Cultivation of Chlorella sorokiniana IPPAS C-1 in Flat-Panel Photobioreactors: From a Laboratory to a Pilot Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgae Strain and Maintenance Conditions
2.2. Algal Pre-Culture for PBR Inoculation
2.3. Flat-Panel 5 L Horizontal PBR (FPH-5)
2.4. Flat-Panel 70 L Vertical PBR (FPV-70)
2.5. Growth Characteristics
- Conversion coefficient (k) between OD750 and biomass concentration:
- The specific productivity for the batch mode (Psp) was estimated by dry weight (g dw L−1d−1):
- The specific productivity for the semi-continuous mode () was also estimated by dry weight (g dw L−1 d−1):
- The specific growth rate (μ) was estimated by the change in the culture OD (h−1):
- The biomass doubling time (Tdbl) was also calculated from the specific growth rate:
2.6. Statistics
3. Results
3.1. Conversion of Optical Density to Dry Biomass Productivity
3.2. Batch Cultivation Mode
- Simultaneous batch cultivation in two identical PBRs FPH-5 at 30–32 °C under the continuous average irradiation of 500 μmol photons m−2 s−1 and the CO2 concentration in the GAM of 1.5–2% (Figure 4a,b).
- Batch cultivation in PBR FPV-70 under the continuous average irradiation of 143 μmol photons m−2 s−1 at various CO2 concentrations and temperatures (Figure 4c,d).
3.3. Semi-Continuous Cultivation Mode
- Semi-continuous cultivation at 30–32 °C under the continuous average irradiation of 500 μmol photons m−2 s−1 and 1.5–2% CO2 in two identical PBRs FPH-5. From day 3 of the cultivation, the daily draining of 700 mL of the suspension (four drains) and dilution with a nutrient medium (Figure 5a,b) were performed.
- Semi-continuous cultivation in one PBR FPH-5 under the conditions described above. After day 4, 3.6 L of the suspension was withdrawn (three drains), and the PBR was refilled with the fresh nutrient medium. The withdrawal and refilling were repeated every 3 days (Figure 5c).
- Combined mode in PBR FPV-70 consisting of a 6-day batch mode and then a 3-day semi-continuous mode of cultivation with daily draining of 7 L and refilling (dilution) with the fresh nutrient medium (four drains), followed by the draining of 20 L with dilution periods of 4 and 3 days (two drains). The total cultivation time was 16 days (Figure 5d) at 35–37 °C, a continuous average irradiation of 143 μmol photons m−2 s−1, and a 0.5–1% CO2 supply.
3.4. Accumulation of C. sorokiniana Biomass during the Cultivation Cycle: From the Laboratory to the Pilot Scale
4. Discussion
4.1. Characteristics of the Flat-Panel Photobioreactors Tested in This Study
4.2. Batch Cultivation Mode
4.3. Semi-Continuous Cultivation Mode
4.4. Accumulation of C. sorokiniana Biomass during the Cultivation Cycle: From the Laboratory to the Pilot Scale
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
µ | specific growth rate |
g dw | gram of dry weight |
GAM | gas-air mixture |
IPP RAS | Institute of Plants Physiology of Russian Academy of Sciences |
k | conversion coefficient between optical density measured at 750 nm and dry biomass concentration |
Kvent | ventilation coefficient |
LED | light-emitting diode |
LSIC | laboratory system for intensive cultivation |
ρ | biomass concentration |
M0 | starting weight of dry biomass in the PBR after inoculation |
Mdrain | total weight of dry biomass drained from the PBR during the total time of semi-continuous cultivation |
Mtotal | total weight of dry biomass accumulated, harvested, and drained from the PBR during the total time of cultivation |
MPBR | weight of dry biomass in the working volume of the PBR at the moment |
OD750 (or OD750) | optical density at 750 nm |
P’sp | specific productivity for the semi-continuous mode |
PBR | photobioreactor |
PBR FPH | flat-panel horizontal photobioreactor |
PBR FPV | flat-panel vertical photobioreactor |
Pfin | final productivity |
Psp | specific productivity |
Tdbl | biomass doubling time |
ttotal | total time (duration) of the cultivation |
TES | trace element solution |
Vtotal | total volume of accumulated, harvested, and drained culture during the total time of cultivation |
Vi | volume of culture drained from the PBR during a single drain in semi-continuous cultivation |
VPBR | working volume of PBR |
References
- Borowitzka, M.A. Microalgae in medicine and human health: A historical perspective. In Microalgae in Health and Disease Prevention; Levine, I.A., Fleurence, J., Eds.; Academic Press: Cambridge, MA, USA, 2018; Chapter 9; pp. 195–210. [Google Scholar] [CrossRef]
- Larkum, A.W.D.; Ross, I.L.; Kruse, O.; Hankamer, B. Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol. 2012, 30, 198–205. [Google Scholar] [CrossRef]
- Vigani, M.; Parisia, C.; Rodrıguez-Cerezo, E.; Barbosa, M.J.; Sijtsma, L.; Ploeg, M.; Enzing, C. Food and feed products from microalgae: Market opportunities and challenges for the EU. Trends Food Sci. Technol. 2015, 42, 81–92. [Google Scholar] [CrossRef]
- Sinetova, M.A.; Sidorov, R.A.; Starikov, A.Y.; Voronkov, A.S.; Medvedeva, A.S.; Krivova, Z.V.; Pakholkova, M.S.; Bachin, D.V.; Bedbenov, V.S.; Gabrielyan, D.A.; et al. Assessment of the biotechnological potential of cyanobacterial and microalgal strains from IPPAS culture collection. Appl. Biochem. Microbiol. 2020, 56, 794–808. [Google Scholar] [CrossRef]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef]
- Khatoon, N.; Pal, R. Microalgae in biotechnological application: A commercial approach. In Plant Biology and Biotechnology; Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K., Eds.; Springer: New Delhi, India, 2015; pp. 27–47. [Google Scholar] [CrossRef]
- Gerotto, C.; Norici, A.; Giordano, M. Toward enhanced fixation of CO2 in aquatic biomass: Focus on microalgae. Front. Energy Res. 2020, 8, 213. [Google Scholar] [CrossRef]
- Agostini, A.; Rocca, S.; Giuntoli, J.; Marelli, L. Biofuels from Algae: Technology Options, Energy Balance and GHG Emissions: Insights from a Literature Review; Joint Research Centre: Ispra, Italy; Institute for Energy and Transport: Petten, The Netherlands; Ispra, Italy; Publications Office: Luxembourg, 2017; Available online: https://data.europa.eu/doi/10.2790/125847 (accessed on 27 June 2022).
- Masojídek, J.; Ranglová, K.; Lakatos, G.E.; Benavides, A.M.S.; Torzillo, G. Variables governing photosynthesis and growth in microalgae mass cultures. Processes 2021, 9, 820. [Google Scholar] [CrossRef]
- Masojídek, J.; Torzillo, G. Mass cultivation of freshwater microalgae. Ref. Modul. Earth Syst. Environ. Sci. 2014, 2, 1–13. [Google Scholar] [CrossRef]
- Pulz, O.; Scheibenbogen, K. Photobioreactors: Design and performance with respect to energy input. Adv. Biochem. Eng. Biotechnol. 1998, 59, 124–152. [Google Scholar] [CrossRef]
- Chang, J.-S.; Show, P.-L.; Ling, T.-C.; Chen, C.-Y.; Ho, S.-H.; Tan, C.-H.; Nagarajan, D.; Phong, W.-N. Photobioreactors. In Current Developments in Biotechnology and Bioengineering; Larroche, C., Sanromán, M.A., Du, G., Pandey, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Chapter 11; pp. 313–352. [Google Scholar] [CrossRef]
- Huang, Q.; Jiang, F.; Wang, L.; Yang, C. Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering 2017, 3, 318–329. [Google Scholar] [CrossRef]
- Singh, R.N.; Sharma, S. Development of suitable photobioreactor for algae production—A review. Renew. Sustain. Energy Rev. 2012, 16, 2347–2353. [Google Scholar] [CrossRef]
- Sirohi, R.; Pandey, F.K.; Ranganathan, P.; Singh, S.; Udayan, F.; Awasthi, M.K.; Hoang, A.T.; Chilakamarry, C.R.; Kim, S.H.; Sim, S.J. Design and applications of photobioreactors—A review. Biores. Technol. 2022, 349, 126858. [Google Scholar] [CrossRef]
- Hase, E.; Morimura, Y.; Tamiya, H. Some data on the growth physiology of Chlorella studied by the technique of synchronous culture. Arch. Biochem. Biophys. 1957, 69, 149–165. [Google Scholar] [CrossRef]
- Wolf, J.; Stephens, E.; Steinbush, S.; Yarnold, J.; Ross, I.L.; Steinweg, C.; Doebbe, A.; Krolovitsch, C.; Müller, S.; Jakob, G.; et al. Multifactorial comparison of photobireactor geometries in parallel microalgae cultivation. Algal Res. 2016, 15, 187–201. [Google Scholar] [CrossRef]
- Chiu, S.Y.; Tsai, M.T.; Kao, C.Y.; Ong, S.C.L. The air-lift photobioreactors with flow patterning for high-density cultures of microalgae and carbon dioxide removal. Eng. Life Sci. 2009, 9, 254–260. [Google Scholar] [CrossRef]
- Cheng, W.Z.; Zmora, O.; Kopel, R.; Richmond, A. An industrial-size flat panel glass reactor for mass production of Nannochloropsis sp. (Eustigmatophyceae). Aquaculture 2001, 195, 35–49. [Google Scholar] [CrossRef]
- Myers, J.A.; Curtis, B.S.; Curtis, W.R. Improving accuracy of cell and chromophore concentration measurements using optical density. BMC Biophys. 2013, 6, 1–16. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, B.; Zhu, X.; Chang, H.; Ou, S.; Wang, H. Role of bioreactors in microbial biomass and energy conversion. In Bioreactors for Microbial Biomass and Energy Conversion; Liao, Q., Chang, J.S., Herrmann, C., Xia, A., Eds.; Springer: Singapore, 2018; pp. 39–78. [Google Scholar] [CrossRef]
- Sergejevová, M.; Malapascua, J.R.; Kopecký, J.; Masojídek, J. Photobioreactors with internal illumination. In Algal Biorefineries; Prokop, A., Bajpai, R., Zappi, M., Eds.; Springer: Cham, Switzerland, 2015; pp. 213–236. [Google Scholar] [CrossRef]
- Ranglová, K.; Lakatos, G.E.; Manoel, J.A.C.; Grivalský, T.; Estrella, F.S.; Fernández, F.G.A.; Molnár, Z.; Ördög, V.; Masojídek, J. Growth, biostimulant and biopesticide activity of the MACC-1 Chlorella strain cultivated outdoors in inorganic medium and wastewater. Algal Res. 2021, 53, 102136. [Google Scholar] [CrossRef]
- Sukačová, K.; Lošák, P.; Brummer, V.; Máša, V.; Vícha, D.; Zavřel, T. Perspective design of algae photobioreactor for greenhouses—A comparative study. Energies 2021, 14, 1338. [Google Scholar] [CrossRef]
- De Souza, A.P.; Gaspar, M.; Da Silva, E.A.; Ulian, E.C.; Waclawovsky, A.J.; Nishiyama, M.Y.; Dos Santos, R.V.; Teixeira, M.M.; Souza, G.M.; Buckeridge, M.S. Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. Plant Cell Environ. 2008, 31, 1116–1127. [Google Scholar] [CrossRef]
- Assunção, J.; Batista, A.P.; Manoel, J.; da Silva, T.L.; Marques, P.; Reis, A.; Gouveia, L. CO2 utilization in the production of biomass and biocompounds by three different microalgae. Eng. Life Sci. 2017, 17, 1126–1135. [Google Scholar] [CrossRef]
- Lam, M.R.; Lee, K.T. Effect of carbon source towards the growth of Chlorella vulgaris for CO2 bio-mitigation and biodiesel production. Intl. J. Greenh. Gas Control 2013, 14, 169–176. [Google Scholar] [CrossRef]
- Cazzaniga, S.; Dall’Osto, L.; Szaub, J.; Scibilia, L.; Ballottari, M.; Purton, S.; Bassi, R. Domestication of the green alga Chlorella sorokiniana: Reduction of antenna size improves light-use efficiency in a photobioreactor. Biotechnol. Biofuels 2014, 7, 157. [Google Scholar] [CrossRef]
- Shin, W.S.; Lee, B.; Jeong, B.; Chng, Y.K.; Kwon, J.H. Truncated light-harvesting chlorophyll antenna size in Chlorella vulgaris improves biomass productivity. J. Appl. Phycol. 2016, 28, 3193–3202. [Google Scholar] [CrossRef]
- Guardini, Z.; Dall’Osto, L.; Barera, S.; Jaberi, M.; Cazzaniga, S.; Vitulo, N.; Bassi, R. High carotenoid mutants of Chlorella vulgaris show enhanced biomass yield under high irradiance. Plants 2021, 10, 911. [Google Scholar] [CrossRef]
- Negi, S.; Perrine, Z.; Friedland, N.; Kumar, A.; Tokutsu, R.; Minagawa, J.; Berg, H.; Barry, A.N.; Govindjee, G.; Sayre, R. Light regulation of light-harvesting antenna size substantially enhances photosynthetic efficiency and biomass yield in green algae. Plant J. 2020, 103, 584–603. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, N.; Jaiswal, K.K.; Vlaskin, M.S.; Nanda, M.; Tripathi, M.K.; Kumar, S. Microalgae with a truncated light-harvesting antenna to maximize photosynthetic efficiency and biomass productivity: Recent advances and current challenges. Process Biochem. 2021, 104, 83–91. [Google Scholar] [CrossRef]
- de Mooij, T.; Janssen, M.; Cerezo-Chinarro, O.; Mussgnug, J.H.; Kruse, O.; Ballottari, M.; Bassi, R.; Bujaldon, S.; Wollman, F.A.; Wijfels, R.H. Antenna size reduction as a strategy to increase biomass productivity: A great potential not yet realized. J. Appl. Phycol. 2015, 27, 1063–1077. [Google Scholar] [CrossRef]
- Caldwell, G.S.; In-na, P.; Hart, R.; Sharp, E.; Stefanova, A.; Pickersgill, M.; Walker, M.; Unthank, M.; Perry, J.; Lee, J.G.M. Immobilising microalgae and cyanobacteria as biocomposites: New opportunities to intensify algae biotechnology and bioprocessing. Energies 2021, 14, 2566. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabrielyan, D.A.; Sinetova, M.A.; Gabel, B.V.; Gabrielian, A.K.; Markelova, A.G.; Rodionova, M.V.; Bedbenov, V.S.; Shcherbakova, N.V.; Los, D.A. Cultivation of Chlorella sorokiniana IPPAS C-1 in Flat-Panel Photobioreactors: From a Laboratory to a Pilot Scale. Life 2022, 12, 1309. https://doi.org/10.3390/life12091309
Gabrielyan DA, Sinetova MA, Gabel BV, Gabrielian AK, Markelova AG, Rodionova MV, Bedbenov VS, Shcherbakova NV, Los DA. Cultivation of Chlorella sorokiniana IPPAS C-1 in Flat-Panel Photobioreactors: From a Laboratory to a Pilot Scale. Life. 2022; 12(9):1309. https://doi.org/10.3390/life12091309
Chicago/Turabian StyleGabrielyan, David A., Maria A. Sinetova, Boris V. Gabel, Alexander K. Gabrielian, Alexandra G. Markelova, Margarita V. Rodionova, Vladimir S. Bedbenov, Natalia V. Shcherbakova, and Dmitry A. Los. 2022. "Cultivation of Chlorella sorokiniana IPPAS C-1 in Flat-Panel Photobioreactors: From a Laboratory to a Pilot Scale" Life 12, no. 9: 1309. https://doi.org/10.3390/life12091309
APA StyleGabrielyan, D. A., Sinetova, M. A., Gabel, B. V., Gabrielian, A. K., Markelova, A. G., Rodionova, M. V., Bedbenov, V. S., Shcherbakova, N. V., & Los, D. A. (2022). Cultivation of Chlorella sorokiniana IPPAS C-1 in Flat-Panel Photobioreactors: From a Laboratory to a Pilot Scale. Life, 12(9), 1309. https://doi.org/10.3390/life12091309