Comparative Proteomics Analysis between Maize and Sorghum Uncovers Important Proteins and Metabolic Pathways Mediating Drought Tolerance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Germination and Plant Growth
2.2. Water Deficit Treatment
2.3. Relative Water Content
2.4. Proline Content
2.5. Protein Extraction
2.6. Preparation of Protein Samples for LC–MS/MS Analysis
2.6.1. Solubilization and Quantification of Proteins
2.6.2. On-Bead Protein Digestion and HILIC Enrichment
2.6.3. Liquid Chromatography–Tandem Mass Spectrometry (LC–MS/MS)
2.7. Bioinformatics
2.7.1. Data Source
2.7.2. Peptide and Protein Identification Pipeline
2.7.3. Statistical Analysis
2.7.4. Gene Ontology and KEGG Analysis
3. Results
3.1. Drought Induced the Accumulation of Free Proline in Maize and Sorghum
3.2. Differentially Regulated Proteins between Sorghum and Maize
3.3. Gene Ontology and KEGG Pathway Annotation
4. Discussion
4.1. Proline Accumulation in Sorghum Roots Was Associated with Improved Water Retention
4.2. Gene Ontology and KEGG Pathways
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taylor, J.R. Sorghum and millets: Taxonomy, history, distribution, and production. In Sorghum and Millets; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–21. [Google Scholar] [CrossRef]
- Begna, T. Global role of plant breeding in tackling climate change. Int. J. Agric. Sci. Food Technol. 2021, 7, 223–229. [Google Scholar] [CrossRef]
- Devnarain, N.; Crampton, B.G.; Olivier, N.; Van der Westhuyzen, C.; Becker, J.V.; O’Kennedy, M.M. Transcriptomic analysis of a Sorghum bicolor landrace identifies a role for beta-alanine betaine biosynthesis in drought tolerance. S. Afr. J. Bot. 2019, 127, 244–255. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Ke, Q.; Kwak, S.S.; Zhang, S.; Deng, X. Physiological and differential proteomic analyses of imitation drought stress response in Sorghum bicolor root at the seedling stage. Int. J. Mol. Sci. 2020, 21, 9174. [Google Scholar] [CrossRef] [PubMed]
- Markos, S.; Simion, T.; Samuel, T. Evaluation of improved lowland sorghum (Sorghum Bicolor (L.) Moench) varieties in Southern Ethiopia. Cogent Food Agric. 2020, 6, 1727624. [Google Scholar] [CrossRef]
- Mwenda, E.T.; Ringo, J.H.; Mbega, E.R. The implication of kernel phenology in convening resistance to storage weevil and varietal development in sorghum. J. Stored Prod. Res. 2019, 83, 176–184. [Google Scholar] [CrossRef]
- Saeed, F.; Hussain, M.; Arshad, M.S.; Afzaal, M.; Munir, H.; Imran, M.; Tufail, T.; Anjum, F.M. Functional and nutraceutical properties of maize bran cell wall non-starch polysaccharides. Int. J. Food Prop. 2021, 24, 233–248. [Google Scholar] [CrossRef]
- Ekpa, O.; Palacios-Rojas, N.; Kruseman, G.; Fogliano, V.; Linnemann, A.R. Sub-Saharan African maize-based foods-processing practices, challenges and opportunities. Food Rev. Int. 2019, 35, 609–639. [Google Scholar] [CrossRef] [Green Version]
- Greyling, J.; Pardey, P.G. Measuring maize in South Africa: The shifting structure of production during the twentieth century, 1904–2015. Agrekon 2019, 58, 21–41. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Sun, G. Increasing probability of concurrent drought between the water intake and receiving regions of the Hanjiang to Weihe River Water Diversion Project, China. J. Geogr. Sci. 2022, 32, 1998–2012. [Google Scholar] [CrossRef]
- “World ‘at a Crossroads’ as Droughts Increase Nearly a Third in a Generation” United Nations: Global Perspective Human Stories. Available online: https://news.un.org/en/story/2022/05/1118142 (accessed on 31 December 2022).
- “Drought in the Horn of Africa: FAO Appeals for $172 Million to Help Avert Famine and Humanitarian Catastrophe” Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/newsroom/detail/drought-in-the-horn-of-africa-fao-appeals-to-help-avert-famine-and-humanitarian-catastrophe/en (accessed on 31 December 2022).
- Adom, R.K.; Simatele, M.D.; Reid, M. Addressing the challenges of water-energy-food nexus programme in the context of sustainable development and climate change in South Africa. J. Water Clim. Chang. 2022, 13, 2761–2779. [Google Scholar] [CrossRef]
- Meza, I.; Rezaei, E.E.; Siebert, S.; Ghazaryan, G.; Nouri, H.; Dubovyk, O.; Gerdener, H.; Herbert, C.; Kusche, J.; Popat, E.; et al. Drought risk for agricultural systems in South Africa: Drivers, spatial patterns, and implications for drought risk management. Sci. Total Environ. 2021, 799, 149505. [Google Scholar] [CrossRef] [PubMed]
- Leng, G.; Hall, J. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Sci. Total Environ. 2019, 654, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Iizumi, T.; Nishimori, M. Global patterns of crop production losses associated with droughts from 1983 to 2009. J. Appl. Meteorol. Climatol. 2019, 58, 1233–1244. [Google Scholar] [CrossRef]
- Zhan, J.; Twardowska, I.; Wang, S.; Wei, S.; Chen, Y.; Ljupco, M. Prospective sustainable production of safe food for growing population based on the soybean (Glycine max L. Merr.) crops under Cd soil contamination stress. J. Clean. Prod. 2019, 212, 22–36. [Google Scholar] [CrossRef]
- Wang, X.; Shen, S.; Rasam, S.S.; Qu, J. MS1 ion current-based quantitative proteomics: A promising solution for reliable analysis of large biological cohorts. Mass Spectrom. Rev. 2019, 38, 461–482. [Google Scholar] [CrossRef]
- Khan, M.I.R.; Palakolanu, S.R.; Chopra, P.; Rajurkar, A.B.; Gupta, R.; Iqbal, N.; Maheshwari, C. Improving drought tolerance in rice: Ensuring food security through multi-dimensional approaches. Physiol. Plant. 2021, 172, 645–668. [Google Scholar] [CrossRef]
- Cui, M.; Cheng, C.; Zhang, L. High-throughput proteomics: A methodological mini-review. Lab. Investig. 2022, 102, 1170–1181. [Google Scholar] [CrossRef]
- Komatsu, S. Plant proteomic research 2.0: Trends and perspectives. Int. J. Mol. Sci. 2019, 20, 2495. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Jin, F.; Shan, X.; Li, Y. iTRAQ-based proteomic analysis reveals several strategies to cope with drought stress in maize seedlings. Int. J. Mol. Sci. 2019, 20, 5956. [Google Scholar] [CrossRef]
- Wang, X.; Zenda, T.; Liu, S.; Liu, G.; Jin, H.; Dai, L.; Dong, A.; Yang, Y.; Duan, H. Comparative proteomics and physiological analyses reveal important maize filling-kernel drought-responsive genes and metabolic pathways. Int. J. Mol. Sci. 2019, 20, 3743. [Google Scholar] [CrossRef] [Green Version]
- Zenda, T.; Liu, S.; Wang, X.; Jin, H.; Liu, G.; Duan, H. Comparative proteomic and physiological analyses of two divergent maize inbred lines provide more insights into drought-stress tolerance mechanisms. Int. J. Mol. Sci. 2018, 19, 3225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, A.E.E.; Ludidi, N. Antioxidant responses are associated with differences in drought tolerance between maize and sorghum. J. OASIS Agric. Sustain. Dev. 2021. [Google Scholar] [CrossRef]
- Ábrahám, E.; Hourton-Cabassa, C.; Erdei, L.; Szabados, L. Methods for Determination of Proline in Plants. In Plant Stress Tolerance; Sunkar, R., Ed.; Humana Press: Totowa, NJ, USA, 2010; Volume 639, pp. 317–331. [Google Scholar] [CrossRef]
- Wang, W.; Vignani, R.; Scali, M.; Cresti, M. A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 2006, 27, 2782–2786. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Kessner, D.; Chambers, M.; Burke, R.; Agus, D.; Mallick, P. ProteoWizard: Open source software for rapid proteomics tools development. Bioinformatics 2008, 24, 2534–2536. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Pevzner, P.A. MS-GF+ makes progress towards a universal database search tool for proteomics. Nat. Commun. 2014, 5, 5277. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.-Q.; Dasari, S.; Chambers, M.C.; Litton, M.D.; Sobecki, S.M.; Zimmerman, L.J.; Halvey, P.J.; Schilling, B.; Drake, P.M.; Gibson, B.W. IDPicker 2.0: Improved protein assembly with high discrimination peptide identification filtering. J. Proteome Res. 2009, 8, 3872–3881. [Google Scholar] [CrossRef] [Green Version]
- Boratyn, G.M.; Camacho, C.; Cooper, P.S.; Coulouris, G.; Fong, A.; Ma, N.; Madden, T.L.; Matten, W.T.; McGinnis, S.D.; Merezhuk, Y. BLAST: A more efficient report with usability improvements. Nucleic Acids Res. 2013, 41, W29–W33. [Google Scholar] [CrossRef]
- Benjamini, Y.; Drai, D.; Elmer, G.; Kafkafi, N.; Golani, I. Controlling the false discovery rate in behavior genetics research. Behav. Brain Res. 2001, 125, 279–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Götz, S.; García-Gómez, J.M.; Terol, J.; Williams, T.D.; Nagaraj, S.H.; Nueda, M.J.; Robles, M.; Talón, M.; Dopazo, J.; Conesa, A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008, 36, 3420–3435. [Google Scholar] [CrossRef]
- Hasan, S.; Rabei, S.; Nada, R.; Abogadallah, G. Water use efficiency in the drought-stressed sorghum and maize in relation to expression of aquaporin genes. Biol. Plant. 2017, 61, 127–137. [Google Scholar] [CrossRef]
- Mukarram, M.; Choudhary, S.; Kurjak, D.; Petek, A.; Khan, M.M.A. Drought: Sensing, signalling, effects and tolerance in higher plants. Physiol. Plant. 2021, 172, 1291–1300. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Rai, R.; Vasudev, S.; Yadava, D.K.; Dash, P.K. Ex-foliar application of glycine betaine and its impact on protein, carbohydrates and induction of ROS scavenging system during drought stress in flax (Linum usitatissimum). J. Biotechnol. 2021, 337, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Frimpong, F.; Anokye, M.; Windt, C.W.; Naz, A.A.; Frei, M.; Dusschoten, D.V.; Fiorani, F. Proline-Mediated Drought Tolerance in the Barley (Hordeum vulgare L.) Isogenic Line Is Associated with Lateral Root Growth at the Early Seedling Stage. Plants 2021, 10, 2177. [Google Scholar] [CrossRef] [PubMed]
- Duran-Nebreda, S.; Bassel, G.W. Plant behaviour in response to the environment: Information processing in the solid state. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20180370. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Yu, X.; Cheng, Z.; Yu, X.; Ruan, M.; Li, W.; Peng, M. Global gene expression analysis reveals crosstalk between response mechanisms to cold and drought stresses in cassava seedlings. Front. Plant Sci. 2017, 8, 1259. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Wu, T.; Pei, T.; Wang, Z.; Yang, H.; Jiang, J.; Zhang, H.; Chen, X.; Li, J.; Xu, X. Overexpression of SlGATA17 promotes drought tolerance in transgenic tomato plants by enhancing activation of the phenylpropanoid biosynthetic pathway. Front. Plant Sci. 2021, 12, 634888. [Google Scholar] [CrossRef]
- Ertani, A.; Schiavon, M.; Muscolo, A.; Nardi, S. Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant Soil. 2013, 364, 145–158. [Google Scholar] [CrossRef]
- Orr, J.D.; Edwards, R.; Dixon, R.A. Stress responses in alfalfa (Medicago sativa L.) (XIV. Changes in the levels of phenylpropanoid pathway intermediates in relation to regulation of L-phenylalanine ammonia-lyase in elicitor-treated cell-suspension cultures). Plant Physiol. 1993, 101, 847–856. [Google Scholar] [CrossRef] [Green Version]
- Kolo, Z.; Majola, A.; Phillips, K.; Ali, A.E.E.; Sharp, R.E.; Ludidi, N. Water deficit-induced changes in phenolic acid content in maize leaves is associated with altered expression of cinnamate 4-hydroxylase and p-coumaric acid 3-hydroxylase. Plants 2023, 12, 101. [Google Scholar] [CrossRef]
- Morffy, N.; Strader, L.C. Old Town Roads: Routes of auxin biosynthesis across kingdoms. Curr. Opin. Plant Biol. 2020, 55, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Gomes, G.L.B.; Scortecci, K.C. Auxin and its role in plant development: Structure, signalling, regulation and response mechanisms. Plant Biol. 2021, 23, 894–904. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Jiang, Q.; Hu, Z.; Sun, X.; Fan, S.; Zhang, H. Function of the auxin-responsive gene TaSAUR75 under salt and drought stress. Crop. J. 2018, 6, 181–190. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Hassan, M.J.; Li, Z.; Peng, Y. Indole-3-acetic acid improves drought tolerance of white clover via activating auxin, abscisic acid and jasmonic acid related genes and inhibiting senescence genes. BMC Plant Biol. 2020, 20, 150. [Google Scholar] [CrossRef] [Green Version]
- Stein, O.; Granot, D. An overview of sucrose synthases in plants. Front. Plant Sci. 2019, 10, 95. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Han, S.; Zhou, C.; Cheng, Y.; Lv, Y.; Zeng, G.; Zhang, D.; Gao, X.; Hu, Y.; Shen, X. Molecular identification and expression analysis of five sucrose synthase genes in Sorghum bicolor. Physiol. Mol. Biol. Plants 2022, 28, 697–707. [Google Scholar] [CrossRef]
- Ennajeh, M.; Ehwald, R.; Kühn, C. Role of sucrose and phloem–xylem interaction in recovery of water status and hydraulic dehydration impacts in tobacco plants (Nicotiana tabacum). Acta. Physiol. Plant. 2022, 44, 56. [Google Scholar] [CrossRef]
- Li, M.; Chen, J.; Wu, W.; Fang, Y.; Dong, S. Oxidase-like MOF-818 nanozyme with high specificity for catalysis of catechol oxidation. J. Am. Chem. Soc. 2020, 142, 15569–15574. [Google Scholar] [CrossRef]
- Mastore, M.; Kohler, L.; Nappi, A.J. Production and utilization of hydrogen peroxide associated with melanogenesis and tyrosinase-mediated oxidations of DOPA and dopamine. FEBS J. 2005, 272, 2407–2415. [Google Scholar] [CrossRef]
- Gerdemann, C.; Eicken, C.; Magrini, A.; Meyer, H.E.; Rompel, A.; Spener, F.; Krebs, B. Isozymes of Ipomoea batatas catechol oxidase differ in catalase-like activity. Biochim. et Biophys. Acta (BBA)-Protein Struct. Mol. Enzym. 2001, 1548, 94–105. [Google Scholar] [CrossRef]
- Liu, D.; Meng, S.; Xiang, Z.; Yang, G.; He, N. An R1R2R3 MYB transcription factor, MnMYB3R1, regulates the polyphenol oxidase gene in Mulberry (Morus notabilis). Int. J. Mol. Sci. 2019, 20, 2602. [Google Scholar] [CrossRef] [PubMed]
Accession | Description | Log2 Fold Change | Q-Value Species | Q-Value Treatment | |
---|---|---|---|---|---|
Maize | Sorghum | ||||
GRMZM2G141473_P01/ Sobic.001G062300.1.p | Indole-3-acetaldhyde oxidase | 2.6 | 1.1 | 0.000187049 | 0.044375583 |
GRMZM2G319062_P01/ Sobic.007G068500.1.p | polyphenol oxidase I, chloroplastic-like | 3.0 | 1.9 | 0.000564461 | 0.009718389 |
GRMZM2G074604_P01/ Sobic.004G220300.1.p | phenylalanine/tyrosine ammonia-lyase | −0.9 | −1.0 | 0.000403801 | 0.00363421 |
GRMZM2G152908_P01/ Sobic.001G344500.2.p | sucrose synthase 2 | −1.5 | −2.3 | 0.000451047 | 0.000119933 |
Enzyme Code (EC) | Name of Enzyme | Sequences | Substrates | Products |
---|---|---|---|---|
1.2.3.7 | Indole-3-acetaldhyde oxidase | GRMZM2G141473_P01/ | Indole-3-acetaldehyde | Indole acetic acid |
Sobic.001G062300.1.p | ||||
1.10.3.1 | Polyphenol oxidase I, Catechol oxidase | GRMZM2G319062_P01/ | Tyrosine | L-DOPA |
Sobic.007G068500.1.p | Dopaquionone | |||
4.3.1.25 | Phenylalanine/Tyrosine ammonia-lyase | GRMZM2G074604_P01/ | Phenylalanine | Cinnamic acid |
Sobic.004G220300.1.p | Tyrosine | p-Coumaric acid | ||
2.4.1.13 | Sucrose synthase 2 | GRMZM2G152908_P01/ | UDP-Glucose | Sucrose |
Sobic.001G344500.2.p | D-Fructose | UDP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.E.E.; Husselmann, L.H.; Tabb, D.L.; Ludidi, N. Comparative Proteomics Analysis between Maize and Sorghum Uncovers Important Proteins and Metabolic Pathways Mediating Drought Tolerance. Life 2023, 13, 170. https://doi.org/10.3390/life13010170
Ali AEE, Husselmann LH, Tabb DL, Ludidi N. Comparative Proteomics Analysis between Maize and Sorghum Uncovers Important Proteins and Metabolic Pathways Mediating Drought Tolerance. Life. 2023; 13(1):170. https://doi.org/10.3390/life13010170
Chicago/Turabian StyleAli, Ali Elnaeim Elbasheir, Lizex Hollenbach Husselmann, David L. Tabb, and Ndiko Ludidi. 2023. "Comparative Proteomics Analysis between Maize and Sorghum Uncovers Important Proteins and Metabolic Pathways Mediating Drought Tolerance" Life 13, no. 1: 170. https://doi.org/10.3390/life13010170
APA StyleAli, A. E. E., Husselmann, L. H., Tabb, D. L., & Ludidi, N. (2023). Comparative Proteomics Analysis between Maize and Sorghum Uncovers Important Proteins and Metabolic Pathways Mediating Drought Tolerance. Life, 13(1), 170. https://doi.org/10.3390/life13010170