Study on Cytotoxic and Genotoxic Potential of Bulgarian Rosa damascena Mill. and Rosa alba L. Hydrosols—In Vivo and In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of R. alba L. and R. damascena Mill. Hydrosols
2.2. Chemicals
2.3. Test Systems and Experimental Design
2.3.1. Plant Test System In Vivo
2.3.2. Animal Test System In Vivo
2.3.3. Human lymphocytes In Vitro
2.4. Cytogenetic Endpoints
2.4.1. Endpoints for Cytotoxicity
Mitotic Index (MI)
PCE/(PCE+NCE) and Nuclear Division Index (NDI)
2.4.2. Endpoints for Genotoxicity
Induction of Chromosome Aberrations (CA)
Induction of Micronuclei (MN)
2.5. Statistical Analysis
3. Results
3.1. Cytotoxic Effects of Rosa alba L. and Rosa damascena Mill. Hydrosols
3.1.1. Mitotic Index (MI)
3.1.2. PCE/(PCE+NCE)
3.1.3. Nuclear Division Index (NDI)
3.2. Genotoxic Effects of the Rose Hydrosols
3.2.1. Induction of Chromosome Aberrations
3.2.2. Induction of Micronuclei
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajeswara Rao, B.R. Hydrosols and water-soluble essential oils: Medicinal and biological properties. Chapter 6. In Recent Progress in Medicinal Plants; Essential Oils, I., Govil, J.N., Bhattacharya, S., Eds.; StudiumPress LLC: Houston, TX, USA, 2013; Volume 36, pp. 119–140. [Google Scholar]
- Agarwal, S.G.; Gupta, A.; Kapahi, B.K.; Baleshwar, M.; Thappa, R.K.; Suri, O.P. Chemical Composition of Rose Water Volatiles. J. Essent. Oil Res. 2005, 17, 265–267. [Google Scholar] [CrossRef]
- Verma, R.S.; Padalia, R.C.; Chauhan, A.; Singh, A.; Yadav, A.K. Volatile constituents of essential oil and rose water of damask rose (Rosa damascena Mill.) cultivars from North Indian hills. Nat. Prod. Res. Former. Nat. Prod. Lett. 2011, 25, 1577–1584. [Google Scholar] [CrossRef]
- Saxena, M.; Shakya, A.K.; Sharma, N.; Shrivastava, S.; Shukla, S. Therapeutic efficacy of Rosa damascena Mill. on acetaminophen-induced oxidative stress in albino rats. J. Environ. Pathol. Toxicol. Oncol. 2012, 31, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Moein, M.; Zarshenas, M.M.; Delnavaz, S. Chemical composition analysis of rose water samples from Iran. Pharm. Biol. 2014, 52, 1358–1361. [Google Scholar] [CrossRef]
- Mahboubi, M. Rosa damascena as holy ancient herb with novel applications. J. Tradit. Complementary Med. 2016, 6, 10–16. [Google Scholar] [CrossRef]
- Akram, M.; Riaz, M.; Munir, N.; Akhter, N.; Zafar, S.; Jabeen, F.; Shariati, M.A.; Akhtar, N.; Riaz, Z.; Altaf, S.H.; et al. Chemical constituents, experimental and clinical pharmacology of Rosa damascena: A literature review. J. Pharm. Pharmacol. 2020, 72, 161–174. [Google Scholar] [CrossRef]
- Georgieva, A.; Dobreva, A.; Tzvetanova, E.; Alexandrova, A.; Mileva, M. Comparative study of phytochemical profiles and antioxidant properties of hydrosols from Bulgarian Rosa Alba L. and Rosa Damascena Mill. JEOP 2019, 22, 1362–1371. [Google Scholar] [CrossRef]
- Aćimović, M.G.; Tešević, V.V.; Smiljanić, K.T.; Cvetković, M.T.; Stanković, J.M.; Kiprovski, B.M.; Sikora, V.S. Hydrolates—by-products of essential oil distillation: Chemical composition, biological activity and potential uses. Adv. Technol. 2020, 9, 54–70. [Google Scholar] [CrossRef]
- Xiao, Y.; He, J.; Zeng, J.; Yuan, X.; Zhang, Z.; Wang, B. Application of citronella and rose hydrosols reduced enzymatic browning of fresh-cut taro. J. Food Biochem. 2020, 44, e13283. [Google Scholar] [CrossRef]
- Maruyama, N.; Tansho-Nagakawa, S.; Miyazaki, C.; Shimomura, K.; Ono, Y.; Abe, S. Inhibition of neutrophil adhesion and antimicrobial activity by diluted hydrosol prepared from Rosa damascena. Biol. Pharm. Bull. 2017, 40, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Hirulkar, N.B.; Agrawal, M. Antimicrobial activity of rose petals extract against some pathogenic bacteria. Int. J. Pharmac. Biol. Arch. 2010, 1, 478–484. [Google Scholar]
- Bayhan, G.I.; Gumus, T.; Alan, B.; Savas, I.K.; Cam, S.A.; Sahin, E.A.; Arslan, S.O. Influence of Rosa damascena hydrosol on skin flora (contact culture) after hand-rubbing. GMS Hyg. Infect. Control 2020, 15, Doc21. [Google Scholar] [CrossRef] [PubMed]
- Georgieva, A.; Ilieva, Y.; Kokanova-Nedialkova, Z.; Zaharieva, M.M.; Nedialkov, P.; Dobreva, A.; Kroumov, A.; Najdenski, H.; Mileva, M. Redox-modulating capacity and antineoplastic activity of wastewater obtained from the distillation of the essential oils of four Bulgarian oil-bearing roses. Antioxidants 2021, 10, 1615. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Srivastava, R.; Sonar, P.K.; Yadav, R. Traditional, phytochemical, and biological aspects of Rosa alba L.: A systematic review. Future J. Pharm. Sci. 2020, 6, 114. [Google Scholar] [CrossRef]
- Alom, S.; Ali, F.; Bezbaruah, R.; Kakoti, B.B. Rosa alba Linn.: A comprehensive review of plant profile, phytochemistry, traditional and pharmacological uses. WJPR 2021, 10, 798–811. [Google Scholar] [CrossRef]
- Boskabady, M.H.; Shafei, M.N.; Saberi, Z.; Amini, S. Pharmacological Effects of Rosa Damascena. Iran J. Basic Med. Sci. 2011, 14, 295–307. [Google Scholar]
- Nunes, H.S.; Miguel, M.G. Rosa damascena essential oils: A brief review about chemical composition and biological properties. Trends Phytochem. Res. 2017, 1, 3–111. Available online: https://tpr.shahrood.iau.ir/article_532669_d72d2686983cb5dbbb7e721834197c7c.pdf (accessed on 5 September 2017).
- Zolotilov, V.; Nevkrytaya, N.; Zolotilova, O.; Seitadzhieva, S.; Myagkikh, E.; Pashtetskiy, V.; Karpukhin, M. The essential-oil-bearing rose collection variability study in terms of biochemical parameters. Agronomy 2022, 12, 529. [Google Scholar] [CrossRef]
- Kovacheva, N.; Rusanov, K.; Atanassov, I. Industrial cultivation of oil bearing rose and rose oil production in Bulgaria during 21st century, directions and challenges. Biotechnol. Biotechnol. Equip. 2010, 24, 1793–1798. [Google Scholar] [CrossRef]
- Jakubczyk, K.; Tuchowska, A.; Janda-Milczarek, K. Plant hydrolates—Antioxidant properties, chemical composition and potential applications. Biomed. Pharmacother. 2021, 142, 112033. [Google Scholar] [CrossRef]
- Başer, K.H.C. Turkish rose oil. Perfum. Flavor. 1992, 17, 45–52. [Google Scholar]
- Ulusoy, S.; Bosgelmez-Tınaz, G.; Secilmis-Canbay, H. Tocopherol, carotene, phenolic contents and antibacterial properties of rose essential oil, hydrosol and absolute. Curr. Microbiol. 2009, 59, 554–558. [Google Scholar] [CrossRef] [PubMed]
- Rusanov, K.; Kovacheva, N.; Rusanova, M.; Atanassov, I. Traditional Rosa damascena flower harvesting practices evaluated through GC/MS metabolite profiling of flower volatiles. Food Chem. 2011, 129, 1851–1859. [Google Scholar] [CrossRef]
- Lei, G.; Wang, L.; Liu, X.; Zhang, A. Fast quantification of phenylethyl alcohol in rose water and chemical profiles of rose water and oil of Rosa damascena and Rosa rugosa from southeast China. J. Liq. Chromatogr. Relat. Technol. 2014, 38, 823–832. [Google Scholar] [CrossRef]
- Popescu, A.; Matei, N.; Roncea, F.; Miresan, H.; Pavalache, G. Determination of caftaric acid in tincture and rose water obtained from Rosaedamascenaeflores. Ovidius Univ. Ann. Chem. 2015, 26, 12–19. [Google Scholar] [CrossRef]
- Moein, M.; Etemadfard, H.; Zarshenas, M.M. Investigation of different Damask rose (Rosa damascena Mill.) oil samples from traditional markets in Fars (Iran); Focusing on the extraction method. Trends PhramaceuticalSci. 2016, 2, 51–58. [Google Scholar] [CrossRef]
- Tentative Report for Public Comment. Safety Assessment of Rosa damascena-Derived Ingredients as Used in Cosmetics. 2021. Available online: https://www.cir-safety.org/sites/default/files/Rosa%20damascena_0.pdf (accessed on 8 March 2022).
- Jovtchev, G.; Stankov, A.; Georgieva, A.; Dobreva, A.; Bakalova, R.; Aoki, I.; Mileva, M. Cytotoxic and genotoxic potential of Bulgarian Rosa alba L. essential oil—In vitro model study. Biotechnol. Biotechnol. Equip. 2018, 32, 513–519. [Google Scholar] [CrossRef]
- Gateva, S.; Jovtchev, G.; Chanev, C.; Georgieva, A.; Stankov, A.; Dobreva, A.; Mileva, M. Assessment of anti-cytotoxic, anti-genotoxic and antioxidant potential of Bulgarian Rosa alba L. essential oil. Caryologia 2020, 73, 71–88. [Google Scholar] [CrossRef]
- Gateva, S.; Jovtchev, G.; Stankov, A.; Georgieva, A.; Dobreva, A.; Mileva, M. The potential of geraniol to reduce cytotoxic and genotoxic effects of MNNG in plant and human lymphocyte test-systems. S. Afr. J. Bot. 2019, 123, 170–179. [Google Scholar] [CrossRef]
- Lei, Y.; Fu, P.; Jun, X.; Cheng, P. Pharmacological properties of geraniol—A review. Planta Med. 2019, 85, 48–55. [Google Scholar] [CrossRef]
- Carrasco, H.A.; Espinoza, L.C.; Cardile, V.; Gallardo, C.; Cardona, W.; Lombardo, L.; Catalán, K.M.; Cuellar, M.F.; Russo, A. Eugenol and its synthetic analogues inhibit cell growth of human cancer cells (Part I). J. Braz. Chem. Soc. 2008, 19, 543–548. [Google Scholar] [CrossRef]
- Manikandan, P.; Vinothini, G.; Priyadarsini, V.R.; Prathiba, D.; Nagini, S. Eugenol inhibits cell proliferation via NF-κB suppression in a rat model of gastric carcinogenesis induced by MNNG. Investig. New Drugs. 2011, 29, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Gateva, S.; Jovtchev, G.; Angelova, T.; Dobreva, A.; Mileva, M. The anti-genotoxic activity of wastewaters produced after water—steam distillation of Bulgarian Rosa damascena Mill. And Rosa alba L. essential oils. Life 2022, 12, 455. [Google Scholar] [CrossRef]
- Gerasimova, T.; Topashka-Ancheva, M.; Dobreva, A.; Georgieva, A.; Mileva, M. Evaluation of the genotoxic activity of wastewater obtained after steam distillation of essential oil of Bulgarian Rosa alba L.—In vivo study. Rom. Biotechnol. Lett. 2022, 27, 3292–3301. [Google Scholar] [CrossRef]
- Künzel, G.; Nicoloff, H. Further results on karyotype reconstruction in barley. Biol. Zentralbl. 1979, 98, 587–592. [Google Scholar]
- Jovtchev, G.; Stergios, M.; Schubert, I. A comparison of N-methyl-N-nitrosourea-induced chromatid aberrations and micronuclei in barley meristems using FISH techniques. Mutat. Res./Genet. Toxicol. Environ. Mutagenesis 2002, 517, 47–51. [Google Scholar] [CrossRef]
- Preston, R.; Dean, B.; Galloway, S.; Holden, H.; McFee, A.; Sheldy, M. Mammalian in vivo cytogenetic assay analysis of chromosome aberrations in bone marrow cells. Mutat. Res./Genet. Toxicol. 1987, 189, 157–165. [Google Scholar] [CrossRef]
- OECD. Test No. 474: Mammalian Erythrocyte Micronucleus Test; OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2016. [Google Scholar] [CrossRef]
- Rothfuss, A.; Honma, M.; Czich, A.; Aardema, M.J.; Burlinson, B.; Galloway, S.; Hamada, S.; Kirkland, D.; Heflich, R.H.; Howe, J.; et al. Improvement of in vivo genotoxicity assessment: Combination of acute tests and integration into standard toxicity testing. Mutat. Res. 2011, 723, 108–120. [Google Scholar] [CrossRef]
- Mitkovska, V.; Chassovnikarova, T.S.; Atanasov, N.; Dimitrov, H. Environmental genotoxicity evaluation using a micronucleus test and frequency of chromosome aberration in free-living small rodents. J. BioSci. Biotech. 2012, 1, 67–71. [Google Scholar]
- Evans, H. Handbook of Mutagenicity Test Procedure; Kilbey, B., Legator, M., Nicols, W., Ramel, C., Eds.; Elsevier Science Publishers BV: Amsterdam, The Netherlands, 1984; pp. 405–427. ISBN 9780444600981. [Google Scholar]
- Fenech, M. Cytokinesis-block micronucleus cytome assay. Nat. Protoc. 2007, 2, 1084–1104. [Google Scholar] [CrossRef]
- Darzynkiewicz, Z. Cytochemical probes of cycling and quiescent cells applicable to flow cytometry. In Techniques in Cell Cycle Analysis (Biological Methods); Gray, J.J.W., Ed.; Humana Press: Totowa, NJ, USA, 1987; pp. 272–290. [Google Scholar] [CrossRef]
- Jovtchev, G.; Gateva, S.; Stergios, M.; Kulekova, S. Cytotoxic and genotoxic effects of paraquat in Hordeum vulgare and human lymphocytes in vitro. Environ. Toxicol. 2010, 25, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Schmid, W. The micronucleus test. Mutat. Res. 1975, 31, 9–15. [Google Scholar] [CrossRef]
- Hayashi, M.; Sofuni, T.; Ishidate, M. An application of Acridine Orange fluorescent staining to the micronucleus test. Mutat. Res. Lett. 1983, 120, 241–247. [Google Scholar] [CrossRef]
- Rieger, R.; Michaelis, A.; Schubert, I.; Doebel, P.; Jank, H.W. Non-random intrachromosomal distribution of chromatid aberrations induced by X-rays, alkylating agents and ethanol in Vicia faba. Mutat. Res. 1975, 27, 69–79. [Google Scholar] [CrossRef]
- Zamiri, A.; Rakhshandeh, H.; Tayarani-Najaran, Z.; Mousavi, S.H. Study of cytotoxic properties of Rosa damascena extract in human cervix carcinoma cell line. Avicenna J. Phytomed. 2011, 1, 74–77. [Google Scholar] [CrossRef]
- Zu, Y.; Yu, H.; Liang, L.; Fu, Y.; Efferth, T.; Liu, X.; Wu, N. Activities of ten essential oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 cancer cells. Molecules 2010, 15, 3200. [Google Scholar] [CrossRef]
- Gao, X.-M.; Yang, L.-Y.; Huang, X.-Z.; Shu, L.-D.; Shen, Y.-Q.; Hu, Q.-F.; Chen, Z.-Y. ChemInform Abstract: Aurones and Isoaurones from the Flowers of Rosa damascena and Their Biological Activities. ChemInform 2013, 87, 583–589. [Google Scholar] [CrossRef]
- Wedler, J.; Rusanov, K.; Atanassov, I.; Butterweck, V.A. Polyphenol-enriched fraction of rose oil distillation wastewater inhibits cell proliferation, migration, and TNF-α-induced VEGF secretion in human immortalized keratinocytes. Planta Med. 2016, 82, 1000–1008. [Google Scholar] [CrossRef]
- Carnesecchi, S.; Langley, K.; Exinger, F.; Gosse, F.; Raul, F. Geraniol, a component of plant essential oils, sensitizes human colonic cancer cells to 5-Fluorouracil treatment. J. Pharmacol. Exp. Ther. 2002, 301, 625–630. [Google Scholar] [CrossRef]
- Carnesecchi, S.; Bras-Goncalves, R.; Bradaia, A.; Zeisel, M.; Gosse, F.; Poupon, M.F.; Raul, F. Geraniol, a component of plant essential oils, modulates DNA synthesis and potentiates 5- fluorouracil efficacy on human colon tumor xenografts. Cancer Lett. 2004, 215, 53–59. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.; Heidor, R.; Cardozo, M.T.; Scolastici, C.; Purgatto, E.; Shiga, T.M.; Barbisan, L.F.; Ong, T.P.; Moreno, F.S. Efficacy of geraniol but not of β-ionone or their combination for the chemoprevention of rat colon carcinogenesis. Braz. J. Med. Biol. Res. 2011, 44, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Park, Y.R.; Kim, S.H.; Park, E.J.; Kang, M.J.; So, I.; Chun, J.N.; Jeon, J.-H. Geraniol suppresses prostate cancer growth through down-regulation of E2F8. Cancer Med. 2016, 5, 2899–2908. [Google Scholar] [CrossRef] [PubMed]
- Tabari, M.A.; Youssefi, M.R.; Esfandiari, A.; Benelli, G. Toxicity of β-citronellol, geraniol and linalool from Pelargonium roseum essential oil against the West Nile and filariasis vector Culex pipiens (Diptera: Culicidae). Res. Vet. Toxicol. 2017, 114, 36–40. [Google Scholar] [CrossRef]
- Politano, V.T.; Diener, R.M.; Christian, M.S.; Hoberman, A.M.; Palmer, A.; Ritacco, G.; Adams, T.B.; Anne Marie Api. Oral and dermal developmental toxicity studies of phenylethyl alcohol in rats. Int. J.Toxicol. 2013, 32, 32–38. [Google Scholar] [CrossRef]
- Wong, Y.S.; Sia, C.M.; Khoo, H.E.; Ang, Y.K.; Chang, S.K.; Yim, H.S. Influence of extraction conditions on antioxidant properties of passion fruit (Passiflora edulis) peel. Acta Sci. Pol. Technol. Aliment. 2014, 13, 257–265. [Google Scholar] [CrossRef]
- Doppalapudi, R.S.; Riccio, E.S.; Rausch, L.L.; Shimon, J.A.; Lee, P.S.; Mortelmans, K.E.; Kapetanovic, I.M.; Crowell, J.A.; Mirsalis, J.C. Evaluation of chemopreventive agents for genotoxic activity. Mutat. Res. 2007, 629, 148–160. [Google Scholar] [CrossRef]
- Abdel-Hameed, E.; Bazaid, S.; Sabra, A. Total phenolic, in vitro antioxidant activity and safety assessment (acute, sub-chronic and chronic toxicity) of industrial taif rose water by-product in mice. Der Pharm. Lett. 2015, 7, 251–259. [Google Scholar]
- Jeong, M.H.; Seong, N.W.; Lee, J.Y.; Kim, Y.J.; Shin, N.R.; Kim, J.C. In vitro and in vivo evaluation of the genotoxicity of Eriobotrya japonica leaf extract. Regul. Toxicol. Pharmacol. 2018, 99, 238–243. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerasimova, T.; Jovtchev, G.; Gateva, S.; Topashka-Ancheva, M.; Stankov, A.; Angelova, T.; Dobreva, A.; Mileva, M. Study on Cytotoxic and Genotoxic Potential of Bulgarian Rosa damascena Mill. and Rosa alba L. Hydrosols—In Vivo and In Vitro. Life 2022, 12, 1452. https://doi.org/10.3390/life12091452
Gerasimova T, Jovtchev G, Gateva S, Topashka-Ancheva M, Stankov A, Angelova T, Dobreva A, Mileva M. Study on Cytotoxic and Genotoxic Potential of Bulgarian Rosa damascena Mill. and Rosa alba L. Hydrosols—In Vivo and In Vitro. Life. 2022; 12(9):1452. https://doi.org/10.3390/life12091452
Chicago/Turabian StyleGerasimova, Tsvetelina, Gabriele Jovtchev, Svetla Gateva, Margarita Topashka-Ancheva, Alexander Stankov, Tsveta Angelova, Ana Dobreva, and Milka Mileva. 2022. "Study on Cytotoxic and Genotoxic Potential of Bulgarian Rosa damascena Mill. and Rosa alba L. Hydrosols—In Vivo and In Vitro" Life 12, no. 9: 1452. https://doi.org/10.3390/life12091452
APA StyleGerasimova, T., Jovtchev, G., Gateva, S., Topashka-Ancheva, M., Stankov, A., Angelova, T., Dobreva, A., & Mileva, M. (2022). Study on Cytotoxic and Genotoxic Potential of Bulgarian Rosa damascena Mill. and Rosa alba L. Hydrosols—In Vivo and In Vitro. Life, 12(9), 1452. https://doi.org/10.3390/life12091452