Soil Mycobiome Diversity under Different Tillage Practices in the South of West Siberia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Conditions
2.2. Experimental Setup
2.3. Soil Sampling and Chemical Analyses
2.4. DNA Extraction, Amplification and Sequencing
2.5. Bioinformatic Analysis
2.6. Statistical Analyses
3. Results
3.1. Mycobiome Taxonomic Diversity
3.2. Fungal α- and β-Biodiversity
3.3. Fungal Taxa Relationship with Soil Properties
4. Discussion
4.1. Soil Mycobiome: General Outline
4.2. Fungal OTUs, Common for the Undisturbed and Cropped Fields
4.3. Fungal Genera and OTUs Increased in the Wheat-Cropped Soils as Compared with the Undisturbed Soil
4.4. Fungal Genera and OTUs Differentially Increased in the Undisturbed Soil
4.5. The Fungal Genera with Differential Abundance between the Cropped Fields
4.6. The Mycobiome α- and β-Biodiversity
4.7. Fungal Taxa Abundance and Soil Properties
4.8. General Comments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Coleman, D. Through a ped darkly ̵ an ecological assessment of root soil-microbial-faunal interactions. In Ecological Interactions in the Soil: Plants, Microbes and Animals; Fitter, A.H., Atkinson, D., Read, D.J., Usher, M.B., Eds.; Blackwell Science Publication: Oxford, UK, 1985; pp. 1–21. [Google Scholar]
- He, L.; Rodrigues, J.L.M.; Soudzilovskaia, N.A.; Barceló, M.; Olsson, P.A.; Song, C.; Tedersoo, L.; Yuan, F.; Yuan, F.; Lipson, D.A.; et al. Global biogeography of fungal and bacterial biomass carbon in topsoil. Soil Biol. Biochem. 2020, 151, 108024. [Google Scholar] [CrossRef]
- Taylor, D.L.; Hollingsworth, T.N.; McFarland, J.W.; Lennon, N.J.; Nusbaum, C.; Ruess, R.W. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol. Monogr. 2014, 84, 3–20. [Google Scholar] [CrossRef]
- Smith, M.L.; Bruhn, J.N.; Anderson, J.B. The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 1992, 356, 428–431. [Google Scholar] [CrossRef]
- Beare, M.; Coleman, D.; Crossley, D.; Hendrix, P.; Odum, E. A Hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. Plant Soil 1995, 170, 5–22. [Google Scholar] [CrossRef]
- Brussaard, L.; De Ruiter, P.C.; Brown, G.G. Soil biodiversity for agricultural sustainability. Agric. Ecosyst. Environ. 2007, 121, 233–244. [Google Scholar] [CrossRef]
- Derpsch, R.; Friedrich, T.; Kassam, A.; Li, H. Current status of adoption of no-till farming in the world and some of its main benefits. Int. J. Agric. Biol. Eng. 2010, 3, 1–25. [Google Scholar]
- Abbas, F.; Hammad, H.M.; Ishaq, W.; Farooque, A.A.; Bakhat, H.F.; Zia, Z.; Fahad, S.; Farhad, W.; Cerdà, A. A review of soil carbon dynamics resulting from agricultural practices. J. Environ. Manag. 2020, 268, 110319. [Google Scholar] [CrossRef]
- Cornell, C.R.; Zhang, Y.; Van Nostrand, J.D.; Wagle, P.; Xiao, X.; Zhou, J. Temporal Changes of Virus-Like Particle Abundance and Metagenomic Comparison of Viral Communities in Cropland and Prairie Soils. mSphere 2021, 6, e0116020. [Google Scholar] [CrossRef]
- Available online: https://meteoinfo.ru/en/climate/monthly-climate-means-for-towns-of-russia-temperature-and-precipitation (accessed on 31 May 2022).
- IUSS Working Group. WRB, World Reference Base for Soil Resources 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015. [Google Scholar]
- Carter, M.R.; Gregorich, E.G. (Eds.) Soil Sampling and Methods of Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Fadrosh, D.W.; Ma, B.; Gajer, P.; Sengamalay, N.; Ott, S.; Brotman, R.M.; Ravel, J. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2014, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Kryukov, V.Y.; Kosman, E.; Tomilova, O.; Polenogova, O.; Rotskaya, U.; Tyurin, M.; Alikina, T.; Yaroslavtseva, O.; Kabilov, M.; Glupov, V. Interplay between Fungal Infection and Bacterial Associates in the Wax Moth Galleria mellonella under Different Temperature Conditions. J. Fungi 2020, 6, 170. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Abarenkov, K.; Zirk, A.; Piirmann, T.; Pöhönen, R.; Ivanov, F.; Nilsson, R.H.; Kõljalg, U. UNITE USEARCH/UTAX release for Fungi. UNITE Community 2020, 4, 2020. [Google Scholar] [CrossRef]
- Hammer, O.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Hughes, J.B.; Hellmann, J.J. The Application of Rarefaction Techniques to Molecular Inventories of Microbial Diversity. Methods Enzymol. 2005, 397, 292–308. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Ma, K.; Fu, Y.Z.; Wang, Z.Q.; An, Y.Y. Effects of no-tillage, mulching, and organic fertilization on soil fungal community composition and diversity. Ying Yong Sheng Tai Xue Bao 2020, 31, 890–898. (In Chinese) [Google Scholar] [CrossRef]
- Sharma-Poudyal, D.; Schlatter, D.; Yin, C.; Hulbert, S.; Paulitz, T. Long-term no-till: A major driver of fungal communities in dryland wheat cropping systems. PLoS ONE 2017, 12, e0184611. [Google Scholar] [CrossRef] [Green Version]
- Legrand, F.; Picot, A.; Cobo-Díaz, J.F.; Carof, M.; Chen, W.; le Floch, G. Effect of tillage and static abiotic soil properties on microbial diversity. Appl. Soil Ecol. 2018, 132, 135–145. [Google Scholar] [CrossRef]
- Moreno, M.V.; Casas, C.; Biganzoli, F.; Manso, L.; Silvestro, L.B.; Moreira, E.; Stenglein, S.A. Cultivable soil fungi community response to agricultural management and tillage system on temperate soil. J. Saudi Soc. Agric. Sci. 2021, 20, 217–226. [Google Scholar] [CrossRef]
- Misiak, M.; Goodall-Copestake, W.P.; Sparks, T.H.; Worland, M.R.; Boddy, L.; Magan, N.; Convey, P.; Hopkins, D.W.; Newsham, K.K. Inhibitory effects of climate change on the growth and extracellular enzyme activities of a widespread Antarctic soil fungus. Glob. Chang. Biol. 2020, 27, 1111–1125. [Google Scholar] [CrossRef]
- Naumova, N.B.; Belanov, I.P.; Alikina, T.Y.; Kabilov, M.R. Undisturbed Soil Pedon under Birch Forest: Characterization of Microbiome in Genetic Horizons. Soil Syst. 2021, 5, 14. [Google Scholar] [CrossRef]
- Poll, C.; Brune, T.; Begerow, D.; Kandeler, E. Small-scale diversity and succession of fungi in the detritusphere of rye residues. Microb. Ecol. 2010, 59, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Ozimek, E.; Hanaka, A. Mortierella Species as the Plant Growth-Promoting Fungi Present in the Agricultural Soils. Agriculture 2021, 11, 7. [Google Scholar] [CrossRef]
- Silva, A.M.M.; Estrada-Bonilla, G.A.; Lopes, C.M.; Matteoli, F.P.; Cotta, S.R.; Feiler, H.P.; Rodrigues, Y.F.; Cardoso, E.J.B.N. Does Organomineral Fertilizer Combined with Phosphate-Solubilizing Bacteria in Sugarcane Modulate Soil Microbial Community and Functions? Microb. Ecol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Soytong, K.; Kahonokmedhakul, S.; Song, J.; Tongon, R. Chaetomium Application in Agriculture. In Technology in Agriculture; Ahmad, F., Sultan, M., Eds.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, Y.; Li, J.; Zhu, P.; Liang, B. Exploring dynamics and associations of dominant lignocellulose degraders in tomato stalk composting. J. Environ. Manag. 2021, 294, 113162. [Google Scholar] [CrossRef]
- Sun, Z.B.; Li, S.D.; Ren, Q.; Xu, J.L.; Lu, X.; Sun, M.H. Biology and applications of Clonostachys rosea. J. Appl. Microbiol. 2020, 129, 486–495. [Google Scholar] [CrossRef] [Green Version]
- Sharma, L.; Bohra, N.; Rajput, V.D.; Quiroz-Figueroa, F.R.; Singh, R.K.; Marques, G. Advances in Entomopathogen Isolation: A Case of Bacteria and Fungi. Microorganisms 2020, 9, 16. [Google Scholar] [CrossRef]
- Burgess, L.W.; Griffin, D.M. The recovery of Gibberella zeae from wheat straws. Austral. J. Exp. Agric. 1968, 8, 364–370. [Google Scholar] [CrossRef]
- Pereyra, S.A.; Dill-Macky, R.; Sims, A.L. Survival and inoculum production of Gibberella zeae in wheat residue. Plant. Dis. 2004, 88, 724–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, A.; Zhuang, X.; Wu, J.; Cui, M.; Lv, D.; Liu, C.; Zhuang, G. Ascomycota members dominate fungal communities during straw residue decomposition in arable soil. PLoS ONE 2013, 8, e66146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyśkiewicz, R.; Nowak, A.; Ozimek, E.; Jaroszuk-Ściseł, J. Trichoderma: The Current Status of Its Application in Agriculture for the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth. Int. J. Mol. Sci. 2022, 23, 2329. [Google Scholar] [CrossRef]
- Seifert, K.A.; Nickerson, N.L.; Corlett, M.; Jackson, E.D.; Louis-Seize, G.; Davies, R.J. Devriesia, a new hyphomycete genus to accommodate heat-resistant, cladosporium-like fungi. Can. J. Bot. 2004, 82, 914–926. [Google Scholar] [CrossRef]
- Frank, J.; Crous, P.W.; Groenewald, J.Z.; Oertel, B.; Hyde, K.D.; Phengsintham, P.; Schroers, H.J. Microcyclospora and Microcyclosporella: Novel genera accommodating epiphytic fungi causing sooty blotch on apple. Persoonia 2010, 24, 93–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuneda, A.; Hambleton, S.; Currah, R.S. The anamorph genus Knufia and its phylogenetically allied species in Coniosporium, Sarcinomyces, and Phaeococcomyces. Botany 2011, 89, 523–536. [Google Scholar] [CrossRef]
- Mehrabi, M.; Asgari, B.; Hemmati, R. Knufia perfecta, a new black yeast from Iran, and a key to Knufia species. Nova Hedwig. 2018, 106, 519–534. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, Y.; Heering, C.; Janiak, C.; Müller, W.E.G.; Akoné, S.H.; Liu, Z.; Proksch, P. Sesquiterpenoids from the Endophytic Fungus Rhinocladiella similis. J. Nat. Prod. 2019, 82, 1055–1062. [Google Scholar] [CrossRef] [PubMed]
- van Erven, G.; Kleijn, A.F.; Patyshakuliyeva, A.; Di Falco, M.; Tsang, A.; de Vries, R.P.; van Berkel, W.J.H.; Kabel, M.A. Evidence for ligninolytic activity of the ascomycete fungus Podospora anserina. Biotechnol. Biofuels 2020, 13, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ndinga-Muniania, C.; Mueller, R.C.; Kuske, C.R.; Porras-Alfaro, A. Seasonal variation and potential roles of dark septate fungi in an arid grassland. Mycologia 2021, 113, 1181–1198. [Google Scholar] [CrossRef]
- Gupta, P.; Vakhlu, J.; Sharma, Y.P.; Imchen, M.; Kumavath, R. Metagenomic insights into the fungal assemblages of the northwest Himalayan cold desert. Extremophiles 2020, 24, 749–758. [Google Scholar] [CrossRef]
- Nicola, L.; Landínez-Torres, A.Y.; Zambuto, F.; Capelli, E.; Tosi, S. The Mycobiota of High Altitude Pear Orchards Soil in Colombia. Biology 2021, 10, 1002. [Google Scholar] [CrossRef]
- Fernandez-Gnecco, G.; Smalla, K.; Maccario, L.; Sørensen, S.J.; Barbieri, P.; Consolo, V.F.; Covacevich, F.; Babin, D. Microbial community analysis of soils under different soybean cropping regimes in the Argentinean south-eastern Humid Pampas. FEMS Microbiol. Ecol. 2021, 97, fiab007. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhao, Y.; Ma, J.; Rong, Z.; Chen, J.; Wang, Y.; Zheng, X.; Ye, W. Wheat Straw Return Influences Soybean Root-Associated Bacterial and Fungal Microbiota in a Wheat-Soybean Rotation System. Microorganisms 2022, 10, 667. [Google Scholar] [CrossRef]
- Doğmuş-Lehtijärvi, H.T.; Lehtijärvi, A.; Woodward, S.; Oskay, F.; Sieber, T. Impacts of inoculation with Herpotrichia pinetorum, Gremmenia infestans and Gremmeniella abietina on Pinus nigra subsp. pallasiana and Cedrus libani seedlings in the field. For. Pathol. 2016, 46, 47–53. [Google Scholar] [CrossRef]
- Mao, Z.; Zhang, W.; Wu, C.; Feng, H.; Peng, Y.; Shahid, H.; Cui, Z.; Ding, P.; Shan, T. Diversity and antibacterial activity of fungal endophytes from Eucalyptus exserta. BMC Microbiol. 2021, 21, 155. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, T.; Kraj, W.; Bednarz, B. Fungi on stems and twigs in initial and advanced stages of dieback of European ash (Fraxinus excelsior) in Poland. Eur. J. For. Res. 2016, 135, 565–579. [Google Scholar] [CrossRef] [Green Version]
- Machado, T.O.; Beckers, S.J.; Fischer, J.; Sayer, C.; de Araújo, P.H.H.; Landfester, K.; Wurm, F.R. Cellulose nanocarriers via miniemulsion allow Pathogen-Specific agrochemical delivery. J. Colloid Interface Sci. 2021, 601, 678–688. [Google Scholar] [CrossRef] [PubMed]
- Hamza, A.A.; Gunyar, O.A. Functional properties of Rhizopus oryzae strains isolated from agricultural soils as a potential probiotic for broiler feed fermentation. World J. Microbiol. Biotechnol. 2022, 12, 41. [Google Scholar] [CrossRef] [PubMed]
- Grządziel, J.; Gałązka, A. Fungal Biodiversity of the Most Common Types of Polish Soil in a Long-Term Microplot Experiment. Front. Microbiol. 2019, 10, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.-K.; Wang, X.-C.; Zhuang, W.-Y.; Cheng, X.-H.; Zhao, P. New Species of Talaromyces (Fungi) Isolated from Soil in Southwestern China. Biology 2021, 10, 745. [Google Scholar] [CrossRef] [PubMed]
- Han, P.J.; Sun, J.Q.; Wang, L. Two New Sexual Talaromyces Species Discovered in Estuary Soil in China. J. Fungi 2021, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; He, Z.; Yang, Y.; Jia, S.; Yu, M.; Chen, X.; Shen, A. Linking soil microbial community dynamics to straw-carbon distribution in soil organic carbon. Sci. Rep. 2020, 10, 5526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Degrune, F.; Theodorakopoulos, N.; Dufrêne, M.; Colinet, G.; Bodson, B.; Hiel, M.P.; Taminiau, B.; Nezer, C.; Daube, G.; Vandenbol, M. No favorable effect of reduced tillage on microbial community diversity in a silty loam soil (Belgium). Agric. Ecosyst. Environ. 2016, 224, 12–21. [Google Scholar] [CrossRef]
- Neal, A.L.; Hughes, D.; Clark, I.M.; Jansson, J.K.; Hirsch, P.R. Microbiome Aggregated Traits and Assembly Are More Sensitive to Soil Management than Diversity. mSystems 2021, 6, e0105620. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Song, D.; Liang, S.; Dang, P.; Qin, X.; Liao, Y.; Siddique, K. Effect of no-tillage on soil bacterial and fungal community diversity: A meta-analysis. Soil Till. Res. 2020, 204, 104721. [Google Scholar] [CrossRef]
- Wagg, C.; Dudenhöffer, J.-H.; Widmer, F.; van der Heijden, M.G.A. Linking diversity, synchrony and stability in soil microbial communities. Funct. Ecol. 2018, 32, 1280–1292. [Google Scholar] [CrossRef]
- Frøslev, T.G.; Nielsen, I.B.; Santos, S.S.; Barnes, C.J.; Bruun, H.H.; Ejrnæs, R. The biodiversity effect of reduced tillage on soil microbiota. Ambio 2022, 51, 1022–1033. [Google Scholar] [CrossRef] [PubMed]
- Srour, A.Y.; Ammar, H.A.; Subedi, A.; Pimentel, M.; Cook, R.L.; Bond, J.; Fakhoury, A.M. Microbial Communities Associated With Long-Term Tillage and Fertility Treatments in a Corn-Soybean Cropping System. Front. Microbiol. 2020, 25, 1363. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Guo, Z.; Zang, J.; Gai, Z.; Liu, J.; Meng, Q.; Liu, X. No tillage and residue mulching m ethod on bacterial community diversity regulation in a black soil region of Northeastern China. PLoS ONE 2021, 16, e0256970. [Google Scholar] [CrossRef] [PubMed]
- Karunarathna, A.; Tibpromma, S.; Jayawardena, R.S.; Nanayakkara, C.; Asad, S.; Xu, J.; Hyde, K.D.; Karunarathna, S.C.; Stephenson, S.L.; Lumyong, S.; et al. Fungal Pathogens in Grasslands. Front. Cell Infect. Microbiol. 2021, 11, 695087. [Google Scholar] [CrossRef] [PubMed]
- Gabbarini, L.A.; Figuerola, E.; Frene, J.P.; Robledo, N.B.; Ibarbalz, F.M.; Babin, D.; Smalla, K.; Erijman, L.; Wall, L.G. Impacts of switching tillage to no-tillage and vice versa on soil structure, enzyme activities and prokaryotic community profiles in Argentinean semi-arid soils. FEMS Microbiol. Ecol. 2021, 97, fiab025. [Google Scholar] [CrossRef]
- Brunbjerg, A.K.; Bruun, H.H.; Moeslund, J.E.; Sadler, J.P.; Svenning, J.-C.; Ejrnæs, R. Ecospace: A unified framework for understanding variation in terrestrial biodiversity. Basic Appl. Ecol. 2017, 18, 86–94. [Google Scholar] [CrossRef] [Green Version]
- Brunbjerg, A.K.; Bruun, H.H.; Dalby, L.; Classen, A.T.; Fløjgaard, C.; Frøslev, T.G.; Pryds Hansen, O.L.; Høye, T.T.; Moeslund, J.E.; Svenning, J.-C.; et al. Multi-taxon inventory reveals highly consistent biodiversity responses to ecospace variation. Oikos 2020, 129, 1381–1392. [Google Scholar] [CrossRef]
- Brunbjerg, A.K.; Bruun, H.H.; Brøndum, L.; Classen, A.T.; Dalby, L.; Fog, K.; Frøslev, T.G.; Goldberg, I.; Hansen, A.J.; Hansen, M.D.D.; et al. A systematic survey of regional multi-taxon bio.diversity: Evaluating strategies and coverage. BMC Ecol. 2019, 19, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djemiel, C.; Maron, P.A.; Terrat, S.; Dequiedt, S.; Cottin, A.; Ranjard, L. Inferring microbiota functions from taxonomic genes: A review. Gigascience 2022, 11, giab090. [Google Scholar] [CrossRef]
- Brown, S.P.; Veach, A.M.; Rigdon-Huss, A.R.; Grond, K.; Lickteig, S.K.; Lothamer, K.; Oliver, A.K.; Jumpponen, A. Scraping the bottom of the barrel: Are rare high throughput sequences artifacts? Fungal Ecol. 2015, 13, 221–225. [Google Scholar] [CrossRef] [Green Version]
Property | Undisturbed | Ploughed | No Till | |||
---|---|---|---|---|---|---|
0–5 cm | 5–15 cm | 0–5 cm | 5–15 cm | 0–5 cm | 5–15 cm | |
Bulk density, g cm−3 soil | 1.11 | 1.23 | 1.02 | 1.09 | 1.13 | 1.19 |
Soil texture, % | ||||||
Sand (2–0.063 mm) | 34 b # | 34 b | 16 a | 15 a | 15 a | 16 a |
Silt (0.063–0.002 mm) | 41 a | 43 a | 53 b | 51 b | 52 b | 50 b |
Clay (<0.002 mm) | 25 b | 23 a | 31 bc | 34 c | 33 c | 34 c |
pH | 6.61 b | 6.65 bc | 6.67 bc | 6.82 c | 6.29 a | 6.75 bc |
EC *, µS | 239 ab | 209 a | 286 bc | 288 bc | 286 bc | 330 c |
STC, % | 4.2 b | 3.6 a | 4.0 bc | 3.8 ac | 4.1 bc | 3.8 ac |
STN, % | 0.37 c | 0.31 a | 0.35 c | 0.33 bc | 0.33 b | 0.29 a |
SOM, % | 9.7 c | 7.8 a | 8.9 b | 8.4 ab | 9.6 c | 8.9 b |
NO3−, mg N kg−1 soil | 2.0 a | 1.3 a | 3.6 b | 3.2 b | 4.6 c | 4.8 c |
Pav, mg P2O5 kg−1 soil | 15.2 b | 8.6 a | 81.5 d | 37.7 c | 77.4 d | 18.4 bc |
Prav, mg P2O5 kg−1 soil | 0.55 ab | 0.22 a | 1.74 bc | 0.39 a | 2.74 c | 0.15 a |
Kex, mg K2O kg−1 soil | 577 d | 283 a | 781 e | 494 c | 726 e | 354 ab |
Taxon | Undisturbed | Ploughed | No Till | |||
---|---|---|---|---|---|---|
0–5 cm | 5–15 cm | 0–5 cm | 5–15 cm | 0–5 cm | 5–15 cm | |
Phylum level | ||||||
Ascomycota | 85.8 b,1 | 82.1 ab | 82.9 ab | 78.6 a | 80.4 a | 80.0 a |
Basidiomycota | 7.9 c | 6.5 bc | 4.3 ab | 5.4 abc | 3.1 a | 4.0 ab |
Zygomycota | 2.4 a | 5.0 ab | 6.3 b | 6.8 b | 10.7 c | 7.6 bc |
Mortierellomycota | 1.1 a | 3.4 b | 4.1 bc | 6.3 c | 3.4 b | 5.3 bc |
Chytridiomycota | 0.4 a | 0.4 a | 1.1 c | 0.7 b | 1.1 c | 0.7 b |
Glomeromycota | 0.8 b | 1.0 b | 0.0 a | 0.3 a | 0.1 a | 0.9 b |
un. 3 Fungi | 0.9 ab | 1.2 b | 0.9 ab | 1.2 b | 0.7 a | 0.9 ab |
Class level | ||||||
Sordariomycetes | 15.6 a | 15.2 a | 51.2 b | 46.0 b | 43.6 b | 41.4 b |
Dothideomycetes | 30.2 b | 18.3 a | 18.7 a | 15.3 a | 16.8 a | 17.1 a |
Eurotiomycetes | 19.1 c | 25.7 d | 5.3 a | 11.4 b | 11.1 b | 14.4 bc |
Agaricomycetes | 4.6 b | 5.2 b | 3.3 ab | 3.9 b | 1.3 a | 2.3 ab |
Leotiomycetes | 5.6 | 8.1 | 5.6 | 4.4 | 6.7 | 5.8 |
Mucoromycotina_is 2 | 2.4 a | 4.6 a | 6.2 b | 6.2 bc | 10.6 c | 7.3 bc |
Mortierellomycetes | 1.1 a | 3.4 b | 4.1 b | 6.3 c | 3.4 b | 5.3 bc |
unc_Ascomycota | 6.1 bc | 10.4 c | 1.0 b | 0.5 a | 1.1 ab | 0.5 a |
Tremellomycetes | 1.7 b | 0.4 a | 0.4 a | 0.9 ab | 1.0 ab | 1.1 ab |
Orbiliomycetes | 2.2 b | 2.6 b | 0.1 a | 0.1 a | 0.1 a | 0.1 a |
Pezizomycotina_is | 3.4 b | 0.1 a | 0.1 a | 0.1 a | 0.3 a | 0.1 a |
Glomeromycetes | 0.8 bc | 1.0 c | 0.0 a | 0.3 ab | 0.1 a | 0.9 bc |
Genus | Undisturbed | Ploughed | No Till | |||
---|---|---|---|---|---|---|
0–5 cm | 5–15 cm | 0–5 cm | 5–15 cm | 0–5 cm | 5–15 cm | |
Chaetomium | 0.2 a,1 | 0.9 a | 8.2 d | 6.8 cd | 4.3 b | 5.9 c |
Clonostachys | 0.3 a | 0.1 a | 1.1 b | 2.7 c | 2.3 c | 2.7 c |
Cordyceps | 0.0 a | 0.2 ab | 0.7 ab | 2.0 c | 1.0 b | 2.8 c |
Devriesia | 5.6 b | 0.2 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a |
Exophiala | 1.0 a | 0.7 a | 0.7 a | 0.6 a | 2.5 c | 1.6 b |
Fusarium | 0.5 a | 1.5 ab | 2.6 b | 5.2 c | 2.4 ab | 4.7 c |
Gibberella | 1.7 a | 0.7 a | 7.3 c | 5.4 bc | 11.2 d | 5.3 bc |
Herpotrichia | 1.5 a | 0.0 a | 0.8 a | 0.0 a | 3.1 b | 0.7 a |
Humicola | 0.6 a | 3.9 c | 1.2 a | 2.0 ab | 0.9 a | 2.2 b |
Hypocrea | 0.3 a | 0.3 a | 1.9 b | 2.2 b | 2.3 b | 2.1 b |
Knufia | 4.4 b | 0.1 a | 0.0 a | 0.0 a | 0.2 a | 0.0 a |
Lecythophora | 0.4 a | 0.0 a | 2.2 c | 0.6 a | 1.4 b | 0.4 a |
Lophiostoma | 0.1 a | 0.1 a | 0.6 a | 0.1 a | 2.5 b | 0.2 a |
Metarhizium | 0.4 a | 0.1 a | 0.8 ab | 1.7 c | 1.3 bc | 1.3 bc |
Mortierella | 3.4 a | 8.0 b | 8.2 bc | 11.2 c | 10.5 bc | 10.7 c |
Neonectria | 0.0 a | 0.1 a | 0.4 a | 0.9 b | 0.9 b | 1.9 c |
Penicillium | 6.7 c | 5.3 abc | 1.9 a | 5.7 bc | 2.5 ab | 3.4 abc |
Phialocephala | 0.9 a | 0.6 a | 2.1 b | 1.3 ab | 1.5 ab | 1.4 ab |
Podospora | 1.5 ab | 0.8 a | 11.0 d | 4.3 c | 3.7 bc | 1.5 ab |
Preussia | 0.5 ab | 0.1 a | 2.0 c | 1.4 b | 1.1 b | 0.8 ab |
Pseudogymnoascus | 4.6 ab | 11.0 c | 2.6 a | 7.2 bc | 2.3 a | 10.4 c |
Rhinocladiella | 3.3 b | 5.1 c | 0.0 a | 0.0 a | 0.0 a | 0.0 a |
Rhizopus | 0.0 a | 0.0 a | 1.2 ab | 0.8 ab | 3.1 c | 1.5 b |
Talaromyces | 0.3 a | 0.0 a | 1.5 ab | 1.6 ab | 4.0 c | 3.1 bc |
Tetracladium | 0.0 a | 0.8 ab | 1.6 abc | 1.0 abc | 2.3 bc | 2.8 c |
Index | Undisturbed | Ploughed | No till | |||
---|---|---|---|---|---|---|
0–5 cm | 5–15 cm | 0–5 cm | 5–15 cm | 0–5 cm | 5–15 cm | |
OTU richness | 710 c, 1 | 424 a | 497 a | 565 b | 584 b | 539 b |
Chao-1 | 753 c | 433 a | 545 ab | 602 b | 629 b | 569 b |
Simpson (S) | 0.98 | 0.91 | 0.97 | 0.98 | 0.98 | 0.91 |
Shannon’s | 4.7 b | 3.8 a | 4.4 b | 4.6 b | 4.6 b | 4.2 ab |
Evenness | 0.16 ab | 0.12 a | 0.18 b | 0.19 b | 0.17 ab | 0.15 ab |
Equitability | 0.72 b | 0.63 a | 0.72 b | 0.73 b | 0.72 b | 0.66 ab |
Berger-Parker | 0.09 a | 0.23 b | 0.08 a | 0.07 a | 0.07 a | 0.20 ab |
Dominance (1-S) | 0.02 | 0.09 | 0.03 | 0.02 | 0.02 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naumova, N.; Barsukov, P.; Baturina, O.; Rusalimova, O.; Kabilov, M. Soil Mycobiome Diversity under Different Tillage Practices in the South of West Siberia. Life 2022, 12, 1169. https://doi.org/10.3390/life12081169
Naumova N, Barsukov P, Baturina O, Rusalimova O, Kabilov M. Soil Mycobiome Diversity under Different Tillage Practices in the South of West Siberia. Life. 2022; 12(8):1169. https://doi.org/10.3390/life12081169
Chicago/Turabian StyleNaumova, Natalia, Pavel Barsukov, Olga Baturina, Olga Rusalimova, and Marsel Kabilov. 2022. "Soil Mycobiome Diversity under Different Tillage Practices in the South of West Siberia" Life 12, no. 8: 1169. https://doi.org/10.3390/life12081169
APA StyleNaumova, N., Barsukov, P., Baturina, O., Rusalimova, O., & Kabilov, M. (2022). Soil Mycobiome Diversity under Different Tillage Practices in the South of West Siberia. Life, 12(8), 1169. https://doi.org/10.3390/life12081169