Ultrasensitive and Selective Detection of Glutathione by Ammonium Carbamate–Gold Platinum Nanoparticles-Based Electrochemical Sensor
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characterization of Am-Au@Pt/GCE
3.2. Electrocatalytic Activities of Glutathione on the Modified Electrode
3.3. Optimization of Electrodepositing Conditions
3.4. Effect of pH
3.5. Quantitative Detection of Glutathione
3.6. Interference and Repeatability Studies
3.7. Determination of GSH in Human Serum Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dhindsa, R.S. Drought Stress. Enzymes of glutathione metabolism, oxidation injury, and protein synthesis in tortula ruralis. Plant Physiol. 1991, 95, 648–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harfield, J.C.; Batchelor-McAuley, C. Electrochemical determination of glutathione: A review. Analyst 2012, 137, 2285–2296. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, J.Y. Carbon dots based photoelectrochemical sensors for ultrasensitive detection of glutathione and its applications in probing of myocardial infarction. Biosens. Bioelectron. 2018, 99, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Hanko, M.; Švorc, L.; Planková, A.; Mikuš, P. Overview and recent advances in electrochemical sensing of glutathione—A review. Anal. Chim. Acta 2019, 1062, 1–27. [Google Scholar] [CrossRef]
- Rawat, B.; Mishra, K.K.; Barman, U.; Arora, L.; Pal, D.; Paily, R.P. Two-dimensional MoS2-based electrochemical biosensor for highly selective detection of glutathione. IEEE Sens. J. 2020, 20, 6937–6944. [Google Scholar] [CrossRef]
- Chen, X.; Han, S.; Li, N.; Lian, J.; Zhang, Y.; Liu, Q.; Zhang, X.; Zhang, X. N,N-dicarboxymethyl Perylene-diimide modified CeCoO3: Enhanced peroxidase activity, synergetic catalytic mechanism and glutathione colorimetric sensing. Talanta 2020, 218, 1241142. [Google Scholar] [CrossRef]
- No, H.; Kim, T.; Hong, J. Iridium(III) complex-based phosphorescent and electrochemiluminescent dual sensor for selective detection of glutathione. Sens. Actuators B Chem. 2021, 342, 129868. [Google Scholar] [CrossRef]
- Tsikas, D.; Raida, M. Electrospray ionization mass spectrometry of low-molecular-mass S-nitroso compounds and their thiols. J. Chromatogr. B 2000, 742, 99–108. [Google Scholar] [CrossRef]
- Katrusiak, A.E.; Paterson, P.G. Pre-column derivatization high-performance liquid chromatographic method for determination of cysteine, cysteinyl-glycine, homocysteine and glutathione in plasma and cell extracts. J. Chromatogr. B 2001, 758, 207–212. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Khayamian, T. Determination of glutathione in hemolysed erythrocyte by flow injection analysis with chemiluminescence detection. J. Pharm. Biomed. Anal. 2008, 48, 140–144. [Google Scholar] [CrossRef]
- Abdel-Daim, M.M.; Dessouki, A.A. Hepatorenal protective effects of taurine and N-acetylcysteine against fipronil-induced injuries: The antioxidant status and apoptotic markers expression in rats. Sci. Total Environ. 2019, 650, 2063–2073. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Chen, X.; Jiao, Y.; Fan, W.; Liu, Y.; Huang, W. Versatile construction of biomimetic nanosensors for electrochemical monitoring of intracellular glutathione. Angew. Chem. Int. Ed. 2022, 61, e202115820. [Google Scholar]
- Xie, J.; Cheng, D.; Li, P.; Xu, Z.; Zhu, X.; Zhang, Y.; Li, H.; Liu, X.; Liu, M.; Yao, S. Au/Metal−organic framework nanocapsules for electrochemical determination of glutathione. ACS Appl. Nano Mater. 2021, 4, 4853–4862. [Google Scholar] [CrossRef]
- Wang, H.; Hua, H.; Tang, H.; Li, Y. Dual-signaling amplification strategy for glutathione sensing by using single gold nanoelectrodes. Anal. Chim. Acta 2021, 1166, 338579. [Google Scholar] [CrossRef]
- Kaimal, R.; Vinoth, V.; Salunke, A.S.; Valdes, H.; Mangalaraja, R.V.; Aljafari, B.; Anandan, S. Highly sensitive and selective detection of glutathione using ultrasonic aided synthesis of graphene quantum dots embedded over amine-functionalized silica nanoparticles. Ultrason. Sonochem. 2022, 82, 105868. [Google Scholar] [CrossRef]
- Hua, Y.; Liu, M.; Li, S.; Liu, F.; Cai, Y.; Liu, H.; Wan, Y.; Lv, X.; Wang, H. An electroanalysis strategy for glutathione in cells based on the displacement reaction route using melamine-copper nanocomposites synthesized by the controlled supermolecular self-assembly. Biosens. Bioelectron. 2019, 124–125, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhou, M.; Pu, Y.; Liu, L.; Li, F.; Li, M.; Zhang, M. Silver nanoparticle-functionalized 3D flower-like copper (II)-porphyrin framework nanocomposites as signal enhancers for fabricating a sensitive glutathione electrochemical sensor. Sens. Actuators B Chem. 2021, 342, 130047. [Google Scholar] [CrossRef]
- Stojanovic, Z.; Durovic, A.; Ashrafi, A.; Koudelkova, Z.; Zitka, O.; Richtera, L. Highly sensitive simultaneous electrochemical determination of reduced and oxidized glutathione in urine samples using antimony trioxide modified carbon paste electrode. Sens. Actuators B Chem. 2020, 318, 128141. [Google Scholar] [CrossRef]
- Liu, Q.; Bao, J. A core-shell MWCNT@rGONR heterostructure modified glassy carbon electrode for ultrasensitive electrochemical detection of glutathione. Sens. Actuators B Chem. 2018, 274, 433–440. [Google Scholar] [CrossRef]
- Detsri, E.; Rujipornsakul, S. Nanostructured multilayer thin films of multiwalled carbon nanotubes/gold nanoparticles/glutathione for the electrochemical detection of dopamine. Int. J. Miner. Metall. Mater. 2016, 23, 1204–1214. [Google Scholar] [CrossRef]
- Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M. Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte. Talanta 2018, 176, 208. [Google Scholar] [CrossRef]
- Zhong, Q.; Chen, Y. Synthesis of catalytically active carbon quantum dots and its application for colorimetric detection of glutathione. Sens. Actuators B Chem. 2018, 273, 1098–1102. [Google Scholar] [CrossRef]
- Kang, Z.; Yan, X. Self-powered photoelectrochemical biosensing platform based on Au NPs@ZnO nanorods array. Nano Res. 2016, 9, 344. [Google Scholar] [CrossRef]
- Wei, C.; Liu, W. Nitrogen-doped ZnO/Carbon hollow rhombic dodecahedral for photoelectrochemical sensing glutathione. Appl. Surf. Sci. 2018, 458, 872–879. [Google Scholar] [CrossRef]
- Ganganboina, A.B.; Doong, R. The biomimic oxidase activity of layered V2O5 nanozyme for rapid and sensitive nanomolar detection of glutathione. Sens. Actuators B Chem. 2018, 273, 1179–1186. [Google Scholar] [CrossRef]
- Wang, Z.; Han, P. Sensitive detection of glutathione by using DNA-templated copper nanoparticles as electrochemical reporters. Sens. Actuators B Chem. 2017, 238, 325–330. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, L. Electrochemical detection of glutathione by using thymine-rich DNA-gated switch functionalized mesoporous silica nanoparticles. Biosens. Bioelectron. 2017, 87, 459–465. [Google Scholar] [CrossRef]
- Lv, Y.; Lu, M. Electrochemical detection of intracellular glutathione based on ligand exchange assisted release of DNA-templated silver nanoparticles. Sens. Actuators B Chem. 2017, 244, 151–156. [Google Scholar] [CrossRef]
- Wang, X.Y.; Xi, M.; Guo, M.M.; Sheng, F.M.; Xiao, G.; Wu, S.; Uchiyama, S.; Matsuura, H. An electrochemically aminated glassy carbon electrode for simultaneous determination of hydroquinone and catechol. Analyst 2016, 141, 1077–1082. [Google Scholar] [CrossRef]
- Kanazawa, A.; Daisaku, T. Characterization by electrochemical and X-ray photoelectron spectroscopic measurements and quantum chemical calculations of N-containing functional groups introduced onto glassy carbon electrode surfaces by electrooxidation of a carbamate salt in aqueous solutions. Langmuir 2014, 30, 5297–5305. [Google Scholar]
- Nesakumar, N.; Berchmans, S. Chemically modified carbon based electrodes for the detection of reduced glutathione. Sens. Actuators B Chem. 2018, 264, 448–466. [Google Scholar] [CrossRef]
- Raoof, J.; Ojani, R. Simultaneous electrochemical determination of glutathione and tryptophan on a nano-TiO2/ferrocene carboxylic acid modified carbon paste electrode. Sens. Actuators B Chem. 2009, 143, 261–269. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, G. Facile and green approach to prepare nanostructured Au@MnO2 and its applications for catalysis and fluorescence sensing of glutathione in human blood. ACS Sustain. Chem. Eng. 2018, 6, 3948. [Google Scholar] [CrossRef]
- Zhai, Q.; Xing, H. Gold-silver bimetallic nanoclusters with enhanced fluorescence for highly selective and sensitive detection of glutathione. Sens. Actuators B Chem. 2018, 273, 1827–1832. [Google Scholar] [CrossRef]
- Liv, J.; Meng, L. On the origin of the synergy between the Pt nanoparticles and MnO2 nanosheets in Wonton-like 3D nanozyme oxidase mimics. Biosens. Bioelectron. 2018, 121, 159. [Google Scholar]
- McDermott, G.P.; Geoffrey, P.S. Determination of intracellular glutathione and glutathione disulfide using high performance liquid chromatography with acidic potassium permanganate chemiluminescence detection. Analyst 2011, 136, 2578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, S.; Feng, G. Smart probe for rapid and simultaneous detection and discrimination of hydrogen sulfide, cysteine/homocysteine, and glutathione. Sens. Actuators B Chem. 2016, 235, 691. [Google Scholar] [CrossRef]
- Niu, W.J.; Zhu, R.H. Ferrocyanide-ferricyanide redox couple induced electrochemiluminescence amplification of carbon dots for ultrasensitive sensing of glutathione. Anal. Chem. 2015, 87, 11150. [Google Scholar] [CrossRef] [PubMed]
- Jing, T.; Tang, B. Photoelectrochemical detection of glutathione by IrO2-hemin-TiO2 nanowire arrays. Nano Lett. 2013, 13, 5350. [Google Scholar]
Type of Electrode | Detection Limit (μM) | Liner Range (μM) | Ref |
---|---|---|---|
Nano-TiO2/ferrocene carboxylic acid | 0.098 | 0.1–12 | [32] |
Au@MnO2 | 0.11 | 0.33–16 | [33] |
Au-Ag bimetallic nanoclusters | 0.2 | 1–100 | [34] |
PtNPs@MnO2 | 0.05 | 0.2–11 | [35] |
Am-Au@Pt/GCE | 0.051 | 0.1–11 | This work |
Methods | Detection Limit (μM) | Liner Range (μM) | Ref |
---|---|---|---|
High-performance liquid chromatography (HPLC) | 0.5 | 0.75–10 | [36] |
Fluorescence | 0.06 | 0–10 | [37] |
ECL | 0.05 | 0.1–1.0 | [38] |
Photoelectrochemical | 0.01 | 0.01–10 | [39] |
Electrochemical | 0.051 | 0.1–11 | This work |
Sample | Spiked (μM) | Found (μM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
Human Serum | 0.5 | 0.52 | 104 | 5.9 |
1 | 0.95 | 95 | 3.2 | |
5 | 5.36 | 107 | 4.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Chen, J.; Zhou, Z.; Zhan, S.; Xing, Z.; Liu, H.; Zhang, L. Ultrasensitive and Selective Detection of Glutathione by Ammonium Carbamate–Gold Platinum Nanoparticles-Based Electrochemical Sensor. Life 2022, 12, 1142. https://doi.org/10.3390/life12081142
Wang W, Chen J, Zhou Z, Zhan S, Xing Z, Liu H, Zhang L. Ultrasensitive and Selective Detection of Glutathione by Ammonium Carbamate–Gold Platinum Nanoparticles-Based Electrochemical Sensor. Life. 2022; 12(8):1142. https://doi.org/10.3390/life12081142
Chicago/Turabian StyleWang, Wei, Jiandan Chen, Zhenzeng Zhou, Shanshan Zhan, Zhiyuan Xing, Hongying Liu, and Linan Zhang. 2022. "Ultrasensitive and Selective Detection of Glutathione by Ammonium Carbamate–Gold Platinum Nanoparticles-Based Electrochemical Sensor" Life 12, no. 8: 1142. https://doi.org/10.3390/life12081142
APA StyleWang, W., Chen, J., Zhou, Z., Zhan, S., Xing, Z., Liu, H., & Zhang, L. (2022). Ultrasensitive and Selective Detection of Glutathione by Ammonium Carbamate–Gold Platinum Nanoparticles-Based Electrochemical Sensor. Life, 12(8), 1142. https://doi.org/10.3390/life12081142