Comparative Transcriptome Analysis on the Regulatory Mechanism of Thoracic Ganglia in Eriocheir sinensis at Post-Molt and Inter-Molt Stages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Crabs and Sample Collection
2.2. Total RNA Extraction and ILLUMINA Sequencing
2.3. Data Filtering and Assembly
2.4. Transcriptome Annotation
2.5. Differential Expression Analysis
2.6. Quantitative Real-Time PCR (qPCR) Validation
3. Results
3.1. Sequencing and Assembly of Thoracic Ganglia Transcriptome of E. sinensis
3.2. Top 30 GO Enrichment Analysis on DEGs at Post-Molt and Inter-Molt Stages
3.3. Top 30 KEGG Enrichment Analysis
3.4. Analysis of Functional DEGs
3.5. Validation of Transcriptome Data by qPCR
4. Discussion
4.1. Carapace Development and Tissue Regeneration at Post-Molt Stage
4.2. Neuronal Signal Transduction after Molting
4.3. Regulation of Energy Metabolism and Homeostasis
4.4. Regulation of Immune and Anti-Stress Response
4.5. Application of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Spiridonov, V.A.; Zalota, A.K. Understanding and forecasting dispersal of non-indigenous marine decapods (Crustacea: Decapoda) in East European and North Asian waters. J. Mar. Biol. Assoc. UK 2017, 97, 591–611. [Google Scholar] [CrossRef]
- Wang, H.H.; Zhuang, P.; Feng, G.P.; Gao, Y.; Zhao, F.S. Study on resources dynamics and conservation of Eriocheir sinensis in the middle and lower reaches of the Yangtze River. Acta Agric. Zhejiangensis 2016, 28, 567–573. (In Chinese) [Google Scholar]
- Wang, Q.; Wu, X.; Long, X.; Zhu, W.; Cheng, Y. Nutritional quality of different grades of adult male chinese mitten crab, Eriocheir sinensis. J. Food Sci. Technol. 2018, 55, 944–955. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.H.; Zhao, Y.F. Analysis on Current Situation and Criteria for Eriocheir sinensis Culturing Industry. Sci. Fish Farming 2018, 10, 13–16. [Google Scholar]
- Kang, X.J.; Tian, Z.H.; Wu, J.L.; Mu, S.M. Molt stages and changes in digestive enzyme activity in hepatopancreas during molt cycle of Chinese mitten crab, Eriocheir sinensis. J. Fish. Sci. China 2012, 19, 806–812. [Google Scholar]
- Das, S.; Vraspir, L.; Zhou, W.; Durica, D.S.; Mykles, D.L. Transcriptomic analysis of differentially expressed genes in the molting gland (Y-organ) of the blackback land crab, Gecarcinus lateralis, during molt-cycle stage transitions. Comp. Biochem. Physiol. Part D Genom. Proteom. 2018, 28, 37–53. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.D.; Su, R.Y.; He, J.Q.; Liu, S.B.; Huang, Q.C.; Qin, C.J.; Zhang, M.L.; Qin, J.G.; Chen, L.Q. Dietary gamma-aminobutyric acid (GABA) supplementation increases food intake, influences the expression of feeding-related genes and improves digestion and growth of Chinese mitten crab (Eriocheir sinensis). Aquaculture 2022, 546, 737332. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, J.; Huang, G.; Xu, M.; Cheng, Y.; Yang, X. Effects of dietary L-tryptophan supplementation on growth performance, food intake, digestive enzyme activity and serotonin (5-HT) levels in juvenile Chinese mitten crab (Eriocheir sinensis). Aquacult. Nutr. 2021, 27, 1602–1611. [Google Scholar] [CrossRef]
- Yuan, Q.; Qian, J.; Ren, Y.; Zhang, T.L.; Li, Z.J.; Liu, J.S. Effects of stocking density and water temperature on survival and growth of the juvenile Chinese mitten crab, Eriocheir sinensis, reared under laboratory conditions. Aquaculture 2018, 495, 631–636. [Google Scholar] [CrossRef]
- Wang, R.F.; Huang, X.R.; Wang, H.H.; Lu, J.X.; Shi, X.T.; Feng, G.P.; Zhuang, P. Effects of salinity on embryonic and larval development of Chinese mitten crab Eriocheir sinensis (Decapoda: Brachyura) and salinity-induced physiological changes. J. Oceanol. Limnol. 2019, 37, 1777–1788. [Google Scholar] [CrossRef]
- Li, R.; Meng, Q.H.; Huang, J.W.; Wang, S.; Sun, J.S. MMP-14 regulates innate immune responses to Eriocheir sinensis via tissue degradation. Fish Shellfish Immunol. 2020, 99, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Chen, X.W.; Yang, H.; Yue, W.C.; Wang, J.; Han, H.; Wang, C.H. V-ATPase subunit B plays essential roles in the molting process of the Chinese mitten crab, Eriocheir sinensis. Biol. Open 2020, 9, bio048926. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ma, K.; Liu, Z.; Feng, J.; Ye, B.; Qiu, G. Transcriptome analysis of the brain of the Chinese mitten crab, Eriocheir sinensis, for neuropeptide abundance profiles during ovarian development. Anim. Reprod. Sci. 2019, 201, 63–70. [Google Scholar] [CrossRef]
- Das, S.; Mykles, D.L. A comparison of resources for the annotation of a de novo assembled transcriptome in the molting gland (Y-Organ) of the blackback land crab, Gecarcinus lateralis. Integr. Comp. Biol. 2016, 56, 1103–1112. [Google Scholar] [CrossRef]
- Wang, M.Y.; Tang, Y.K.; Yu, J.H.; Su, S.Y.; Li, J.L.; Yu, F.; Li, H.X.; Song, C.Y.; Du, F.K.; Xu, P. Molecular insights into the sex-differential regulation of signal transduction in the cerebral ganglion and metabolism in the hepatopancreas of Eriocheir sinensis during reproduction. Genomics 2020, 112, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.K.; Jain, M. NGS QC Toolkit: A toolkit for quality control of next generation sequencing data. PLoS ONE 2012, 7, e30619. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Kanehisa, M.; Araki, M.; Goto, S.; Hattori, M.; Hirakawa, M.; Itoh, M.; Katayama, T.; Kawashima, S.; Okuda, S.; Tokimatsu, T.; et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008, 36, D480–D484. [Google Scholar] [CrossRef]
- Conesa, A.; Gotz, S.; Garcia, J. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef] [Green Version]
- Anders, S.; Huber, W. Differential Expression of RNA-Seq Data at the Gene Level—The DESeq Package; EMBL: Heidelberg, Germany, 2012. [Google Scholar]
- Livak, K.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Wang, M. Comparative transcriptome analysis on nervous system of E. sinensis during molting cycle. Mendeley Data. 2022, V1. Available online: https://data.mendeley.com/datasets/hnpy5vvhyh/1 (accessed on 4 April 2022).
- Chung, J.S.; Katayama, H.; Dircksen, H. New functions of arthropod bursicon: Inducing deposition and thickening of new cuticle and hemocyte granulation in the blue crab, Callinectes sapidus. PLoS ONE 2012, 7, e46299. [Google Scholar] [CrossRef] [PubMed]
- Webster, S.G.; Wilcockson, D.C.; Sharp, J.H. Bursicon and neuropeptide cascades during the ecdysis program of the shore crab, Carcinus maenas. Gen. Comp. Endocrinol. 2013, 182, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Christie, A.E. Identification of putative amine biosynthetic enzymes in the nervous system of the crab, Cancer borealis. Invertebr. Neurosci. 2019, 19, 6. [Google Scholar] [CrossRef] [PubMed]
- Schmid, S.; Song, Y.; Tollefsen, K.E. AOPReport: Inhibition of chitin synthase1leading to increased mortality in arthropods. Environ. Toxicol. Chem. 2021, 40, 2112–2120. [Google Scholar] [CrossRef]
- Fan, S.G.; Zhou, D.Z.; Liu, B.S.; Deng, Z.H.; Guo, Y.H.; Yu, D.H. Molecular cloning and expression analysis of BMP7b from Pinctada fucata. South China Fish. Sci. 2018, 14, 121–126. [Google Scholar]
- Khodr, V.; Machillot, P.; Migliorini, E.; Reiser, J.B.; Picart, C. High-throughput measurements of bone morphogenetic protein/bone morphogenetic protein receptor interactions using biolayer interferometry. Biointerphases 2021, 16, 031001. [Google Scholar] [CrossRef]
- Uddowla, M.H.; Salma, U.; Kim, H.W. Molecular characterization of four actin cDNAs and effects of 20-hydroxyecdysone on their expression in swimming crab, Portunus trituberculatus (Miers, 1876). Anim. Cells Syst. 2013, 17, 203–212. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, X.J.; Wei, J.K.; Sun, X.Q.; Yuan, J.B.; Li, F.H.; Xiang, J.H. Whole transcriptome analysis provides insights into molecular mechanisms for molting in Litopenaeus vannamei. PLoS ONE 2015, 10, e0144350. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.J.; Scott, D.A. Mouse model reveals the role of RERE in cerebellar foliation and the migration and maturation of purkinje cells. PLoS ONE 2014, 9, e87518. [Google Scholar]
- Zhou, Y.; Bennett, T.M.; Ruzycki, P.A.; Shiels, A. Mutation of the EPHA2 tyrosine-kinase domain dysregulates cell pattern formation and cytoskeletal gene expression in the Lens. Cells 2021, 10, 2606. [Google Scholar] [CrossRef] [PubMed]
- Jakada, B.H.; Aslam, M.; Fakher, B.; Greaves, J.G.; Li, Z.; Li, W.; Lai, L.; Ayoade, O.A.; Cheng, Y.; Cao, S.; et al. Identification of SWI2/SNF2-Related 1 Chromatin Remodeling Complex (SWR1-C) Subunits in Pineapple and the Role of Pineapple SWR1 COMPLEX 6 (AcSWC6) in Biotic and Abiotic Stress Response. Biomolecules 2019, 9, 364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, C.; Bardet, A.F.; Roma, G.; Bergling, S.; Clay, I.; Ruchti, A.; Agarinis, C.; Schmelzle, T.; Bouwmeester, T.; Schubeler, D.; et al. YAP1 Exerts Its Transcriptional Control via tead-mediated activation of enhancers. PLoS Genet. 2015, 11, e1005465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, H.; Wilder, M.N.; Dircksen, H.; Chung, J.S. Editorial: Recent advances in crustacean endocrinology. Front. Endocrinol. 2021, 12, 730642. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.P.; He, J.G.; Sun, C.B.; Chan, S.F. Characterization of the shrimp neuroparsin (MeNPLP): RNAi silencing resulted in inhibition of vitellogenesis. Febs Open Bio 2014, 4, 976–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliphant, A.; Alexander, J.L.; Swain, M.T.; Webster, S.G.; Wilcockson, D.C. Transcriptomic analysis of crustacean neuropeptide signaling during the moult cycle in the green shore crab, Carcinus maenas. BMC Genom. 2018, 19, 711. [Google Scholar] [CrossRef] [Green Version]
- DeMaegd, M.L.; Stein, W. Neuropeptide modulation increases dendritic electrical spread to restore neuronal activity disrupted by temperature. J. Neurosci. 2021, 41, 7607–7622. [Google Scholar] [CrossRef]
- Rainey, A.N.; Fukui, S.M.; Mark, K.; King, H.M.; Blitz, D.M. Intrinsic sources of tachykinin-related peptide in the thoracic ganglion mass of the crab, Cancer borealis. Gen. Comp. Endocrinol. 2021, 302, 113688. [Google Scholar] [CrossRef]
- Christie, A.E.; Roncalli, V.; Cieslak, M.C.; Pascual, M.G.; Yu, A.; Lameyer, T.J.; Stanhope, M.E.; Dickinson, P.S. Prediction of a neuropeptidome for the eyestalk ganglia of the lobster Homarus americanus using a tissue-specific de novo assembled transcriptome. Gen. Comp. Endocrinol. 2017, 243, 96–119. [Google Scholar] [CrossRef] [Green Version]
- Foley, K.; McKee, C.; Nairn, A.C.; Xia, H. Regulation of synaptic transmission and plasticity by protein phosphatase 1. J. Neurosci. 2021, 41, 3040–3050. [Google Scholar] [CrossRef]
- Van Battum, E.; Heitz-Marchaland, C.; Zagar, Y.; Fouquet, S.; Kuner, R.; Chedotal, A. Plexin-B2 controls the timing of differentiation and the motility of cerebellar granule neurons. eLife 2021, 10, e60554. [Google Scholar] [CrossRef]
- Wei, J.; Jia, M.; Zhang, C.; Wang, M.; Gao, F.; Xu, H.; Gong, W. Crystal structure of the C-terminal domain of the epsilon subunit of human translation initiation factor eIF2B. Protein Cell 2010, 1, 595–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.; Wang, J.; Yue, W.; Chen, J.; Gaughan, S.; Lu, W.; Lu, G.; Wang, C. Transcriptomic variation of hepatopancreas reveals the energy metabolism and biological processes associated with molting in Chinese mitten crab, Eriocheir sinensis. Scie. Rep. 2015, 5, 14015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eixelsberger, T.; Sykora, S.; Egger, S.; Brunsteiner, M.; Kavanagh, K.L.; Oppermann, U.; Nidetzky, B. Structure and Mechanism of Human UDP-xylose Synthase evidence for a promoting role of sugar ring distortion in a three-step catalytic conversion of UDP-glucuronic acid. J. Biol. Chem. 2012, 287, 31349–31358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeda, M.; Okamoto, N.; Araki, N.; Kimura, Y. Purification, characterization, and gene expression of rice endo-beta-N-acetylglucosaminidase, Endo-Os. Front. Plant Sci. 2021, 12, 647684. [Google Scholar] [CrossRef]
- Biterova, E.I.; Isupov, M.N.; Keegan, R.M.; Lebedev, A.A.; Sohail, A.A.; Liaqat, I.; Alanen, H.I.; Ruddock, L.W. The crystal structure of human microsomal triglyceride transfer protein. Proc. Natl. Acad. Sci. USA 2019, 116, 17251–17260. [Google Scholar] [CrossRef] [Green Version]
- Sahaka, M.; Amara, S.; Wattanakul, J.; Gedi, M.A.; Aldai, N.; Parsiegla, G.; Lecomte, J.; Christeller, J.T.; Gray, D.; Gontero, B.; et al. The digestion of galactolipids and its ubiquitous function in Nature for the uptake of the essential alpha-linolenic acid. Food Funct. 2020, 11, 6710–6744. [Google Scholar] [CrossRef]
- Qu, M.; Duffy, T.; Hirota, T.; Kay, S.A. Nuclear receptor HNF4A transrepresses clock: BMAL1 and modulates tissue-specific circadian networks. Proc. Natl. Acad. Sci. USA 2018, 115, E12305–E12312. [Google Scholar] [CrossRef] [Green Version]
- Singh, T.; Banerjee, P.; Uditi; Kumari, S.; Chopra, A.; Singh, N.; Qamar, I. Expression of Regucalcin, a calcium-binding protein is regulated by hypoxia-inducible factor-1alpha. Life Sci. 2022, 292, 120278. [Google Scholar] [CrossRef]
- Deppisch, P.; Prutscher, J.M.; Pegoraro, M.; Tauber, E.; Wegener, C.; Helfrich-Foerster, C. Adaptation of Drosophila melanogaster to long photoperiods of high-latitude summers is facilitated by the ls-timeless allele. J. Biol. Rhythm. 2022, 37, 185–201. [Google Scholar] [CrossRef]
- Bats, M.; Peghaire, C.; Delobel, V.; Dufourcq, P.; Couffinhal, T.; Duplaa, C. Wnt/frizzled signaling in endothelium: A major player in blood-retinal- and blood-brain-barrier integrity. Cold Spring Harb. Perspect. Med. 2022, 12, a041219. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.M.; Mykles, D.L.; Elizur, A.; Ventura, T. Characterization of G-protein coupled receptors from the blackback land crab Gecarcinus lateralis Y organ transcriptome over the molt cycle. BMC Genom. 2019, 20, 74. [Google Scholar] [CrossRef] [PubMed]
- Heinz, L.X.; Baumann, C.L.; Koberlin, M.S.; Snijder, B.; Gawish, R.; Shui, G.H.; Sharif, O.; Aspalter, I.M.; Muller, A.C.; Kandasamy, R.K.; et al. The lipid-modifying enzyme SMPDL3B negatively regulates innate immunity. Cell Rep. 2015, 11, 1919–1928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genster, N.; Ma, Y.J.; Munthe-Fog, L.; Garred, P. The pattern recognition molecule ficolin-1 exhibits differential binding to lymphocyte subsets, providing a novel link between innate and adaptive immunity. Mol. Immunol. 2014, 57, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.W.; Chen, W.F.; He, M.H.; Tang, L.; Guo, S.Q.; Zhang, Q.Z. An integrin alpha 4 (ChInt alpha 4) from oyster Crassostrea hongkongensis mediates the hemocytes phagocytosis towards Vibrio alginolyticus. Fish Shellfish Immunol. 2022, 122, 246–256. [Google Scholar] [CrossRef]
- Liu, K.; Liu, J.; Ren, T.; Xu, Y.; Lu, M.; Fang, H.; Zhang, Y.; Liao, Y.; Zhu, P. Cloning and analysis of three glutathione S-transferases in Eriocheir hepuensis and their expression in response to azadirachtin stress. Aquacult. Rep. 2021, 19, 100635. [Google Scholar] [CrossRef]
- Franklin, C.C.; Backos, D.S.; Mohar, I.; White, C.C.; Forman, H.J.; Kavanagh, T.J. Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase. Mol. Aspects Med. 2009, 30, 86–98. [Google Scholar] [CrossRef] [Green Version]
- Deng, H. Multiple roles of Nrf2-Keap1 signaling. Fly 2014, 8, 7–12. [Google Scholar] [CrossRef] [Green Version]
ID | Weight (g) | Carapace Length (mm) | Carapace Width (mm) |
---|---|---|---|
MP1-F | 11.7 | 26.9 | 27.8 |
MP1-M | 12.1 | 27.6 | 28.1 |
MP2-F | 11.2 | 26.8 | 27.5 |
MP2-M | 12.4 | 27.9 | 28.7 |
MP3-F | 11.1 | 26.5 | 27.6 |
MP3-M | 12.2 | 26.6 | 28.5 |
MI1-F | 11.6 | 26.8 | 27.3 |
MI1-M | 13.2 | 27.9 | 28.5 |
MI2-F | 11.5 | 26.7 | 27.3 |
MI2-M | 12.5 | 27.7 | 28.8 |
MI3-F | 11.4 | 26.5 | 27.4 |
MI3-M | 12.9 | 27.5 | 28.1 |
Sample | Raw Reads | Raw Bases | Clean Reads | Clean Bases | Q20 (%) | GC (%) |
---|---|---|---|---|---|---|
MP1 | 45,960,600 | 6,894,090,000 | 45,473,604 | 6,728,590,578 | 95.9 | 50.1 |
MP2 | 45,521,480 | 6,828,222,000 | 45,188,428 | 6,707,176,823 | 96.1 | 49.8 |
MP3 | 45,570,666 | 6,885,599,900 | 44,245,592 | 6,711,431,282 | 95.2 | 50.6 |
MI1 | 45,859,836 | 6,893,975,400 | 44,236,908 | 6,749,106,113 | 96.6 | 49.9 |
MI2 | 46,045,208 | 6,951,781,200 | 45,992,414 | 6,861,547,596 | 96.3 | 49.8 |
MI3 | 45,360,592 | 6,859,088,800 | 45,161,228 | 6,743,440,718 | 96.1 | 50.9 |
Category | Gene Name | Gene Definition | log2 Fold Change | padj |
---|---|---|---|---|
Carapace development and tissue regeneration | Bursicon-α | Bursicon alpha | −3.35 | 0.02 |
DDC | Dopa decarboxylase | −5.46 | 0.05 | |
CHS | Chitin synthase | −2.02 | 0.01 | |
BMP | Bone morphogenetic protein type II | −1.73 | 0.02 | |
BMPR2 | Bone morphogenetic protein receptor type-2 | −5.66 | 0.04 | |
ACTA1 | Alpha actin 1 | −1.70 | 0.03 | |
ACTR2 | Actin-related protein 2 | −1.89 | 0.05 | |
RERE | Arginine-glutamic acid dipeptide repeats protein | −3.23 | 0.02 | |
EPHA2 | Ephrin type-A receptor 2 | −3.86 | 0.01 | |
ISWI | Chromatin-remodeling complex ATPase chain Iswi | −2.41 | 0.04 | |
NEFH | Neurofilament heavy polypeptide | −3.18 | 0 | |
YAP1 | Transcriptional coactivator YAP1 | −2.44 | 0.01 | |
ADAMTS3 | A disintegrin and metalloproteinase with thrombospondin motifs 3 | −2.04 | 0.01 | |
Neuronal signal transduction | OEH | Neuroparsin 2 | −1.60 | 0.04 |
TKR86C | Tachykinin-like peptides receptor 86C | −1.90 | 0.04 | |
TKR99D | Tachykinin-like peptides receptor 99D | −2.42 | 0.04 | |
PPP1R9B | Neurabin-2 | −5.79 | 0.03 | |
PLEXB | Plexin-B | −1.95 | 0.02 | |
PICK1 | PRKCA-binding protein | −5.48 | 0.05 | |
FLNB | Filamin-B | −2.12 | 0.02 | |
RICH | Guanine nucleotide exchange factor subunit Rich | −4.77 | 0.02 | |
Energy metabolism and homeostasis maintenance | UXS1 | UDP-glucuronic acid decarboxylase 1 | 2.64 | 0.04 |
ENGASE | Cytosolic endo-beta-N-acetylglucosaminidase | −5.63 | 0.04 | |
NOCT | Nocturnin | −2.46 | 0.04 | |
MTTP | Microsomal triglyceride transfer protein large subunit | −4.81 | 0 | |
PNLIPRP2 | Pancreatic lipase-related protein 2 | −2.26 | 0.04 | |
HNF4A | Hepatocyte nuclear factor 4-alpha | −2.19 | 0.04 | |
RGN | Regucalcin | −2.62 | 0 | |
Immune and anti-stress response | FZD1 | Frizzled-1 | −3.76 | 0.04 |
FZD7 | Frizzled-7 | −1.91 | 0.02 | |
SMPDL3B | Acid sphingomyelinase-like phosphodiesterase 3b | −3.32 | 0.04 | |
FCN1 | Ficolin-1 | −2.01 | 0.02 | |
ITGA4 | Integrin alpha-4 | −2.38 | 0.05 | |
GCLC | Glutamate–cysteine ligase catalytic subunit | −2.80 | 0 | |
KEAP1 | Kelch-like ECH-associated protein 1 | −3.57 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Zhou, J.; Su, S.; Tang, Y.; Xu, G.; Li, J.; Yu, F.; Li, H.; Song, C.; Liang, M.; et al. Comparative Transcriptome Analysis on the Regulatory Mechanism of Thoracic Ganglia in Eriocheir sinensis at Post-Molt and Inter-Molt Stages. Life 2022, 12, 1181. https://doi.org/10.3390/life12081181
Wang M, Zhou J, Su S, Tang Y, Xu G, Li J, Yu F, Li H, Song C, Liang M, et al. Comparative Transcriptome Analysis on the Regulatory Mechanism of Thoracic Ganglia in Eriocheir sinensis at Post-Molt and Inter-Molt Stages. Life. 2022; 12(8):1181. https://doi.org/10.3390/life12081181
Chicago/Turabian StyleWang, Meiyao, Jun Zhou, Shengyan Su, Yongkai Tang, Gangchun Xu, Jianlin Li, Fan Yu, Hongxia Li, Changyou Song, Meng Liang, and et al. 2022. "Comparative Transcriptome Analysis on the Regulatory Mechanism of Thoracic Ganglia in Eriocheir sinensis at Post-Molt and Inter-Molt Stages" Life 12, no. 8: 1181. https://doi.org/10.3390/life12081181
APA StyleWang, M., Zhou, J., Su, S., Tang, Y., Xu, G., Li, J., Yu, F., Li, H., Song, C., Liang, M., Jiang, J., & Xu, P. (2022). Comparative Transcriptome Analysis on the Regulatory Mechanism of Thoracic Ganglia in Eriocheir sinensis at Post-Molt and Inter-Molt Stages. Life, 12(8), 1181. https://doi.org/10.3390/life12081181