Exploring the Limits of Biological Complexity Amenable to Studies by Incoherent Neutron Spectroscopy
Abstract
:1. Introduction
2. Incoherent Neutron Spectroscopy: Cellular Level
3. Incoherent Neutron Spectroscopy: Tissues
4. Incoherent Neutron Spectroscopy: Multicellular Organisms
5. Perspectives on Incoherent Neutron Spectroscopy Studies of Complex Biological Systems in View of Advances in Spectrometer Design
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arbe, A.; Nilsen, G.J.; Stewart, J.R.; Alvarez, F.; Garcia Sakai, V.; Colmenero, J. Coherent structural relaxation of water from meso- to intermolecular scales measured using neutron spectroscopy with polarization analysis. Phys. Rev. Res. 2020, 2, 022015. [Google Scholar] [CrossRef] [Green Version]
- Tehei, M.; Franzetti, B.; Madern, D.; Ginzburg, M.; Ginzburg, B.Z.; Giudici-Orticoni, M.T.; Bruschi, M.; Zaccai, G. Adaptation to extreme environments: Macromolecular dynamics in bacteria compared in vivo by neutron scattering. EMBO Rep. 2004, 5, 66–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doster, W.; Cusack, S.; Petry, W. Dynamical transition of myoglobin revealed by inelastic neutron-scattering. Nature 1989, 337, 754–756. [Google Scholar] [CrossRef]
- Pfeiffer, W.; Henkel, T.; Sackmann, E.; Knoll, W.; Richter, D. Local dynamics of lipid bilayers studied by incoherent quasi-elastic neutron-scattering. EPL 1989, 8, 201–206. [Google Scholar] [CrossRef]
- Zaccai, G. How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science 2000, 288, 1604–1607. [Google Scholar] [CrossRef] [Green Version]
- Frauenfelder, H.; Sligar, S.G.; Wolynes, P.G. The energy landscapes and motions of proteins. Science 1991, 254, 1598–1603. [Google Scholar] [CrossRef] [Green Version]
- Frauenfelder, H.; Chen, G.; Berendzen, J.; Fenimore, P.W.; Jansson, H.; McMahon, B.H.; Stroe, I.R.; Swenson, J.; Young, R.D. A unified model of protein dynamics. Proc. Nat. Acad. Sci. USA 2009, 106, 5129–5134. [Google Scholar] [CrossRef] [Green Version]
- Doster, W. The protein-solvent glass transition. Biochim. Biophys. Acta 2010, 1804, 3–14. [Google Scholar] [CrossRef]
- Khodadadi, S.; Roh, J.H.; Kisliuk, A.; Mamontov, E.; Tyagi, M.; Woodson, S.A.; Briber, R.M.; Sokolov, A.P. Dynamics of biological macromolecules: Not a simple slaving by hydration water. Biophys. J. 2010, 98, 1321–1326. [Google Scholar] [CrossRef] [Green Version]
- Grimaldo, M.; Roosen-Runge, F.; Zhang, F.; Schreiber, F.; Seydel, T. Dynamics of proteins in solution. Q. Rev. Biophys. 2019, 52, e7. [Google Scholar] [CrossRef] [Green Version]
- Ashkar, R.; Bilheux, H.Z.; Bordallo, H.; Briber, R.; Callaway, D.J.E.; Cheng, X.L.; Chu, X.Q.; Curtis, J.E.; Dadmun, M.; Fenimore, P.; et al. Neutron scattering in the biological sciences: Progress and prospects. Acta Crystallogr. D 2018, 74, 1129–1168. [Google Scholar] [CrossRef] [Green Version]
- Martins, M.L.; Bordallo, H.N.; Mamontov, E. Water dynamics in cancer cells: Lessons from quasielastic neutron scattering. Medicina 2022, 58, 654. [Google Scholar] [CrossRef] [PubMed]
- Jasnin, M.; Moulin, M.; Haertlein, M.; Zaccai, G.; Tehei, M. Down to atomic-scale intracellular water dynamics. EMBO Rep. 2008, 9, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Stadler, A.M.; Embs, J.P.; Digel, I.; Artmann, G.M.; Unruh, T.; Buldt, G.; Zaccai, G. Cytoplasmic water and hydration layer dynamics in human red blood cells. J. Am. Chem. Soc. 2008, 130, 16852–16853. [Google Scholar] [CrossRef] [PubMed]
- Tehei, M.; Franzetti, B.; Wood, K.; Gabel, F.; Fabiani, E.; Jasnin, M.; Zamponi, M.; Oesterhelt, D.; Zaccai, G.; Ginzburg, M.; et al. Neutron scattering reveals extremely slow water in a Dead Sea organism. Proc. Natl. Acad. Sci. USA 2007, 104, 766–771. [Google Scholar] [CrossRef] [Green Version]
- Frolich, A.; Gabel, F.; Jasnin, M.; Lehnert, U.; Oesterhelt, D.; Stadler, A.M.; Tehei, M.; Weik, M.; Wood, K.; Zaccai, G. From shell to cell: Neutron scattering studies of biological water dynamics and coupling to activity. Faraday Discuss. 2009, 141, 117–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jasnin, M.; Stadler, A.; Tehei, M.; Zaccai, G. Specific cellular water dynamics observed in vivo by neutron scattering and NMR. Phys. Chem. Chem. Phys. 2010, 12, 10154–10160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liberton, M.; Page, L.E.; O’Dell, W.B.; O’Neill, H.; Mamontov, E.; Urban, V.S.; Pakrasi, H.B. Organization and flexibility of cyanobacterial thylakoid membranes examined by neutron scattering. J. Biol. Chem. 2013, 288, 3632–3640. [Google Scholar] [CrossRef] [Green Version]
- Jasnin, M.; Moulin, M.; Haertlein, M.; Zaccai, G.; Tehei, M. In vivo measurement of internal and global macromolecular motions in Escherichia coli. Biophys. J. 2008, 95, 857–864. [Google Scholar] [CrossRef] [Green Version]
- Stadler, A.M.; Digel, I.; Artmann, G.M.; Embs, J.P.; Zaccai, G.; Buldt, G. Hemoglobin dynamics in red blood cells: Correlation to body temperature. Biophys. J. 2008, 95, 5449–5461. [Google Scholar] [CrossRef] [Green Version]
- Marty, V.; Jasnin, M.; Fabiani, E.; Vauclare, P.; Gabel, F.; Trapp, M.; Peters, J.; Zaccai, G.; Franzetti, B. Neutron scattering: A tool to detect in vivo thermal stress effects at the molecular dynamics level in micro-organisms. J. R. Soc. Interface 2013, 10, 20130003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, J.; Martinez, N.; Michoud, G.; Carlo, A.; Franzetti, B.; Oger, P.; Jebbar, M. Deep sea microbes probed by incoherent neutron scattering under high hydrostatic pressure. Z. Phys. Chem. Int. J. Res. Phys. Chem. Chem. Phys. 2014, 228, 1121–1133. [Google Scholar] [CrossRef] [Green Version]
- Vauclare, P.; Marty, V.; Fabiani, E.; Martinez, N.; Jasnin, M.; Gabel, F.; Peters, J.; Zaccai, G.; Franzetti, B. Molecular adaptation and salt stress response of Halobacterium salinarum cells revealed by neutron spectroscopy. Extremophiles 2015, 19, 1099–1107. [Google Scholar] [CrossRef] [PubMed]
- Martinez, N.; Michoud, G.; Carlo, A.; Ollivier, J.; Franzetti, B.; Jebbar, M.; Oger, P.; Peters, J. High protein flexibility and reduced hydration water dynamics are key pressure adaptive strategies in prokaryotes. Sci. Rep. 2016, 6, 32816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvador-Castell, M.; Golub, M.; Martinez, N.; Ollivier, J.; Peters, J.; Oger, P. The first study of the impact of osmolytes in whole cells of high temperature-adapted microorganisms. Soft Matter 2019, 15, 8381–8391. [Google Scholar] [CrossRef]
- Stingaciu, L.R.; O’Neill, H.; Liberton, M.; Urban, V.S.; Pakrasi, H.B.; Ohl, M. Revealing the dynamics of thylakoid membranes in living cyanobacterial cells. Sci. Rep. 2016, 6, 19627. [Google Scholar] [CrossRef] [Green Version]
- Stingaciu, L.; O’Neill, H.M.; Liberton, M.; Pakrasi, H.B.; Urban, V.S. Influence of chemically disrupted photosynthesis on cyanobacterial thylakoid dynamics in Synechocystis sp. PCC 6803. Sci. Rep. 2019, 9, 5711. [Google Scholar] [CrossRef]
- Anunciado, D.B.; Nyugen, V.P.; Hurst, G.B.; Doktycz, M.J.; Urban, V.; Langan, P.; Mamontov, E.; O’Neill, H. In vivo protein dynamics on the nanometer length scale and nanosecond time scale. J. Phys. Chem. Lett. 2017, 8, 1899–1904. [Google Scholar] [CrossRef]
- Golub, M.; Martinez, N.; Michoud, G.; Ollivier, J.; Jebbar, M.; Oger, P.; Peters, J. The effect of crowding on protein stability, rigidity, and high pressure sensitivity in whole cells. Langmuir 2018, 34, 10419–10425. [Google Scholar] [CrossRef]
- De la Noue, A.C.; Peters, J.; Gervais, P.; Martinez, N.; Perrier-Cornet, J.M.; Natali, F. Proton dynamics in bacterial spores, a neutron scattering investigation. EPJ Web Conf. 2015, 83, 02003. [Google Scholar] [CrossRef] [Green Version]
- Marques, M.P.M.; Batista de Carvalho, A.L.M.; Mamede, A.P.; Rudic, S.; Dopplapudi, A.; Garcia Sakai, V.; Batista de Carvalho, L.A.E. Intracellular water as a mediator of anticancer drug action. Int. Rev. Phys. Chem. 2020, 39, 67–81. [Google Scholar] [CrossRef]
- Marques, M.P.M.; Batista de Carvalho, A.L.M.; Garcia Sakai, V.; Hatter, L.; Batista de Carvalho, L.A.E. Intracellular water—An overlooked drug target? Cisplatin impact in cancer cells probed by neutrons. Phys. Chem. Chem. Phys. 2017, 19, 2702–2713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, M.P.M.; Batista de Carvalho, A.L.M.; Mamede, A.P.; Santos, I.P.; Garcia Sakai, V.; Dopplapudi, A.; Cinque, G.; Wolna, M.; Gardner, P.; Batista de Carvalho, L.A.E. Chemotherapeutic targets in osteosarcoma: Insights from synchrotron-microFTIR and quasi-elastic neutron scattering. J. Phys. Chem. B 2019, 123, 6968–6979. [Google Scholar] [CrossRef] [PubMed]
- Batista de Carvalho, A.L.M.; Mamede, A.P.; Dopplapudi, A.; Garcia Sakai, V.; Doherty, J.; Frogley, M.; Cinque, G.; Gardner, P.; Gianolo, D.; Batista de Carvalho, L.A.E.; et al. Anticancer drug impact on DNA—A study by neutron spectroscopy coupled with synchrotron-based FTIR and EXAFS. Phys. Chem. Chem. Phys. 2019, 21, 4162–4175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, M.P.M.; Batista de Carvalho, A.L.M.; Mamede, A.P.; Dopplapudi, A.; Rudic, S.; Tyagi, M.; Garcia Sakai, V.; Batista de Carvalho, L.A.E. A new look into the mode of action of metal-based anticancer drugs. Molecules 2020, 25, 246. [Google Scholar] [CrossRef] [Green Version]
- Marques, M.P.M.; Batista de Carvalho, A.L.M.; Mamede, A.P.; Dopplapudi, A.; Garcia Sakai, V.; Batista de Carvalho, L.A.E. Role of intracellular water in the normal-to-cancer transition in human cells—Insights from quasi-elastic neutron scattering. Struct. Dyn. 2020, 7, 054701. [Google Scholar] [CrossRef]
- Martins, M.L.; Dinitzen, A.B.; Mamontov, E.; Rudic, S.; Pereira, J.E.M.; Hartmann-Petersen, R.; Herwig, K.W.; Bordallo, H.N. Water dynamics in MCF-7 breast cancer cells: A neutron scattering descriptive study. Sci. Rep. 2019, 9, 8704. [Google Scholar] [CrossRef]
- What Is the Macromolecular Composition of the Cell? Available online: http://book.bionumbers.org/what-is-the-macromolecular-composition-of-the-cell/ (accessed on 30 November 2017).
- Quaroni, L.; Zlateva, T. Infrared spectromicroscopy of biochemistry in functional single cells. Analyst 2011, 136, 3219–3232. [Google Scholar] [CrossRef]
- Sabbatini, S.; Conti, C.; Orilisi, G.; Giorgini, E. Infrared spectroscopy as a new tool for studying single living cells: Is there a niche? Biomed. Spectrosc. Imaging 2017, 6, 85–99. [Google Scholar] [CrossRef] [Green Version]
- Ford, R.C.; Ruffle, S.V.; Ramirez-Cuesta, A.J.; Michalarias, I.; Beta, I.; Miller, A.; Li, J.C. Inelastic incoherent neutron scattering measurements of intact cells and tissues and detection of interfacial water. J. Am. Chem. Soc. 2004, 126, 4682–4688. [Google Scholar] [CrossRef]
- Natali, F.; Dolce, C.; Peters, J.; Gerelli, Y.; Stelletta, C.; Leduc, G. Water dynamics in neural tissue. J. Phys. Soc. Jpn. 2013, 82, SA017. [Google Scholar] [CrossRef] [Green Version]
- Natali, F.; Gerelli, Y.; Stelletta, C.; Peters, J. Anomalous proton dynamics of water molecules in neural tissue as seen by quasi-elastic neutron scattering. Impact on medical imaging techniques. AIP Conf. Proc. 2013, 1518, 551–557. [Google Scholar] [CrossRef]
- Falourd, X.; Natali, F.; Peters, J.; Foucat, L. Molecular mobility in Medicago truncatula seed during early stage of germination: Neutron scattering and NMR investigations. Chem. Phys. 2014, 428, 181–185. [Google Scholar] [CrossRef]
- Trantham, E.C.; Rorschach, H.E.; Clegg, J.S.; Hazlewood, C.F.; Nicklow, R.M.; Wakabayashi, N. Diffusive properties of water in Artemia cysts as determined from quasi-elastic neutron scattering spectra. Biophys. J. 1984, 45, 927–938. [Google Scholar] [CrossRef] [Green Version]
- Mamontov, E. Microscopic diffusion in hydrated encysted eggs of brine shrimp. Biochim. Biophys. Acta BBA Gen. Subj. 2017, 1861, 2382–2390. [Google Scholar] [CrossRef]
- Lovelock, J.E.; Bishop, M.W.H. Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature 1959, 183, 1394–1395. [Google Scholar] [CrossRef] [PubMed]
- Mamontov, E.; Chu, X. Water-protein dynamic coupling and new opportunities for probing it at low to physiological temperatures in aqueous solutions. Phys. Chem. Chem. Phys. 2012, 14, 11573–11588. [Google Scholar] [CrossRef]
- Lewis, G.N. The biology of heavy water. Science 1934, 79, 151–153. [Google Scholar] [CrossRef]
- Klotz, S.; Strassle, T.; Bove, L.E. Quasi-elastic neutron scattering in the multi-GPa range and its application to liquid water. Appl. Phys. Lett. 2013, 103, 193504. [Google Scholar] [CrossRef] [Green Version]
- Mamontov, E. Microscopic diffusion processes measured in living planarians. Sci. Rep. 2018, 8, 4190. [Google Scholar] [CrossRef]
- Mamontov, E. Non-monotonic temperature dependence of nanoscopic dynamics measured in living housefly larvae. Phys. B Condens. Matter 2019, 566, 23–29. [Google Scholar] [CrossRef]
- Mamontov, E.; Osti, N.C.; Tyagi, M. Temperature dependence of nanoscale dynamic processes measured in living millipedes by high resolution elastic and inelastic neutron scattering. Sci. Rep. 2019, 9, 11646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamontov, E.; Herwig, K.W. A time-of-flight backscattering spectrometer at the Spallation Neutron Source, BASIS. Rev. Sci. Instrum. 2011, 82, 085109. [Google Scholar] [CrossRef] [PubMed]
- Golub, M.; Lehofer, B.; Martinez, N.; Ollivier, J.; Kohlbrecher, J.; Prassl, R.; Peters, J. High hydrostatic pressure specifically affects molecular dynamics and shape of low-density lipoprotein particles. Sci. Rep. 2017, 7, 46034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, A.; Dimeo, R.M.; Gehring, P.M.; Neumann, D.A. The high-flux backscattering spectrometer at the NIST Center for Neutron Research. Rev. Sci. Instrum. 2003, 74, 2759–2777. [Google Scholar] [CrossRef] [Green Version]
- Angilletta, M.J.; Niewiarowski, P.H.; Navas, C.A. The evolution of thermal physiology in ectotherms. J. Therm. Biol. 2002, 27, 249–268. [Google Scholar] [CrossRef]
- Gillooly, J.F.; Brown, J.H.; West, G.B.; Savage, V.M.; Charnov, E.L. Effects of size and temperature on metabolic rate. Science 2001, 293, 2248–2251. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.K.; Mamontov, E.; Anunciado, D.B.; O’Neill, H.; Urban, V.S. Effect of antimicrobial peptide on the dynamics of phosphocholine membrane: Role of cholesterol and physical state of bilayer. Soft Matter 2015, 11, 6755–6767. [Google Scholar] [CrossRef]
- Mamontov, E.; Boone, C.; Frost, M.J.; Herwig, K.W.; Huegle, T.; Lin, J.Y.Y.; McCormick, B.; McHargue, W.; Stoica, A.D.; Torres, P.; et al. A concept of a broadband inverted geometry spectrometer for the Second Target Station at the Spallation Neutron Source. Rev. Sci. Instrum. 2022, 93, 045101. [Google Scholar] [CrossRef]
- Balog, E.; Becker, T.; Oettl, M.; Lechner, R.; Daniel, R.; Finney, J.; Smith, J.C. Direct determination of vibrational density of states change on ligand binding to a protein. Phys. Rev. Lett. 2004, 93, 028103. [Google Scholar] [CrossRef] [Green Version]
- Fitter, J. A measure of conformational entropy change during thermal protein unfolding using neutron spectroscopy. Biophys. J. 2003, 84, 3924–3930. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mamontov, E. Exploring the Limits of Biological Complexity Amenable to Studies by Incoherent Neutron Spectroscopy. Life 2022, 12, 1219. https://doi.org/10.3390/life12081219
Mamontov E. Exploring the Limits of Biological Complexity Amenable to Studies by Incoherent Neutron Spectroscopy. Life. 2022; 12(8):1219. https://doi.org/10.3390/life12081219
Chicago/Turabian StyleMamontov, Eugene. 2022. "Exploring the Limits of Biological Complexity Amenable to Studies by Incoherent Neutron Spectroscopy" Life 12, no. 8: 1219. https://doi.org/10.3390/life12081219
APA StyleMamontov, E. (2022). Exploring the Limits of Biological Complexity Amenable to Studies by Incoherent Neutron Spectroscopy. Life, 12(8), 1219. https://doi.org/10.3390/life12081219