Neuronal Activity during Exposure to Specific Phobia through fMRI: Comparing Therapeutic Components of Cognitive Behavioral Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instruments
2.3. Design
2.4. Procedure
2.5. fMRI and Data Analysis
3. Results
3.1. Condition Effects
3.2. Masking Effects
3.3. Stimulus Effects
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chambless, D.L.; Sanderson, W.C.; Shoham, V.; Bennett Johnson, S.; Pope, K.S.; Crits-Christoph, P.; Baker, M.; Johnson, B.; Woody, S.R.; Sue, S.; et al. An update on empirically validated therapies. Clin. Psychol. 1996, 49, 5–18. [Google Scholar]
- Moriana, J.A.; Gálvez-Lara, M.; Corpas, J. Psychological treatments for mental disorders in adults: A review of the evidence of leading international organizations. Clin. Psychol. Rev. 2017, 54, 29–43. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.M.; Canvin, L.; Green, J.; Layard, R.; Pilling, S.; Janecka, M. Transparency about the outcomes of mental health services (IAPT approach): An analysis of public data. Lancet 2018, 391, 679–686. [Google Scholar] [CrossRef] [Green Version]
- National Collaborating Centre for Mental Health (UK). Common Mental Health Disorders: Identification and Pathways to Care; British Psychological Society: Leicester, UK, 2011. [Google Scholar]
- Wakefield, S.; Kellett, S.; Simmonds-Buckley, M.; Stockton, D.; Bradbury, A.; Delgadillo, J. Improving Access to Psychological Therapies (IAPT) in the United Kingdom: A systematic review and meta-analysis of 10-years of practice-based evidence. Br. J. Clin. Psychol. 2021, 60, 1–37. [Google Scholar] [CrossRef]
- Bandelow, B.; Michaelis, A.; Wedekind, D. Treatment of anxiety disorders. Dialogues Clin. Neurosci. 2017, 19, 93–107. [Google Scholar] [CrossRef]
- Otte, C. Cognitive behavioral therapy in anxiety disorders: Current state of the evidence. Dialogues Clin. Neurosci. 2011, 13, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Kaczkurkin, A.N.; Foa, E.B. Cognitive-behavioral therapy for anxiety disorders: An update on the empirical evidence. Dialogues Clin. Neurosci. 2015, 17, 337–346. [Google Scholar] [CrossRef]
- James, A.C.; Reardon, T.; Soler, A.; James, G.; Creswell, C. Cognitive behavioural therapy for anxiety disorders in children and adolescents. Cochrane Database Syst. Rev. 2020, 11. [Google Scholar] [CrossRef]
- Norton, P.J.; Price, E.C. A meta-analytic review of adult cognitive-behavioral treatment outcome across the anxiety disorders. J. Nerv. Ment. Dis. 2007, 195, 521–531. [Google Scholar] [CrossRef] [Green Version]
- Loerinc, A.G.; Meuret, A.E.; Twohig, M.P.; Rosenfield, D.; Bluett, E.J.; Craske, M.G. Response rates for CBT for anxiety disorders: Need for standardized criteria. Clin. Psychol. Rev. 2015, 42, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Springer, K.S.; Levy, H.C.; Tolin, D.F. Remission in CBT for adult anxiety disorders: A meta-analysis. Clin. Psychol. Rev. 2018, 61, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Craske, M.G.; Treanor, M.; Conway, C.C.; Zbozinek, T.; Vervliet, B. Maximizing exposure therapy: An inhibitory learning approach. Behav. Res. Ther. 2014, 58, 10–23. [Google Scholar] [CrossRef] [Green Version]
- Foa, E.B.; Huppert, J.D.; Cahill, S.P. Emotion processing theory: An update. In Pathological Anxiety: Emotional Processing in Aetiology and Treatment; Rothbaum, B.O., Ed.; Guilford Press: New York, NY, USA, 2006; pp. 3–24. [Google Scholar]
- Peñate, W.; Rivero, F.; Viña, C.; Herrero, M.; Betancort, M.; De la Fuente, J.; Álvarez-Pérez, Y.; Fumero, A. The equivalence between virtual and real feared stimuli in a phobic adult sample: A Neuroimaging Study. J. Clin. Med. 2019, 8, 2139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conrad, A.; Roth, W.T. Muscle relaxation therapy for anxiety disorders: It works but how? J. Anxiety Disord. 2007, 21, 243–264. [Google Scholar] [CrossRef] [PubMed]
- Lueken, U.; Hahn, T. Functional neuroimaging of psychotherapeutic processes in anxiety and depression: From mechanisms to predictions. Curr. Opin. Psychiatry 2016, 29, 25–31. [Google Scholar] [CrossRef]
- Picó-Pérez, M.; Fullana, M.; Albajes-Eizagirre, A.; Vega, D.; Marco-Pallarés, J.; Vilar, A.; Chamorro, J.; Felmingham, K.L.; Harrison, B.J.; Radua, J.; et al. Neural predictors of cognitive-behavior therapy outcome in anxiety-related disorders: A meta-analysis of task-based fMRI studies. Psychol. Med. 2022, 1–9. [Google Scholar] [CrossRef]
- Yuan, S.; Wu, H.; Wu, Y.; Xu, H.; Yu, J.; Zhong, Y.; Zhang, N.; Li, J.; Xu, Q.; Wang, C. Neural effects of cognitive behavioral therapy in psychiatric disorders: A systematic review and activation likelihood estimation meta-analysis. Front. Psychol. 2022, 13, 853804. [Google Scholar] [CrossRef] [PubMed]
- Brooks, S.J.; Stein, D.J. A systematic review of the neural bases of psychotherapy for anxiety and related disorders. Dialogues Clin. Neurosci. 2015, 17, 261–279. [Google Scholar] [CrossRef]
- Fumero, A.; Marrero, R.J.; Rivero, F.; Alvarez-Pérez, Y.; Bethencourt, J.M.; González, M.; Peñate, W. Neuronal correlates of small animal phobia in human subjects through fMRI: The role of the number and proximity of stimuli. Life 2021, 11, 275. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Pérez, Y.; Rivero, F.; Herrero, M.; Viña, C.; Fumero, A.; Betancort, M.; Peñate, W. Changes in brain activation through cognitive-behavioral therapy with exposure to virtual reality: A neuroimaging study of specific phobia. J. Clin. Med. 2021, 10, 3505. [Google Scholar] [CrossRef]
- Straube, T.; Glauer, M.; Dilger, S.; Mentzel, H.J.; Miltner, W.H.R. Effects of cognitive-behavioral therapy on brain activation in specific phobia. NeuroImage 2006, 29, 125–135. [Google Scholar] [CrossRef]
- Schienle, A.; Wabnegger, A.; Schoengassner, F.; Scharmüller, W. Neuronal correlates of three attentional strategies during affective picture processing: An fMRI study. Cogn. Affect. Behav. Neurosci. 2014, 14, 1320–1326. [Google Scholar] [CrossRef] [PubMed]
- Kessler, R.C.; Üstün, T.B. The world mental health (WMH) survey initiative version of the world health organization (WHO) composite international diagnostic interview (CIDI). Int. J. Meth. Psych. Res. 2004, 13, 93–121. [Google Scholar] [CrossRef]
- Endler, N.S.; Hunt, J.M.; Rosenstein, A.J. An S-R Inventory of Anxiousness. Psychol. Monogr. 1962, 76, 143–146. [Google Scholar] [CrossRef]
- Kameoka, V.A.; Tanaka-Matsumi, J. The appropriateness of using the S-R Inventory of Anxiousness to measure sources of behavioral variability. Appl. Psych. Meas. 1981, 5, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Sandín, B.; Chorot, P.; Olmedo, M.; Valiente, R.M. Escala de propensión y sensibilidad al asco revisada (DPSS-R): Propiedades psicométricas y relación del asco con los miedos y los síntomas obsesivo-compulsivos. Anál. Modif. Conducta 2008, 34, 127–168. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, M.A.X. The assessment of anxiety states by rating. Brit. J Med. Psychol. 1959, 32, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Bruss, G.S.; Gruenberg, A.M.; Goldstein, R.D.; Barber, J. Hamilton anxiety rating scale interview guide: Joint interview and test-retest methods for interrater reliability. Psychiatry Res. 1994, 53, 191–202. [Google Scholar] [CrossRef]
- Oldfield, R. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Maldjian, J.A.; Laurienti, P.J.; Kraft, R.A.; Burdette, J.H. An automated method for neuroanatomic and cytoarchitectonic atlasbased interrogation of fMRI data sets. Neuroimage 2003, 19, 1233–1239. [Google Scholar] [CrossRef]
- Rolls, E.T.; Joliot, M.; Tzourio-Mazoyer, N. Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas. Neuroimage 2015, 122, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Biswal, B.B.; Mennes, M.; Zuo, X.N.; Gohel, S.; Kelly, C.; Smith, S.M.; Beckmann, C.F.; Adelstein, J.S.; Buckner, R.L.; Colcombe, S.; et al. Toward discovery science of human brain function. Proc. Natl. Acad. Sci. USA 2010, 107, 4734–4739. [Google Scholar] [CrossRef] [Green Version]
- Almeida, A.G.D.; Araujo Filho, G.M.D.; Berberian, A.D.A.; Trezsniak, C.; Nery-Fernandes, F.; Araujo Neto, C.A.; Parolin Jackowski, A.; Miranda-Scippa, Â.; Oliveira, I.R.D. The impacts of cognitive-behavioral therapy on the treatment of phobic disorders measured by functional neuroimaging techniques: A systematic review. Braz. J. Psychiatry 2013, 35, 279–283. [Google Scholar] [CrossRef] [Green Version]
- Paquette, V.; Lévesque, J.; Mensour, B.; Leroux, J.M.; Beaudoin, G.; Bourgouin, P.; Beauregard, M. “Change the mind and you change the brain”: Effects of cognitive-behavioral therapy on the neural correlates of spider phobia. Neuroimage 2003, 18, 401–409. [Google Scholar] [CrossRef]
- Rivero, F.; Herrero, M.; Viña, C.; Álvarez-Pérez, Y.; Peñate, W. Neuroimaging in cockroach phobia: An experimental study. Int. J. Clin. Health Psychol. 2017, 17, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Siegel, P.; Warren, R.; Wang, Z.; Yang, J.; Cohen, D.; Anderson, J.F.; Murray, L.; Peterson, B.S. Less is more: Neural activity during very brief and clearly visible exposure to phobic stimuli. Hum. Brain Mapp. 2017, 38, 2466–2481. [Google Scholar] [CrossRef] [Green Version]
- Frumento, S.; Menicucci, D.; Hitchcott, P.K.; Zaccaro, A.; Gemignani, A. Systematic review of studies on subliminal exposure to phobic stimuli: Integrating therapeutic models for specific phobias. Front. Neurosci. 2021, 15, 654170. [Google Scholar] [CrossRef] [PubMed]
- Stefanescu, M.R.; Endres, R.J.; Hilbert, K.; Wittchen, H.U.; Lueken, U. Networks of phobic fear: Functional connectivity shifts in two subtypes of specific phobia. Neurosci. Lett. 2018, 662, 167–172. [Google Scholar] [CrossRef]
- Dobe, M.; Frosch, M.; Zernikow, B. The basics of treating pain disorders in children and adolescents. In Practical Treatment Options for Chronic Pain in Children and Adolescents; Dobe, M., Zernikow, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 51–73. [Google Scholar]
- Gallo, I.S.; Keil, A.; McCulloch, K.C.; Rockstroh, B.; Gollwitzer, P.M. Strategic automation of emotion regulation. J. Pers. Soc. Psychol. 2009, 96, 11–31. [Google Scholar] [CrossRef] [Green Version]
- Zilverstand, A.; Sorger, B.; Sarkheil, P.; Goebel, R. fMRI neurofeedback facilitates anxiety regulation in females with spider phobia. Front. Behav. Neurosci. 2015, 9, 148. [Google Scholar] [CrossRef] [Green Version]
- Delgado, M.R.; Nearing, K.I.; LeDoux, J.E.; Phelps, E.A. Neural circuitry underlying the regulation of conditioned fear and its relation to extinction. Neuron 2008, 59, 829–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Åhs, F.; Pissiota, A.; Michelgård, Å.; Frans, Ö.; Furmark, T.; Appel, L.; Fredrikson, M. Disentangling the web of fear: Amygdala reactivity and functional connectivity in spider and snake phobia. Psychiatry Res. Neuroimaging 2009, 172, 103–108. [Google Scholar] [CrossRef]
- Kang, E.K.; Lee, K.S.; Lee, S.H. Reduced cortical thickness in the temporal pole, insula, and pars triangularis in patients with panic disorder. Yonsei Med. J. 2017, 58, 1018–1024. [Google Scholar] [CrossRef] [PubMed]
- Kalsi, N.; Altavilla, D.; Tambelli, R.; Aceto, P.; Trentini, C.; Di Giorgio, C.; Lai, C. Neural correlates of outcome of the psychotherapy compared to antidepressant therapy in anxiety and depression disorders: A meta-analysis. Front. Psychol. 2017, 8, 927. [Google Scholar] [CrossRef] [Green Version]
- Wolpe, J. Psychotherapy by Reciprocal Inhibition; Stanford University Press: Stanford, CA, USA, 1958. [Google Scholar]
- Choy, Y.; Fyer, A.J.; Lipsitz, J.D. Treatment of specific phobia in adults. Clin. Psychol. Rev. 2007, 27, 266–286. [Google Scholar] [CrossRef]
- Hopper, S.I.; Murray, S.L.; Ferrara, L.R.; Singleton, J.K. Effectiveness of diaphragmatic breathing for reducing physiological and psychological stress in adults: A quantitative systematic review. JBI Database Syst. Rev. Implement. Rep. 2019, 17, 1855–1876. [Google Scholar] [CrossRef] [PubMed]
AREA | Coordinates | k | Z | F | p |
---|---|---|---|---|---|
Condition X Stimulus | |||||
L Superior frontal gyrus | −18, −4, 58 | 14 | 5.92 | 30.10 | 0.0000 |
L Inferior frontal gyrus (pars triangularis) | −50, 20, 18 | 17 | 5.28 | 22.93 | 0.0000 |
L Middle frontal gyrus | −38, 48, 6 | 7 | 5.23 | 22.35 | 0.0000 |
L Inferior frontal gyrus (pars triangularis) | −42, 40, 2 | * | 4.71 | 17.71 | 0.0000 |
R Middle frontal gyrus | 34, 12, 42 | 9 | 5.00 | 20.15 | 0.0000 |
L Superior occipital cortex | −10, −84, 22 | 5 | 4.93 | 19.59 | 0.0000 |
R Superior frontal gyrus | 22, −4, 58 | 6 | 4.78 | 18.24 | 0.0000 |
R Striatum | 18, 12, 10 | 10 | 4.77 | 18.15 | 0.0000 |
R Precentral gyrus | 38, −4, 46 | 5 | 4.71 | 17.71 | 0.0000 |
L Postcentral gyrus | −38, −32, 62 | 3 | 4.56 | 16.52 | 0.0000 |
Comparison conditions E > S | |||||
L Postcentral gyrus | −30, −32, 46 | 4 | 3.07 | 3.58 | 0.0011 |
L Supramarginal gyrus | −42, −32, 30 | 11 | 3.00 | 3.47 | 0.0014 |
R Postcentral gyrus | 34, −32, 46 | 10 | 2.92 | 3.36 | 0.0017 |
R Postcentral gyrus | 26, −32, 50 | * | 2.68 | 3.02 | 0.0037 |
Comparison conditions S > B | |||||
L Inferior frontal gyrus (pars opercularis) | −50, 20, 18 | 27 | 4.04 | 5.35 | 0.0000 |
L Middle frontal gyrus | −38, 48, 6 | 7 | 3.48 | 4.28 | 0.0002 |
L Inferior frontal gyrus (pars triangularis) | −42, 40, 2 | * | 3.33 | 4.03 | 0.0004 |
Comparison conditions E > B | |||||
L Superior frontal gyrus | −18, −4, 58 | 13 | 3.89 | 4.89 | 0.0000 |
R Fusiform gyrus | 22, −76, −2 | 4 | 3.87 | 4.87 | 0.0000 |
L Superior occipital cortex | −10, −84, 22 | 6 | 3.52 | 4.25 | 0.0002 |
R Superior frontal gyrus | 22, −4, 58 | 4 | 3.43 | 4.10 | 0.0003 |
R Middle frontal gyrus | 34, 12, 42 | 13 | 3.35 | 3.98 | 0.0004 |
R Middle frontal gyrus | 42, 20, 50 | * | 3.23 | 3.79 | 0.0006 |
R Precentral gyrus | 38,−4,46 | * | 3.22 | 3.77 | 0.0006 |
L Middle frontal gyrus | −38, 48, 6 | 5 | 3.25 | 3.82 | 0.0005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fumero, A.; Marrero, R.J.; Olivares, T.; Rivero, F.; Alvarez-Pérez, Y.; Pitti, C.; Peñate, W. Neuronal Activity during Exposure to Specific Phobia through fMRI: Comparing Therapeutic Components of Cognitive Behavioral Therapy. Life 2022, 12, 1132. https://doi.org/10.3390/life12081132
Fumero A, Marrero RJ, Olivares T, Rivero F, Alvarez-Pérez Y, Pitti C, Peñate W. Neuronal Activity during Exposure to Specific Phobia through fMRI: Comparing Therapeutic Components of Cognitive Behavioral Therapy. Life. 2022; 12(8):1132. https://doi.org/10.3390/life12081132
Chicago/Turabian StyleFumero, Ascensión, Rosario J. Marrero, Teresa Olivares, Francisco Rivero, Yolanda Alvarez-Pérez, Carmen Pitti, and Wenceslao Peñate. 2022. "Neuronal Activity during Exposure to Specific Phobia through fMRI: Comparing Therapeutic Components of Cognitive Behavioral Therapy" Life 12, no. 8: 1132. https://doi.org/10.3390/life12081132
APA StyleFumero, A., Marrero, R. J., Olivares, T., Rivero, F., Alvarez-Pérez, Y., Pitti, C., & Peñate, W. (2022). Neuronal Activity during Exposure to Specific Phobia through fMRI: Comparing Therapeutic Components of Cognitive Behavioral Therapy. Life, 12(8), 1132. https://doi.org/10.3390/life12081132