Development of New Potential Inhibitors of β1 Integrins through In Silico Methods—Screening and Computational Validation
Abstract
:1. Introduction
2. Material and Methods
2.1. Molecular Modeling
2.2. Molecular Docking
2.3. De Novo Design
2.4. ADMET Predictions
2.5. Molecular Dynamics Simulations and Binding Free Energy Calculations
3. Results and Discussion
3.1. Integrin Structural Models
3.2. Molecular Docking Analysis
3.3. De Novo Design of the Novel BIO5192 Derivatives
3.4. Pharmacokinetic Analysis of the Novel BIO5192 Derivatives
3.5. Stability and Dynamics of VLA-4 Ligands over Time
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Abbreviations
ADMET | Absorption, distribution, metabolism, elimination, and toxicity |
AUC | Area under the curve |
ECM | Extracellular matrix |
EF | Enrichment factor |
FBDD | Fragment-based drug discovery |
FDA | Food and Drug Administration |
MD | Molecular dynamics |
MIDAS | Metal ion-dependent adhesion site |
NCBI | National Center for Biotechnology Information |
PDB | Protein Data Bank |
PME | Particle mesh Ewald |
PUPA | [N′-(2-methyl phenyl) ureido] phenyl acetyl |
RACHEL | Real-time Automated Combinatorial Heuristic Enhancement of Lead compounds |
ROC | Receiver operating characteristics |
SD | Standard deviation |
VLA-4 | Very late antigen-4 |
ZBB | ZINC building blocks |
References
- Dargahi, N.; Katsara, M.; Tselios, T.; Androutsou, M.E.; De Courten, M.; Matsoukas, J.; Apostolopoulos, V. Multiple Sclerosis: Immunopathology and Treatment Update. Brain Sci. 2017, 7, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, J.; Magnuson, A.; Benoist, C.; Pittet, M.J.; Weissleder, R. Age-Related Tumor Growth in Mice Is Related to Integrin α 4 in CD8+ T Cells. JCI Insight 2018, 3, e122961. [Google Scholar] [CrossRef] [PubMed]
- Campbell, I.D.; Humphries, M.J. Integrin Structure, Activation, and Interactions. Cold Spring Harb Perspect. Biol. 2011, 3, a004994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hynes, R.O. Integrins: Versatility, Modulation, and Signaling in Cell Adhesion. Cell 1992, 69, 11–25. [Google Scholar] [CrossRef]
- Humphries, M.J. Integrin Structure. Biochem. Soc. Trans. 2000, 28, 311–339. [Google Scholar] [CrossRef] [PubMed]
- Shimaoka, M.; Takagi, J.; Springer, T.A. Conformational Regulation of Integrin Structure and Function. Annu. Rev. Biophys. Biomol. Struct. 2002, 31, 485–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagae, M.; Re, S.; Mihara, E.; Nogi, T.; Sugita, Y.; Takagi, J. Crystal Structure of Alpha5beta1 Integrin Ectodomain: Atomic Details of the Fibronectin Receptor. J. Cell Biol. 2012, 197, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.; Ateeq, H.S.; Hsiung, S.H.; Chong, L.T.; Zimmerman, C.N.; Castro, A.; Lee, W.C.; Hammond, C.E.; Kalkunte, S.; Chen, L.L.; et al. Selective, Tight-Binding Inhibitors of Integrin Alpha4beta1 That Inhibit Allergic Airway Responses. J. Med. Chem. 1999, 42, 920–934. [Google Scholar] [CrossRef]
- Singh, H.; Grewal, N.; Arora, E.; Kumar, H.; Kakkar, A.K. Vedolizumab: A Novel Anti-Integrin Drug for Treatment of Inflammatory Bowel Disease. J. Nat. Sci. Biol. Med. 2016, 7, 4–9. [Google Scholar] [CrossRef] [Green Version]
- Bloomgren, G.; Richman, S.; Hotermans, C.; Subramanyam, M.; Goelz, S.; Natarajan, A.; Lee, S.; Plavina, T.; Scanlon, J.V.; Sandrock, A.; et al. Risk of Natalizumab-Associated Progressive Multifocal Leukoencephalopathy. N. Engl. J. Med. 2012, 366, 1870–1880. [Google Scholar] [CrossRef]
- Satyanarayanajois, S.D.; Hill, R.A. Medicinal Chemistry for 2020. Future Med. Chem. 2011, 13, 1765–1786. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.; Bauman, J.D.; Arnold, E. Advantages of Crystallographic Fragment Screening: Functional and Mechanistic Insights from a Powerful Platform for Efficient Drug Discovery. Prog. Biophys. Mol. Biol. 2014, 116, 92–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripathi, S.K.; Singh, P.; Sing, S.K. Fragment-Based de Novo Design of Cyclin-Dependent Kinase 2 Inhibitors. Methods Mol. Biol. 2016, 1336, 47–58. [Google Scholar] [CrossRef]
- Zheng, Y.; Leftheris, K. Insights into Protein−Ligand Interactions in Integrin Complexes: Advances in Structure Determinations. J. Med. Chem 2020, 63, 5696. [Google Scholar] [CrossRef]
- Kennedy, T. Managing the Drug Discovery/Development Interface. Drug Discov. Today 1997, 2, 436–444. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Leone, D.R.; Giza, K.; Gill, A.; Dolinski, B.M.; Yang, W.; Perper, S.; Scott, D.M.; Lee, W.C.; Cornebise, M.; Wortham, K.; et al. An Assessment of the Mechanistic Differences between Two Integrin Alpha 4 Beta 1 Inhibitors, the Monoclonal Antibody TA-2 and the Small Molecule BIO5192, in Rat Experimental Autoimmune Encephalomyelitis. J. Pharmacol. Exp. Ther. 2003, 305, 1150–1162. [Google Scholar] [CrossRef]
- Muro, F.; Iimura, S.; Sugimoto, Y.; Yoneda, Y.; Chiba, J.; Watanabe, T.; Setoguchi, M.; Iigou, Y.; Matsumoto, K.; Satoh, A.; et al. Discovery of Trans-4-[1-[[2,5-Dichloro-4-(1-Methyl-3-Indolylcarboxamido)Phenyl]Acetyl]-(4S)-Me Thoxy-(2S)-Pyrrolidinylmethoxy]Cyclohexanecarboxylic Acid: An Orally Active, Selective Very Late Antigen-4 Antagonist. J. Med. Chem. 2009, 52, 7974–7992. [Google Scholar] [CrossRef]
- Hedrick, E.; Lee, S.-O.; Doddapaneni, R.; Singh, M.; Safe, S. NR4A1 Antagonists Inhibit Β1-Integrin-Dependent Breast Cancer Cell Migration. Mol. Cell. Biol. 2016, 36, 1383–1394. [Google Scholar] [CrossRef] [Green Version]
- Baiula, M.; Spampinato, S.; Gentilucci, L.; Tolomelli, A. Novel Ligands Targeting α 4 β 1 Integrin: Therapeutic Applications and Perspectives. Front. Chem. 2019, 7, 489. [Google Scholar] [CrossRef]
- Yu, Y.; Zhu, J.; Mi, L.Z.; Walz, T.; Sun, H.; Chen, J.F.; Springer, T.A. Structural Specializations of α 4β 7, an Integrin That Mediates Rolling Adhesion. J. Cell Biol. 2012, 196, 131–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahalingam, B.; Van Agthoven, J.F.; Xiong, J.P.; Alonso, J.L.; Adair, B.D.; Rui, X.; Anand, S.; Mehrbod, M.; Mofrad, M.R.K.; Burger, C.; et al. Atomic Basis for the Species-Specific Inhibition of AV Integrins by Monoclonal Antibody 17E6 Is Revealed by the Crystal Structure of AVβ3 Ectodomain-17E6 Fab Complex. J. Biol. Chem. 2014, 289, 13801–13809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marti-Renom, M.A.; Stuart, A.C.; Fiser, A.; Sanchez, R.; Melo, F.; Sali, A. Comparative Protein Structure Modeling of Genes and Genomes. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 291–325. [Google Scholar] [CrossRef] [Green Version]
- Pei, J.; Grishin, N. V PROMALS: Towards Accurate Multiple Sequence Alignments of Distantly Related Proteins. Bioinformatics 2007, 23, 802–808. [Google Scholar] [CrossRef]
- Shen, M.Y.; Sali, A. Statistical Potential for Assessment and Prediction of Protein Structures. Protein Sci. 2006, 15, 2507–2524. [Google Scholar] [CrossRef] [Green Version]
- Laskowski, R.A.; MacArthur, M.W.; Thornton, J.M. PROCHECK: A Program to Check the Stereochemical Quality of Protein Structures. J. Appl. Crystallogr. 1992, 26, 283–291. [Google Scholar] [CrossRef]
- Eisenberg, D.; Lüthy, R.; Bowie, J.U. VERIFY3D: Assessment of Protein Models with Three-Dimensional Profiles. Methods Enzymol. 1997, 277, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Wiederstein, M.; Sippl, M.J. ProSA-Web: Interactive Web Service for the Recognition of Errors in Three-Dimensional Structures of Proteins. Nucleic Acids Res. 2007, 35, 407–410. [Google Scholar] [CrossRef] [Green Version]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Dallakyan, S.; Olson, A.J. Small-Molecule Library Screening by Docking with PyRx. Methods Mol. Biol. 2015, 1263, 243–250. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeerschd, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminformatics 2012, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; et al. ChEMBL: A Large-Scale Bioactivity Database for Drug Discovery. Nucleic Acids Res. 2012, 40, D1100–D1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterling, T.; Irwin, J.J. ZINC 15--Ligand Discovery for Everyone. J. Chem. Inf. Model. 2015, 55, 2324–2337. [Google Scholar] [CrossRef] [PubMed]
- Lagorce, D.; Sperandio, O.; Baell, J.B.; Miteva, M.A.; Villoutreix, B.O. FAF-Drugs3: A Web Server for Compound Property Calculation and Chemical Library Design. Nucleic Acids Res. 2015, 43, W200–W207. [Google Scholar] [CrossRef] [PubMed]
- Sander, T.; Freyss, J.; Von Korff, M.; Rufener, C. DataWarrior: An Open-Source Program for Chemistry Aware Data Visualization and Analysis. J. Chem. Inf. Model. 2015, 55, 460–473. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindah, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Berendsen, H.J.C.; van der Spoel, D.; van Drunen, R. GROMACS: A Message-Passing Parallel Molecular Dynamics Implementation. Comput. Phys. Commun. 1995, 91, 43–56. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic Atom Type and Bond Type Perception in Molecular Mechanical Calculations. J. Mol. Graph. Model. 2006, 25, 247–260. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Sousa Da Silva, A.W.; Vranken, W.F. ACPYPE—AnteChamber PYthon Parser InterfacE. BMC Res. Notes 2012, 5, 367. [Google Scholar] [CrossRef] [Green Version]
- Gordon, J.C.; Myers, J.B.; Folta, T.; Shoja, V.; Heath, L.S.; Onufriev, A. H++: A Server for Estimating PKas and Adding Missing Hydrogens to Macromolecules. Nucleic Acids Res. 2005, 33, W368. [Google Scholar] [CrossRef] [PubMed]
- Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved Side-Chain Torsion Potentials for the Amber Ff99SB Protein Force Field. Proteins 2010, 78, 1950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N⋅log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1998, 98, 10089. [Google Scholar] [CrossRef] [Green Version]
- Hess, B.; Bekker, H.; Berendsen, H.J.; Fraaije, J.G. LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 1997, 18, 1463–1472. Available online: https://onlinelibrary.wiley.com/doi/10.1002/%28SICI%291096-987X%28199709%2918%3A12%3C1463%3A%3AAID-JCC4%3E3.0.CO%3B2-H (accessed on 16 April 2022). [CrossRef]
- Price, D.J.; Brooks, C.L. A Modified TIP3P Water Potential for Simulation with Ewald Summation. J. Chem. Phys. 2004, 121, 10096. [Google Scholar] [CrossRef]
- Fiser, A.; Šali, A. Modeller: Generation and Refinement of Homology-Based Protein Structure Models. Methods Enzymol. 2003, 374, 461–491. [Google Scholar] [CrossRef]
- Da Silva, J.H.M.; Dardenne, L.E.; Savino, W.; Caffarena, E.R. Analysis of A4 Β1integrin Specific Antagonists Binding Modes: Structural Insights by Molecular Docking, Molecular Dynamics and Linear Interaction Energy Method for Free Energy Calculations. J. Braz. Chem. Soc. 2010, 21, 546–555. [Google Scholar] [CrossRef] [Green Version]
- De Marco, R.; Mazzotti, G.; Dattoli, S.D.; Baiula, M.; Spampinato, S.; Greco, A.; Gentilucci, L. 5-Aminomethyloxazolidine-2,4-Dione Hybrid Alpha/Beta-Dipeptide Scaffolds as Inductors of Constrained Conformations: Applications to the Synthesis of Integrin Antagonists. Biopolymers 2015, 104, 636–649. [Google Scholar] [CrossRef]
- Karthick, V.; Ramanathan, K.; Shanthi, V.; Rajasekaran, R. Identification of Potential Inhibitors of H5N1 Influenza A Virus Neuraminidase by Ligand-Based Virtual Screening Approach. Cell Biochem. Biophys. 2013, 66, 657–669. [Google Scholar] [CrossRef]
- Egan, W.J.; Merz, K.M.; Baldwin, J.J. Prediction of Drug Absorption Using Multivariate Statistics. J. Med. Chem. 2000, 43, 3867–3877. [Google Scholar] [CrossRef]
- Janardhan, S.; Srivani, P.; Sastry, G.N. Choline Kinase: An Important Target for Cancer. Curr. Med. Chem. 2006, 13, 1169–1186. [Google Scholar] [CrossRef] [PubMed]
- Janardhan, S.; John, L.; Prasanthi, M.; Poroikov, V.; Narahari Sastry, G. A QSAR and Molecular Modelling Study towards New Lead Finding: Polypharmacological Approach to Mycobacterium Tuberculosis$. SAR QSAR Environ. Res. 2017, 28, 815–832. [Google Scholar] [CrossRef] [PubMed]
- Mahadevi, A.S.; Sastry, G.N. Cation-π Interaction: Its Role and Relevance in Chemistry, Biology, and Material Science. Chem. Rev. 2013, 113, 2100–2138. [Google Scholar] [CrossRef] [PubMed]
Derivatization I | Derivatization II | Derivatization III | |||
---|---|---|---|---|---|
Ligand | Score | Ligand | Score | Ligand | Score |
171 | 8.31 | 212 | 9.08 | 2048 | 8.48 |
72 | 8.22 | 395 | 8.99 | 1229 | 8.45 |
177 | 7.83 | 2363 | 8.93 | 1634 | 8.38 |
172 | 7.82 | 2703 | 8.87 | 1188 | 8.32 |
75 | 7.49 | 3743 | 8.73 | 955 | 8.20 |
83 | 7.47 | 1592 | 8.63 | 985 | 8.03 |
160 | 7.46 | 973 | 8.60 | 1206 | 7.98 |
245 | 7.46 | 956 | 8.58 | 2223 | 7.79 |
45 | 7.45 | 2464 | 8.51 | 1 | 7.74 |
259 | 7.45 | 3604 | 8.45 | 1114 | 7.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasconcelos, D.; Chaves, B.; Albuquerque, A.; Andrade, L.; Henriques, A.; Sartori, G.; Savino, W.; Caffarena, E.; Martins-Da-Silva, J.H. Development of New Potential Inhibitors of β1 Integrins through In Silico Methods—Screening and Computational Validation. Life 2022, 12, 932. https://doi.org/10.3390/life12070932
Vasconcelos D, Chaves B, Albuquerque A, Andrade L, Henriques A, Sartori G, Savino W, Caffarena E, Martins-Da-Silva JH. Development of New Potential Inhibitors of β1 Integrins through In Silico Methods—Screening and Computational Validation. Life. 2022; 12(7):932. https://doi.org/10.3390/life12070932
Chicago/Turabian StyleVasconcelos, Disraeli, Beatriz Chaves, Aline Albuquerque, Luca Andrade, Andrielly Henriques, Geraldo Sartori, Wilson Savino, Ernesto Caffarena, and João Herminio Martins-Da-Silva. 2022. "Development of New Potential Inhibitors of β1 Integrins through In Silico Methods—Screening and Computational Validation" Life 12, no. 7: 932. https://doi.org/10.3390/life12070932
APA StyleVasconcelos, D., Chaves, B., Albuquerque, A., Andrade, L., Henriques, A., Sartori, G., Savino, W., Caffarena, E., & Martins-Da-Silva, J. H. (2022). Development of New Potential Inhibitors of β1 Integrins through In Silico Methods—Screening and Computational Validation. Life, 12(7), 932. https://doi.org/10.3390/life12070932