Application of High-Flow Nasal Cannula in COVID-19: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. HFNC: Past Evidence and Experience
4. Current Evidence on the Use of HFNC in COVID-19
4.1. Experience of HFNC in Patients with COVID-19
4.2. Wait-and-See Strategy with HFNC vs. Intubation at the Beginning
4.3. The Early vs. Late Intubation Mortality Debate
4.4. Value of the ROX Index for Monitoring Patients Treated with HFNC
4.5. Comparison of Various Types of Noninvasive Respiratory Support
4.6. HFNC Combined with the Awake Prone Position
4.7. Aerosol Dispersion and Aerosol Generation Risk of HFNC
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. WHO Coronavirus (COVID-19) Dashboard; WHO: Geneva, Switzerland, 2021; Available online: https://covid19.who.int (accessed on 27 July 2022).
- Ylikoski, J.; Lehtimäki, J.; Pääkkönen, R.; Mäkitie, A. Prevention and Treatment of Life-Threatening COVID-19 May Be Possible with Oxygen Treatment. Life 2022, 12, 754. [Google Scholar] [CrossRef] [PubMed]
- Pelosi, P.; Tonelli, R.; Torregiani, C.; Baratella, E.; Confalonieri, M.; Battaglini, D.; Marchioni, A.; Confalonieri, P.; Clini, E.; Salton, F.; et al. Different Methods to Improve the Monitoring of Noninvasive Respiratory Support of Patients with Severe Pneumonia/ARDS Due to COVID-19: An Update. J. Clin. Med. 2022, 11, 1704. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; Shang, Y.; et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef]
- Ranney, M.L.; Griffeth, V.; Jha, A.K. Critical Supply Shortages-The Need for Ventilators and Personal Protective Equipment during the Covid-19 Pandemic. N. Engl. J. Med. 2020, 382, e41. [Google Scholar] [CrossRef] [PubMed]
- Hua, J.; Qian, C.; Luo, Z.; Li, Q.; Wang, F. Invasive mechanical ventilation in COVID-19 patient management: The experience with 469 patients in Wuhan. Crit. Care 2020, 24, 348. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; The Northwell COVID-19 Research Consortium. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized with COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Wu, W.; Li, S.; Hu, Y.; Hu, M.; Li, J.; Yang, Y.; Huang, T.; Zheng, K.; Wang, Y.; et al. Clinical characteristics and outcomes of critically ill patients with novel coronavirus infectious disease (COVID-19) in China: A retrospective multicenter study. Intensiv. Care Med. 2020, 46, 1863–1872. [Google Scholar] [CrossRef] [PubMed]
- Blonz, G.; Kouatchet, A.; Chudeau, N.; Pontis, E.; Lorber, J.; Lemeur, A.; Planche, L.; Lascarrou, J.-B.; Colin, G. Epidemiology and microbiology of ventilator-associated pneumonia in COVID-19 patients: A multicenter retrospective study in 188 patients in an un-inundated French region. Crit. Care 2021, 25, 72. [Google Scholar] [CrossRef]
- Papazian, L.; Klompas, M.; Luyt, C.-E. Ventilator-associated pneumonia in adults: A narrative review. Intensiv. Care Med. 2020, 46, 888–906. [Google Scholar] [CrossRef]
- Roca, O.; Riera, J.; Torres, F.; Masclans, J.R. High-flow oxygen therapy in acute respiratory failure. Respir. Care 2010, 55, 408–413. [Google Scholar]
- Frat, J.-P.; Thille, A.W.; Mercat, A.; Girault, C.; Ragot, S.; Perbet, S.; Prat, G.; Boulain, T.; Morawiec, E.; Cottereau, A.; et al. High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure. N. Engl. J. Med. 2015, 372, 2185–2196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández, G.; Vaquero, C.; Colinas, L.; Cuena, R.; González, P.; Canabal, A.; Sanchez, S.; Rodriguez, M.L.; Villasclaras, A.; Fernández, R. Effect of Postextubation High-Flow Nasal Cannula vs Noninvasive Ventilation on Reintubation and Postextubation Respiratory Failure in High-Risk Patients: A Randomized Clinical Trial. JAMA 2016, 316, 1565–1574. [Google Scholar] [CrossRef] [PubMed]
- Doshi, P.; Whittle, J.S.; Bublewicz, M.; Kearney, J.; Ashe, T.; Graham, R.; Salazar, S.; Ellis, T.W.; Maynard, D.; Dennis, R.; et al. High-Velocity Nasal Insufflation in the Treatment of Respiratory Failure: A Randomized Clinical Trial. Ann. Emerg. Med. 2018, 72, 73–83.e5. [Google Scholar] [CrossRef]
- Rochwerg, B.; Granton, D.; Wang, D.X.; Helviz, Y.; Einav, S.; Frat, J.P.; Dessap, A.M.; Schreiber, A.; Azoulay, E.; Mercat, A.; et al. High flow nasal cannula compared with conventional oxygen therapy for acute hypoxemic respiratory failure: A systematic review and meta-analysis. Intensive Care Med. 2019, 45, 563–572. [Google Scholar] [CrossRef]
- Calligaro, G.L.; Lalla, U.; Audley, G.; Gina, P.; Miller, M.G.; Mendelson, M.; Dlamini, S.; Wasserman, S.; Meintjes, G.; Peter, J.; et al. The utility of high-flow nasal oxygen for severe COVID-19 pneumonia in a resource-constrained setting: A multi-centre prospective observational study. EClinicalMedicine 2020, 28, 100570. [Google Scholar] [CrossRef]
- Panadero, C.; Abad-Fernández, A.; Rio-Ramírez, M.T.; Gutiérrez, C.M.A.; Calderón-Alcalá, M.; López-Riolobos, C.; Matesanz-López, C.; Garcia-Prieto, F.; Diaz-Garcia, J.M.; Raboso-Moreno, B.; et al. High-flow nasal cannula for Acute Respiratory Distress Syndrome (ARDS) due to COVID-19. Multidiscip. Respir. Med. 2020, 15, 693. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhao, W.; Li, J.; Shu, W.; Duan, J. The experience of high-flow nasal cannula in hospitalized patients with 2019 novel coronavirus-infected pneumonia in two hospitals of Chongqing, China. Ann. Intensive Care 2020, 10, 37. [Google Scholar] [CrossRef]
- Grieco, D.L.; Menga, L.S.; Eleuteri, D.; Antonelli, M. Patient self-inflicted lung injury: Implications for acute hypoxemic respiratory failure and ARDS patients on non-invasive support. Minerva Anestesiol. 2019, 85, 1014–1023. [Google Scholar] [CrossRef]
- Mellado-Artigas, R.; Ferreyro, B.L.; Angriman, F.; Hernández-Sanz, M.; Arruti, E.; Torres, A.; Villar, J.; Brochard, L.; Ferrando, C. High-flow nasal oxygen in patients with COVID-19-associated acute respiratory failure. Crit. Care 2021, 25, 58. [Google Scholar] [CrossRef]
- Kangelaris, K.N.; Ware, L.B.; Wang, C.Y.; Janz, D.R.; Hanjing, Z.; Matthay, M.A.; Calfee, C.S. Timing of Intubation and Clinical Outcomes in Adults With Acute Respiratory Distress Syndrome. Crit. Care Med. 2016, 44, 120–129. [Google Scholar] [CrossRef]
- Hyman, J.B.; Leibner, E.S.; Tandon, P.; Egorova, N.N.; Bassily-Marcus, A.; Kohli-Seth, R.; Arvind, V.; Chang, H.L.; Lin, H.-M.; Levin, M.A. Timing of Intubation and In-Hospital Mortality in Patients With Coronavirus Disease 2019. Crit. Care Explor. 2020, 2, e0254. [Google Scholar] [CrossRef] [PubMed]
- Papoutsi, E.; Giannakoulis, V.G.; Xourgia, E.; Routsi, C.; Kotanidou, A.; Siempos, I.I. Effect of timing of intubation on clinical outcomes of critically ill patients with COVID-19: A systematic review and meta-analysis of non-randomized cohort studies. Crit. Care 2021, 25, 121. [Google Scholar] [CrossRef] [PubMed]
- Baek, A.-R.; Seong, G.M.; Lee, S.-I.; Kim, W.-Y.; Na, Y.S.; Kim, J.H.; Lee, B.Y.; Baek, M.S. Late Failure of High-Flow Nasal Cannula May Be Associated with High Mortality in COVID-19 Patients: A Multicenter Retrospective Study in the Republic of Korea. J. Pers. Med. 2021, 11, 989. [Google Scholar] [CrossRef] [PubMed]
- Chandel, A.; Patolia, S.; Brown, A.W.; Collins, A.C.; Sahjwani, D.; Khangoora, V.; Cameron, P.C.; Desai, M.; Kasarabada, A.; Kilcullen, J.K.; et al. High-Flow Nasal Cannula Therapy in COVID-19: Using the ROX Index to Predict Success. Respir. Care 2021, 66, 909–919. [Google Scholar] [CrossRef] [PubMed]
- Roca, O.; Messika, J.; Caralt, B.; García-de-Acilu, M.; Sztrymf, B.; Ricard, J.D.; & Masclans, J.R. Predicting success of high-flow nasal cannula in pneumonia patients with hypoxemic respiratory failure: The utility of the ROX index. J. Crit. Care 2016, 35, 200–205. [Google Scholar] [CrossRef]
- Hu, M.; Zhou, Q.; Zheng, R.; Li, X.; Ling, J.; Chen, Y.; Jia, J.; Xie, C. Application of high-flow nasal cannula in hypoxemic patients with COVID-19: A retrospective cohort study. BMC Pulm. Med. 2020, 20, 324. [Google Scholar] [CrossRef]
- Vega, M.L.; Dongilli, R.; Olaizola, G.; Colaianni, N.; Sayat, M.C.; Pisani, L.; Romagnoli, M.; Spoladore, G.; Prediletto, I.; Montiel, G.; et al. COVID-19 Pneumonia and ROX index: Time to set a new threshold for patients admitted outside the ICU. Pulmonology 2022, 28, 13–17. [Google Scholar] [CrossRef]
- Ferrer, S.; Sancho, J.; Bocigas, I.; Bures, E.; Mora, H.; Monclou, E.; Mulet, A.; Quezada, A.; Royo, P.; Signes-Costa, J. ROX index as predictor of high flow nasal cannula therapy success in acute respiratory failure due to SARS-CoV-2. Respir. Med. 2021, 189, 106638. [Google Scholar] [CrossRef]
- Prakash, J.; Bhattacharya, P.K.; Yadav, A.K.; Kumar, A.; Tudu, L.C.; Prasad, K. ROX index as a good predictor of high flow nasal cannula failure in COVID-19 patients with acute hypoxemic respiratory failure: A systematic review and meta-analysis. J. Crit. Care 2021, 66, 102–108. [Google Scholar] [CrossRef]
- Demoule, A.; Baron, A.V.; Darmon, M.; Beurton, A.; Géri, G.; Voiriot, G.; Dupont, T.; Zafrani, L.; Girodias, L.; Labbé, V.; et al. High-Flow Nasal Cannula in Critically III Patients with Severe COVID-19. Am. J. Respir. Crit. Care Med. 2020, 202, 1039–1042. [Google Scholar] [CrossRef]
- Hacquin, A.; Perret, M.; Manckoundia, P.; Bonniaud, P.; Beltramo, G.; Georges, M.; Putot, A. High-Flow Nasal Cannula Oxygenation in Older Patients with SARS-CoV-2-Related Acute Respiratory Failure. J. Clin. Med. 2021, 10, 3515. [Google Scholar] [CrossRef] [PubMed]
- Teng, X.B.; Shen, Y.; Han, M.F.; Yang, G.; Zha, L.; Shi, J.F. The value of high-flow nasal cannula oxygen therapy in treating novel coronavirus pneumonia. Eur. J. Clin. Invest. 2021, 51, e13435. [Google Scholar] [CrossRef] [PubMed]
- Ospina-Tascon, G.A.; Calderón-Tapia, L.E.; Garcia, A.F.; Zarama, V.; Gomez-Alvarez, F.; Alvarez-Saa, T.; Pardo-Otálvaro, P.; Bautista-Rincón, D.F.; Vargas, M.P.; Aldana-Diaz, J.L.; et al. Effect of High-Flow Oxygen Therapy vs Conventional Oxygen Therapy on Invasive Mechanical Ventilation and Clinical Recovery in Patients With Severe COVID-19: A Randomized Clinical Trial. JAMA 2021, 326, 2161–2171. [Google Scholar] [CrossRef] [PubMed]
- Wendel-Garcia, P.D.; Mas, A.; González-Isern, C.; Ferrer, R.; Máñez, R.; Masclans, J.; Sandoval, E.; Vera, P.; Trenado, J.; Fernández, R.; et al. Non-invasive oxygenation support in acutely hypoxemic COVID-19 patients admitted to the ICU: A multicenter observational retrospective study. Crit. Care 2022, 26, 37. [Google Scholar] [CrossRef] [PubMed]
- Perkins, G.D.; Ji, C.; Connolly, B.A.; Couper, K.; Lall, R.; Baillie, J.K.; Bradley, J.M.; Dark, P.; Dave, C.; de Soyza, A.; et al. RECOVERY-RS Collaborators. Effect of Noninvasive Respiratory Strategies on Intubation or Mortality Among Patients With Acute Hypoxemic Respiratory Failure and COVID-19: The RECOVERY-RS Randomized Clinical Trial. JAMA 2022, 327, 546–558. [Google Scholar] [CrossRef]
- Marti, S.; Carsin, A.; Sampol, J.; Pallero, M.; Aldas, I.; Marin, T.; Lujan, M.; Lalmolda, C.; Sabater, G.; Bonnin-Vilaplana, M.; et al. Higher mortality and intubation rate in COVID-19 patients treated with noninvasive ventilation compared with high-flow oxygen or CPAP. Sci. Rep. 2022, 12, 6527. [Google Scholar] [CrossRef]
- Guillaume, C.; Teresa, M.; Nicolas, D.; Keyvan, R.; Shariq, A.W.T.A.; Frédérique, S.; Laurent, B.; Christian, B.; Armand, M.D. Failure of Noninvasive Ventilation for De Novo Acute Hypoxemic Respiratory Failure: Role of Tidal Volume. Crit. Care Med. 2016, 44, 282–290. [Google Scholar]
- Franco, C.; Facciolongo, N.; Tonelli, R.; Dongilli, R.; Vianello, A.; Pisani, L.; Scala, R.; Malerba, M.; Carlucci, A.; Negri, E.A.; et al. Feasibility and clinical impact of out-of-ICU noninvasive respiratory support in patients with COVID-19-related pneumonia. Eur. Respir. J. 2020, 56, 2002130. [Google Scholar] [CrossRef]
- Grieco, D.L.; Menga, L.S.; Cesarano, M.; Rosà, T.; Spadaro, S.; Bitondo, M.M.; Montomoli, J.; Falò, G.; Tonetti, T.; Cutuli, S.L.; et al. COVID-ICU Gemelli Study Group. Effect of Helmet Noninvasive Ventilation vs High-Flow Nasal Oxygen on Days Free of Respiratory Support in Patients With COVID-19 and Moderate to Severe Hypoxemic Respiratory Failure: The HENIVOT Randomized Clinical Trial. JAMA 2021, 325, 1731–1743. [Google Scholar] [CrossRef]
- Patel, B.K.; Wolfe, K.S.; Pohlman, A.S.; Hall, J.B.; Kress, J.P. Effect of Noninvasive Ventilation Delivered by Helmet vs. Face Mask on the Rate of Endotracheal Intubation in Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA 2016, 315, 2435–2441. [Google Scholar] [CrossRef]
- Sud, S.; Friedrich, J.; Adhikari, N.K.J.; Taccone, P.; Mancebo, J.; Polli, F.; Latini, R.; Pesenti, A.; Curley, M.; Fernandez, R.; et al. Effect of prone positioning during mechanical ventilation on mortality among patients with acute respiratory distress syndrome: A systematic review and meta-analysis. Can. Med. Assoc. J. 2014, 186, E381–E390. [Google Scholar] [CrossRef] [PubMed]
- Gattinoni, L.; Carlesso, E.; Taccone, P.; Polli, F.; Guérin, C.; Mancebo, J. Prone positioning improves survival in severe ARDS: A pathophysiologic review and individual patient meta-analysis. Minerva Anestesiol. 2010, 76, 448–454. [Google Scholar] [PubMed]
- Guérin, C.; Reignier, J.; Richard, J.; Beuret, P.; Gacouin, A.; Baudin, O.; Boulain, T.; Mercier, E.; Badet, M.; Mercat, A.; et al. Prone positioning in severe acute respiratory distress syndrome. N. Engl. J. Med. 2013, 368, 2159–2168. [Google Scholar] [CrossRef]
- Voggenreiter, G.; Neudeck, F.; Aufmkolk, M.; Fabinder, J.; Hirche, H.; Obertacke, U.; Schmit-Neuerburg, K.-P. Intermittent prone positioning in the treatment of severe and moderate posttraumatic lung injury. Crit. Care Med. 1999, 27, 2375–2382. [Google Scholar] [CrossRef]
- Nyrén, S.; Radell, P.; Lindahl, S.G.; Mure, M.; Petersson, J.; Larsson, S.A.; Jacobsson, H.; Sanchez-Crespo, A. Lung ventilation and perfusion in prone and supine postures with reference to anesthetized and mechanically ventilated healthy volunteers. Anesthesiology 2010, 112, 682–687. [Google Scholar] [CrossRef]
- Cornejo, R.A.; Díaz, J.C.; Tobar, E.A.; Bruhn, A.R.; Ramos, C.A.; González, R.A.; Repetto, C.A.; Romero, C.M.; Gálvez, L.R.; Llanos, O.; et al. Effects of prone positioning on lung protection in patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2013, 188, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Valter, C.; Christensen, A.M.; Tollund, C.; Schønemann, N.K. Response to the prone position in spontaneously breathing patients with hypoxemic respiratory failure. Acta Anaesthesiol. Scand. 2003, 47, 416–418. [Google Scholar] [CrossRef]
- Scaravilli, V.; Grasselli, G.; Castagna, L.; Zanella, A.; Isgrò, S.; Lucchini, A.; Patroniti, N.; Bellani, G.; Pesenti, A. Prone positioning improves oxygenation in spontaneously breathing nonintubated patients with hypoxemic acute respiratory failure: A retrospective study. J. Crit. Care 2015, 30, 1390–1394. [Google Scholar] [CrossRef]
- Ding, L.; Wang, L.; Ma, W.; He, H. Efficacy and safety of early prone positioning combined with HFNC or NIV in moderate to severe ARDS: A multi-center prospective cohort study. Crit. Care 2020, 24, 28. [Google Scholar] [CrossRef]
- Caputo, N.D.; Strayer, R.J.; Levitan, R. Early Self-Proning in Awake, Non-intubated Patients in the Emergency Department: A Single ED’s Experience During the COVID-19 Pandemic. Acad. Emerg. Med. 2020, 27, 375–378. [Google Scholar] [CrossRef]
- Coppo, A.; Bellani, G.; Winterton, D.; Di Pierro, M.; Soria, A.; Faverio, P.; Cairo, M.; Mori, S.; Messinesi, G.; Contro, E.; et al. Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): A prospective cohort study. Lancet Respir. Med. 2020, 8, 765–774. [Google Scholar] [CrossRef]
- Pavlov, I.; He, H.; McNicholas, B.; Perez, Y.; Tavernier, E.; Trump, M.W.; Jackson, J.A.; Zhang, W.; Rubin, D.S.; Spiegel, T.; et al. Awake Prone Positioning in Non-Intubated Patients With Acute Hypoxemic Respiratory Failure Due to COVID-19. Respir. Care 2021, 67, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Ferrando, C.; Mellado-Artigas, R.; Gea, A.; Arruti, E.; Aldecoa, C.; Adalia, R.; Ramasco, F.; Monedero, P.; Maseda, E.; Tamayo, G.; et al. Awake prone positioning does not reduce the risk of intubation in COVID-19 treated with high-flow nasal oxygen therapy: A multicenter, adjusted cohort study. Crit. Care 2020, 24, 597. [Google Scholar] [CrossRef] [PubMed]
- Rosén, J.; von Oelreich, E.; Fors, D.; Fagerlund, M.J.; Taxbro, K.; Skorup, P.; Eby, L.; Jalde, F.C.; Johansson, N.; Bergström, G.; et al. PROFLO Study Group. Awake prone positioning in patients with hypoxemic respiratory failure due to COVID-19: The PROFLO multicenter randomized clinical trial. Crit. Care 2021, 25, 209. [Google Scholar] [CrossRef] [PubMed]
- Ehrmann, S.; Li, J.; Ibarra-Estrada, M.; Perez, Y.; Pavlov, I.; McNicholas, B.; Roca, O.; Mirza, S.; Vines, D.; Garcia-Salcido, R.; et al. Awake prone positioning for COVID-19 acute hypoxaemic respiratory failure: A randomised, controlled, multinational, open-label meta-trial. Lancet Respir. Med. 2021, 9, 1387–1395. [Google Scholar] [CrossRef]
- Kaur, R.; Vines, D.L.; Mirza, S.; Elshafei, A.; Jackson, J.A.; Harnois, L.J.; Weiss, T.; Scott, J.B.; Trump, M.W.; Mogri, I.; et al. Early versus late awake prone positioning in non-intubated patients with COVID-19. Crit. Care 2021, 25, 340. [Google Scholar] [CrossRef]
- Ibarra-Estrada, M.; Li, J.; Pavlov, I.; Perez, Y.; Roca, O.; Tavernier, E.; McNicholas, B.; Vines, D.; Marín-Rosales, M.; Vargas-Obieta, A.; et al. Factors for success of awake prone positioning in patients with COVID-19-induced acute hypoxemic respiratory failure: Analysis of a randomized controlled trial. Crit. Care 2022, 26, 84. [Google Scholar] [CrossRef]
- Dhand, R.; Li, J. Coughs and Sneezes: Their Role in Transmission of Respiratory Viral Infections, Including SARS-CoV-2. Am. J. Respir. Crit. Care Med. 2020, 202, 651–659. [Google Scholar] [CrossRef]
- Hui, D.S.; Chow, B.K.; Lo, T.; Tsang, O.T.; Ko, F.W.; Ng, S.S.; Gin, T.; Chan, M.T. Exhaled air dispersion during high-flow nasal cannula therapy versus CPAP via different masks. Eur. Respir. J. 2019, 53, 1802339. [Google Scholar] [CrossRef]
- Li, J.; Fink, J.B.; Ehrmann, S. High-flow nasal cannula for COVID-19 patients: Low risk of bio-aerosol dispersion. Eur. Respir. J. 2020, 55, 2000892. [Google Scholar] [CrossRef]
- Ip, M.; Tang, J.W.; Hui, D.S.; Wong, A.L.; Chan, M.T.; Joynt, G.M.; So, A.T.; Hall, S.D.; Chan, P.K.; Sung, J.J. Airflow and droplet spreading around oxygen masks: A simulation model for infection control research. Am. J. Infect. Control 2007, 35, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Leung, C.C.H.; Joynt, G.M.; Gomersall, C.D.; Wong, W.T.; Lee, A.; Ling, L.; Chan, P.K.S.; Lui, P.C.W.; Tsoi, P.C.Y.; Ling, C.M.; et al. Comparison of high-flow nasal cannula versus oxygen face mask for environmental bacterial contamination in critically ill pneumonia patients: A randomized controlled crossover trial. J. Hosp. Infect. 2019, 101, 84–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaeckle, N.T.; Lee, J.; Park, Y.; Kreykes, G.; Evans, M.D.; Hogan, C.J., Jr. Aerosol Generation from the Respiratory Tract with Various Modes of Oxygen Delivery. Am. J. Respir. Crit. Care Med. 2020, 202, 1115–1124. [Google Scholar] [CrossRef] [PubMed]
- Jermy, M.C.; Spence, C.J.T.; Kirton, R.; O’Donnell, J.F.; Kabaliuk, N.; Gaw, S.; Hockey, H.; Jiang, Y.; Abidin, Z.Z.; Dougherty, R.L.; et al. Assessment of dispersion of airborne particles of oral/nasal fluid by high flow nasal cannula therapy. PLoS ONE 2021, 16, e0246123. [Google Scholar] [CrossRef] [PubMed]
- Loh, N.-H.W.; Tan, Y.; Taculod, J.; Gorospe, B.; Teope, A.S.; Somani, J.; Tan, A.Y.H. The impact of high-flow nasal cannula (HFNC) on coughing distance: Implications on its use during the novel coronavirus disease outbreak. Can. J. Anaesth. 2020, 67, 893–894. [Google Scholar] [CrossRef]
- Hamada, S.; Tanabe, N.; Inoue, H.; Hirai, T. Wearing of medical mask over the high-flow nasal cannula for safer oxygen therapy in the COVID-19 era. Pulmonology 2021, 27, 171–173. [Google Scholar] [CrossRef]
- Li, J.; Fink, J.B.; Elshafei, A.A.; Stewart, L.M.; Barbian, H.J.; Mirza, S.H.; Al-Harthi, L.; Vines, D.; Ehrmann, S. Placing a mask on COVID-19 patients during high-flow nasal cannula therapy reduces aerosol particle dispersion. ERJ Open Res. 2021, 7, 00519–02020. [Google Scholar] [CrossRef]
- Bonnesen, B.; Jensen, J.-U.S.; Jeschke, K.N.; Mathioudakis, A.G.; Corlateanu, A.; Hansen, E.F.; Weinreich, U.M.; Hilberg, O.; Sivapalan, P. Management of COVID-19-Associated Acute Respiratory Failure with Alternatives to Invasive Mechanical Ventilation: High-Flow Oxygen, Continuous Positive Airway Pressure, and Noninvasive Ventilation. Diagnostics 2021, 11, 2259. [Google Scholar] [CrossRef]
- Duan, J.; Chen, B.; Liu, X.; Shu, W.; Zhao, W.; Li, J.; Li, Y.; Hong, Y.; Pan, L.; Wang, K. Use of high-flow nasal cannula and noninvasive ventilation in patients with COVID-19: A multicenter observational study. Am. J. Emerg. Med. 2020, 46, 276–281. [Google Scholar] [CrossRef]
Authors | Design | N | Definition of Intubation Group | Main Results |
---|---|---|---|---|
Hyman et al. [19] | Retrospective cohort study | 755 | NA | Intubation increased the in-hospital mortality rate by 1.03-fold per day of delay (adjusted HR, 1.03; 95% CI, 1.01–1.05). |
Papoutsi et al. [20] | Meta-Analysis | 8944 | Early: intubation within 24 h of admission in the ICU. Late: intubation after 24 h from ICU admission. | Mortality: early vs. late: 45.4% vs. 39.1%; RR: 1.07, 95% CI: 0.99–1.15, p = 0.08. |
Baek et al. [21] | Retrospective cohort study | 133 | Early: intubation within 48 h of HFNC initiation. Late: intubation after 48 h from HFNC initiation. | Mortality: early vs. late: 38.0% vs. 65.0%, p = 0.041. |
Candel et al. [22] | Retrospective cohort study | 272 | Early: intubation within 48 h of HFNC initiation. Late: intubation after 48 h from HFNC initiation. | Mortality: early vs. late: 39.3% vs. 53.2%, p = 0.18. |
Authors | Design | N | HFNC, Percentage | Duration of APP per Day | Main Results |
---|---|---|---|---|---|
Ferrando et al. [52] | Adjusted cohort study | 199 | APP group: 100% Control group: 100% | APP group: >16 h Control group: not mentioned | Risk of intubation (Prone group vs. Control group) RR: 0.87; 95% CI: 0.53–1.43, p = 0.60. 28-day mortality (Prone group vs. Control group) RR: 1.04; 95% CI: 0.40–2.72, p = 0.92. |
Rosén et al. [53] | RCT | 75 | Control group: 74% Prone group: 86% | APP group: median 9.0 h [4.4; 10.6] Control group: median 3.4 h [1.8; 8.4] | Intubation rate: APP vs. Control group: 33% vs. 33%, HR: 1.01, 95% CI: 0.46–2.21, p = 0.99. |
Ehrmann et al. [54] | RCT (multinational meta-trial) | 1126 | APP group: 100% Standard care: 100% | APP group: median 5·0 h [1·6; 8·8] Standard care: median 0 h [0;0] | Treatment failure at day 28: APP vs. Standard: 40% vs. 46%, RR 0.86; 95% CI: 0.75–0.98. Risk of intubation: APP vs. Standard: HR 0.75; 95% CI: 0.62–0.91. Mortality: APP vs. Standard: HR: 0.87; 95% CI: 0.68–1.11. |
Kaur et al. [55] | Post hoc analysis for an RCT (American trial) | 125 | Early APP: 100% Late APP: 100% | Early APP: median 5.07 h (2–9.05) Late APP: median 3 h (1.09–5.64) | Mortality: Early vs. Late: 26% vs. 45%, p = 0.039. Risk of intubation: Early vs. Late: 37% vs. 42.4%, p = 0.58. |
Ibarra-Estrada et al. [56] | RCT (Mexican trial) | 430 | APP group: 100% Standard care: 100% | APP group: median 2·5 h [0·7; 6·9] Standard care: 0 h [0;0] | Risk of intubation: APP vs. Standard: 30% vs. 43%, RR: 0.7; 95% CI: 0.54–0.90, p = 0.006. Higher chance of treatment success if APP > 8 h/day: adjusted HR: 13.2, 95% CI: 5.4–32.1. Higher survival rate at 28 days if APP > 8 h/day: HR: 5.7, 95% CI: 2.2–14.5. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.-W.; Cheng, S.-L. Application of High-Flow Nasal Cannula in COVID-19: A Narrative Review. Life 2022, 12, 1419. https://doi.org/10.3390/life12091419
Liu C-W, Cheng S-L. Application of High-Flow Nasal Cannula in COVID-19: A Narrative Review. Life. 2022; 12(9):1419. https://doi.org/10.3390/life12091419
Chicago/Turabian StyleLiu, Cheng-Wei, and Shih-Lung Cheng. 2022. "Application of High-Flow Nasal Cannula in COVID-19: A Narrative Review" Life 12, no. 9: 1419. https://doi.org/10.3390/life12091419
APA StyleLiu, C. -W., & Cheng, S. -L. (2022). Application of High-Flow Nasal Cannula in COVID-19: A Narrative Review. Life, 12(9), 1419. https://doi.org/10.3390/life12091419