Optimization of CO2 Supply for the Intensive Cultivation of Chlorella sorokiniana IPPAS C-1 in the Laboratory and Pilot-Scale Flat-Panel Photobioreactors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgal Strain and Maintenance Conditions
2.2. Algal Pre-Culture for PBR Inoculation
2.3. Flat-Panel PBRs
2.3.1. Principal Scheme of Experiments
2.3.2. Design of FP-PBR with a Working Volume of 5 L (FP-5)
2.3.3. Design of FP-PBR with Working Volume of 18 L (FP-18)
2.3.4. Main Parameters of the PBRs
2.3.5. Gas-Air Mixture Supply
2.3.6. Temperature Control System
2.4. Growth Characteristics
2.5. Biochemical Composition
2.6. Statistics
3. Results
3.1. Selection of CO2 Concentration in a GAM
3.2. Optimization of RGAM and Concentartion of CO2
3.3. Scaling-Up the Optimal Conditions
3.4. Effect of CO2 Concentartion and Aeration Rate on Biomass Composition
4. Discussion
4.1. GAM Supply Conditions
4.2. Enhancing Productivity and Carbon Dioxide Utilization
4.3. Scaling-Up the Optimal Conditions
4.4. The Effect of a GAM Supply on Protein and Carbohydrate Composition of the Biomass
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
µ | specific growth rate |
CFR | carbon dioxide fixation rate |
CUE | cardon dioxide utilization efficiency |
g dw | gram of dry weight |
GAM | gas-air mixture |
IPP RAS | Institute of Plants Physiology of Russian Academy of Sciences |
LED | light emitting diode |
ρ | dry biomass concentration |
ρ0 | starting dry biomass concentration |
ρfin | final dry biomass concentration |
MCO2 | mass of total supplied CO2 |
M0 | starting weigh of dry biomass in PBR after inoculation |
MPBR | weight of dry biomass in the working volume of PBR at the moment |
PBR | photobioreactor |
PBR FP | flat-panel photobioreactor |
Psp | specific productivity |
RGAM | GAM aeration rate |
RCO2 | CO2 aeration rate |
Tdbl | biomass doubling time |
VPBR | working volume of PBR |
vvm | volume of sparged gas per unit volume of growth medium per minute |
References
- Hunt, A.J.; Sin, E.H.K.; Marriott, R.; Clark, J.S. Generation, capture, and utilization of industrial carbon dioxide. ChemSusChem 2010, 3, 306–322. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.; Srivastava, A. Carbon dioxide sequestration and its enhanced utilization by photoautotroph microalgae. Environ. Dev. 2018, 27, 95–106. [Google Scholar] [CrossRef]
- Khatoon, N.; Pal, R. Microalgae in biotechnological application: A commercial approach. In Plant Biology and Biotechnology; Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K., Eds.; Springer: New Delhi, India, 2015; pp. 27–47. [Google Scholar] [CrossRef]
- Gerotto, C.; Norici, A.; Giordano, M. Toward enhanced fixation of CO2 in aquatic biomass: Focus on microalgae. Front. Energy Res. 2020, 8, 213. [Google Scholar] [CrossRef]
- Larkum, A.W.D.; Ross, I.L.; Kruse, O.; Hankamer, B. Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol. 2012, 30, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Su, Y. Process effect of microalgal-carbon dioxide fixation and biomass production: A review. Renew. Sustain. Energy Rev. 2014, 31, 121–132. [Google Scholar] [CrossRef]
- Zheng, Q.; Xu, X.; Martin, G.J.O.; Kentish, S.E. Critical review of strategies for CO2 delivery to large-scale microalgae cultures. Chin. J. Chem. Eng. 2018, 26, 2219–2228. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, D.K.; Lee, J.P.; Park, S.C.; Koh, J.H.; Cho, H.S.; Kim, S.W. Effects of SO2 and NO on growth of Chlorella sp. KR-1. Bioresour. Technol. 2002, 82, 1–4. [Google Scholar] [CrossRef]
- Degen, J.; Uebele, A.; Retze, A.; Schmid-Staiger, U.; Trosch, W. A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. J. Biotechnol. 2001, 92, 89–94. [Google Scholar] [CrossRef]
- Sirohi, R.; Pandey, F.K.; Ranganathan, P.; Singh, S.; Udayan, F.; Awasthi, M.K.; Hoang, A.T.; Chilakamarry, C.R.; Kim, S.H.; Sim, S.J. Design and applications of photobioreactors a review. Bioresour. Technol. 2022, 349, 126858. [Google Scholar] [CrossRef]
- Benner, P.; Meier, L.; Pfeffer, A.; Krüger, K.; Vargas, J.E.O.; Weuster-Botz, D. Lab-scale photobioreactor systems: Principles, applications, and scalability. Bioprocess Biosyst. Eng. 2022, 45, 791–813. [Google Scholar] [CrossRef]
- Sierra, E.; Acién, F.G.; Fernández, J.M.; García, J.L.; González, C.; Molina, E. Characterization of a flat plate photobioreactor for the production of microalgae. Chem. Eng. J. 2008, 138, 136–147. [Google Scholar] [CrossRef]
- Zheng, H.; Gao, Z.; Yin, F.; Ji, X.J.; Huang, H. Effect of CO2 supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues. Biores. Technol. 2012, 126, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Kurano, N.; Miyachi, S. Optimized aeration by carbon dioxide gas for microalgal production and mass transfer characterization in a vertical flat-plate photobioreactor. Bioprocess Biosyst. Eng. 2002, 25, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Yao, L.; Huang, Q. Aeration and mass transfer optimization in a rectangular airlift loop photobioreactor for the production of microalgae. Bioresour. Technol. 2015, 190, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Chiu, S.Y.; Tsai, M.T.; Kao, C.Y.; Ong, S.C.; Lin, C.S. The air-lift photobioreactors with flow patterning for high-density cultures of microalgae and carbon dioxide removal. Eng. Life Sci. 2009, 9, 254–260. [Google Scholar] [CrossRef]
- Do, C.V.T.; Dinh, C.T.; Dang, M.T.; Tran, T.D.; Le, T.G. A novel flat-panel photobioreactor for simultaneous production of lutein and carbon sequestration by Chlorella sorokiniana TH01. Bioresour. Technol. 2022, 345, 126552. [Google Scholar] [CrossRef]
- Chiu, S.Y.; Kao, C.Y.; Chen, C.H.; Kuan, T.C.; Ong, S.C.; Lin, C.S. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour. Technol. 2008, 99, 3389–3396. [Google Scholar] [CrossRef]
- Ryu, H.J.; Oh, K.K.; Kim, Y.S. Optimization of the influential factors for the improvement of CO2 utilization efficiency and CO2 mass transfer rate. J. Ind. Eng. Chem. 2009, 15, 471–475. [Google Scholar] [CrossRef]
- Sinetova, M.A.; Sidorov, R.A.; Starikov, A.Y.; Voronkov, A.S.; Medvedeva, A.S.; Krivova, Z.V.; Pakholkova, M.S.; Bachin, D.V.; Bedbenov, V.S.; Gabrielyan, D.A.; et al. Assessment of the biotechnological potential of cyanobacterial and microalgal strains from IPPAS culture collection. Appl. Biochem. Microbiol. 2020, 56, 794–808. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, B.; Zhu, X.; Chang, H.; Ou, S.; Wang, H. Role of Bioreactors in Microbial Biomass and Energy Conversion. In Bioreactors for Microbial Biomass and Energy Conversion; Liao, Q., Chang, J.S., Herrmann, C., Xia, A., Eds.; Springer: Singapore, 2018; pp. 39–78. [Google Scholar] [CrossRef]
- Masojídek, J.; Ranglová, K.; Lakatos, G.E.; Silva Benavides, A.M.; Torzillo, G. Variables Governing Photosynthesis and Growth in Microalgae Mass Cultures. Processes 2021, 9, 820. [Google Scholar] [CrossRef]
- Hase, E.; Morimura, Y.; Tamiya, H. Some data on the growth physiology of Chlorella studied by the technique of synchronous culture. Arch. Biochem. Biophys. 1957, 69, 149–165. [Google Scholar] [CrossRef]
- Gabrielyan, D.A.; Sinetova, M.A.; Gabel, B.V.; Gabrielian, A.K.; Markelova, A.G.; Rodionova, M.V.; Bedbenov, V.S.; Shcherbakova, N.V.; Los, D.A. Cultivation of Chlorella sorokiniana IPPAS C-1 in flat-panel photobioreactors: From a laboratory to a pilot scale. Life 2022, 12, 1309. [Google Scholar] [CrossRef]
- Tsoglin, L.N.; Gabel, B.V. Potential productivity of microalgae in industrial photobioreactors. Russ. J. Plant Physiol. 2000, 47, 668–673. [Google Scholar]
- Baránková, B.; Lazár, D.; Nauš, J.; Solovchenko, A.; Gorelova, O.; Baulina, O.; Huber, G.; Nedbal, L. Light absorption and scattering by high light-tolerant, fast-growing Chlorella vulgaris IPPAS C-1 cells. Algal Res. 2020, 49, 101881. [Google Scholar] [CrossRef]
- Schreiber, C.; Schiedung, H.; Harrison, L.; Briese, C.; Ackermann, B.; Kant, J.; Schrey, S.D.; Hofmann, D.; Singh, D.; Ebenhöh, O.; et al. Evaluating potential of green alga Chlorella vulgaris to accumulate phosphorus and to fertilize nutrient-poor soil substrates for crop plants. J. Appl. Phycol. 2018, 30, 2827–2836. [Google Scholar] [CrossRef]
- Gifuni, I.; Pollio, A.; Safi, C.; Marzocchella, A.; Olivieri, G. Current bottlenecks and challenges of the microalgal biorefinery. Trends Biotechnol. 2019, 37, 242–252. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, S.; Ding, Y.D.; Liao, Q.; Huang, Y.; Zhu, X. Optimizing the gas distributor based on CO2 bubble dynamic behaviors to improve microalgal biomass production in an air-lift photo-bioreactor. Bioresour. Technol. 2017, 233, 84–91. [Google Scholar] [CrossRef]
- Xu, J.; Cheng, J.; Lai, X.; Zhang, X.; Yang, W.; Park, J.Y.; Kim, H.; Xu, L. Enhancing microalgal biomass productivity with an optimized flow field generated by double paddlewheels in a flat plate photoreactor with CO2 aeration based on numerical simulation. Bioresour. Technol. 2020, 314, 123762. [Google Scholar] [CrossRef]
- Guler, B.A.; Deniz, I.; Demirel, Z.; Oncel, S.S.; Imamoglu, E. Comparison of different photobioreactor configurations and empirical computational fluid dynamics simulation for fucoxanthin production. Algal Res. 2019, 37, 195–204. [Google Scholar] [CrossRef]
- Petera, K.; Papácek, Š.; González, C.I.; Fernández-Sevilla, J.M.; Fernández, F.G.A. Advanced computational fluid dynamics study of the dissolved oxygen concentration within a thin-layer cascade reactor for microalgae cultivation. Energies 2021, 14, 7284. [Google Scholar] [CrossRef]
- Yang, Z.; del Ninno, M.; Wen, Z.; Hu, H. An experimental investigation on the multiphase flows and turbulent mixing in a flat-panel photobioreactor for algae cultivation. J. Appl. Phycol. 2014, 26, 2097–2107. [Google Scholar] [CrossRef]
- Sinetova, M.A.; Červený, J.; Zavřel, T.; Nedbal, L. On the dynamics and constraints of batch culture growth of the cyanobacterium Cyanothece sp. ATCC 51142. J. Biotechnol. 2012, 162, 148–155. [Google Scholar] [CrossRef] [PubMed]
PBR | Light Path, mm | Working Volume, L | Suspension Level, mm |
FP-5 | 40 | 5 | 370 |
FP-18 | 40 | 18 | 700 |
PBR | Average Irradiation Ee, μmol Photons m−2 s−1 | The Ratio of the Illuminated Surface to the Volume SA/V, m2 m−3 | Specific Power Consumption * Wsp, W L−1 |
FP-5 | 900 | 50.3 | 23 |
FP-18 | 900 | 46.7 | 22 |
Variant | Starch, % of d.w. * | Protein, % of d.w. * | Final Biomass Concentraion, g dw L−1 |
---|---|---|---|
FP-5 RGAM = 0.1 vvm GAM CO2 concentration 7.9% RCO2 = 0.008 vvm | 11 ± 2.7 | 41 ± 4.3% | 2.7 |
FP-18 RGAM = 0.43 vvm GAM CO2 concentration 1.02% RCO2 = 0.004 vvm | 14 ± 1.9 | 45 ± 2.3 | 3.5 |
FP-5 RGAM = 0.2 vvm GAM CO2 concentration 2.04% RCO2 = 0.004 vvm | 20 ± 0.6 | 38 ± 8.6 | 4.0 |
FP-5 RGAM = 0.2 vvm GAM CO2 concentration 4% RCO2 = 0.008 vvm | 18 ± 1.7 | 38 ± 7.8 | 4.3 |
FP-5 RGAM = 0.8 vvm GAM CO2 concentration 0.98% RCO2 = 0.008 vvm | 54 ± 11.7 | 19 ± 2.9 | 4.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabrielyan, D.A.; Gabel, B.V.; Sinetova, M.A.; Gabrielian, A.K.; Markelova, A.G.; Shcherbakova, N.V.; Los, D.A. Optimization of CO2 Supply for the Intensive Cultivation of Chlorella sorokiniana IPPAS C-1 in the Laboratory and Pilot-Scale Flat-Panel Photobioreactors. Life 2022, 12, 1469. https://doi.org/10.3390/life12101469
Gabrielyan DA, Gabel BV, Sinetova MA, Gabrielian AK, Markelova AG, Shcherbakova NV, Los DA. Optimization of CO2 Supply for the Intensive Cultivation of Chlorella sorokiniana IPPAS C-1 in the Laboratory and Pilot-Scale Flat-Panel Photobioreactors. Life. 2022; 12(10):1469. https://doi.org/10.3390/life12101469
Chicago/Turabian StyleGabrielyan, David A., Boris V. Gabel, Maria A. Sinetova, Alexander K. Gabrielian, Alexandra G. Markelova, Natalia V. Shcherbakova, and Dmitry A. Los. 2022. "Optimization of CO2 Supply for the Intensive Cultivation of Chlorella sorokiniana IPPAS C-1 in the Laboratory and Pilot-Scale Flat-Panel Photobioreactors" Life 12, no. 10: 1469. https://doi.org/10.3390/life12101469
APA StyleGabrielyan, D. A., Gabel, B. V., Sinetova, M. A., Gabrielian, A. K., Markelova, A. G., Shcherbakova, N. V., & Los, D. A. (2022). Optimization of CO2 Supply for the Intensive Cultivation of Chlorella sorokiniana IPPAS C-1 in the Laboratory and Pilot-Scale Flat-Panel Photobioreactors. Life, 12(10), 1469. https://doi.org/10.3390/life12101469