 212.3715 | 15.59 | 0.01 | 15.59 | 80.7 |
Pentadecanal | C15H30O | 226.3981 | 16.74 | 0.07 | 16.74 | 81.7 |
Hexadecanal | C16H32O | 240.4247 | 17.83 | 0.08 | 17.84 | 86.0 |
Aldehyde | Area | c [µg/kg] | RSD [%] |
---|---|---|---|
Octanal | 15,220 | 109 | 12.0 |
Nonanal | 203,139 | 582 | 2.1 |
Decanal | 35,050 | 142 | 2.6 |
Undecanal | 5851 | 23 | 11.2 |
Dodecanal | 111,912 | 362 | 14.2 |
Tridecanal | 6554 | 31 | 16.7 |
Tetradecanal | 3420 | 18 | 1.9 |
Pentadecanal | 6169 | 53 | 3.1 |
Hexadecanal | 5813 | 36 | 13.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Großmann, Y.; Schreiber, U.; Mayer, C.; Schmitz, O.J. Aliphatic Aldehydes in the Earth’s Crust—Remains of Prebiotic Chemistry? Life 2022, 12, 925. https://doi.org/10.3390/life12070925
Großmann Y, Schreiber U, Mayer C, Schmitz OJ. Aliphatic Aldehydes in the Earth’s Crust—Remains of Prebiotic Chemistry? Life. 2022; 12(7):925. https://doi.org/10.3390/life12070925
Chicago/Turabian StyleGroßmann, Yildiz, Ulrich Schreiber, Christian Mayer, and Oliver J. Schmitz. 2022. "Aliphatic Aldehydes in the Earth’s Crust—Remains of Prebiotic Chemistry?" Life 12, no. 7: 925. https://doi.org/10.3390/life12070925
APA StyleGroßmann, Y., Schreiber, U., Mayer, C., & Schmitz, O. J. (2022). Aliphatic Aldehydes in the Earth’s Crust—Remains of Prebiotic Chemistry? Life, 12(7), 925. https://doi.org/10.3390/life12070925