Natural and Technical Phytoremediation of Oil-Contaminated Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Monitoring of Oil-Contaminated Areas
2.2. Phytoremediation Approaches
2.3. Soil Chemical Analysis
2.4. Soil Microbiological Analysis
2.5. Statistics
3. Results
3.1. Monitoring of Oil-Contaminated Areas
3.2. Natural Phytoremediation
3.3. Technical Phytoremediation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weir, E.; Doty, S. Social acceptability of phytoremediation: The role of risk and values. Int. J. Phytoremediation 2016, 18, 1029–1036. [Google Scholar] [CrossRef] [PubMed]
- Burges, A.; Alkorta, I.; Epelde, L.; Garbisu, C. From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated Sites. Int. J. Phytoremediation 2018, 20, 384–397. [Google Scholar] [CrossRef] [PubMed]
- Asante-Badu, B.; Kgorutla, L.E.; Li, S.S.; Danso, P.O.; Xue, Z.; Qiang, G. Phytoremediation of organic and inorganic compounds in a natural and an agricultural environment: A review. Appl. Ecol. Environ. Res. 2020, 18, 6875–6904. [Google Scholar] [CrossRef]
- Kafle, A.; Timilsina, A.; Gautam, A.; Adhikari, K.; Bhattarai, A.; Aryal, N. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environ. Adv. 2022, 8, 100203. [Google Scholar] [CrossRef]
- Kamath, R.; Rentz, J.A.; Schnoor, J.L.; Alvarez, P.J.J. Chapter 16. Phytoremediation of hydrocarbon-contaminated soils: Principles and applications. In Studies in Surface Science and Catalysis; Vazquez-Duhalt, R., Quintero-Ramirez, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 151, pp. 447–478. [Google Scholar]
- Ruley, J.A.; Tumuhairwe, J.B.; Amoding, A.; Opolot, E.; Oryem-Origa, H.; Basamba, T. Assessment of plants for phytoremediation of hydrocarbon-contaminated soils in the Sudd Wetland of South Sudan. Plant Soil Environ. 2019, 65, 463–469. [Google Scholar] [CrossRef] [Green Version]
- Dehnavi, S.M.; Ebrahimipour, G. Comparative remediation rate of biostimulation, bioaugmentation, and phytoremediation in hydrocarbon contaminants. Int. J. Environ. Sci. Technol. 2022, 19, 11561–11586. [Google Scholar] [CrossRef]
- Parveen, S.; Ul Haq Bhat, I.; Khanam, Z.; Eh Rak, A.; Yusoff, H.M.; Akhter, M.S. Phytoremediation: In situ alternative for pollutant removal from contaminated natural media: A brief review. Biointerface Res. Appl. Chem. 2022, 12, 4945–4960. [Google Scholar]
- RD 39-00147105-006-97 Guidelines for the Remediation of Lands Disturbed and Contaminated during Emergency Repair and Overhaul of Petroleum Trunk Pipelines. Available online: http://meganorm.ru/Data2/1/4294846/4294846786.htm (accessed on 25 November 2022).
- US EPA (1999) Phytoremediation Resource Guide. EPA Document # 542-B-99-003, U.S. Environmental Protection Agency Solid Waste and Emergency Response. Available online: https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=10002SEE.TXT (accessed on 29 November 2022).
- Martí, M.C.; Camejo, D.; Fernández-García, N.; Rellán-Álvarez, R.; Marques, S.; Sevilla, F.; Jiménez, A. Effect of oil refinery sludges on the growth and antioxidant system of alfalfa plants. J. Hazard. Mater. 2009, 171, 879–885. [Google Scholar] [CrossRef] [Green Version]
- Rusin, M.; Gospodarek, J.; Barczyk, G.; Nadgórska-Socha, A. Antioxidant responses of Triticum aestivum plants to petroleum-derived substances. Ecotoxicology 2018, 27, 1353–1367. [Google Scholar] [CrossRef] [Green Version]
- Lyubun, Y.; Muratova, A.; Dubrovskaya, E.; Sungurtseva, I.; Turkovskaya, O. Combined effects of cadmium and oil sludge on sorghum: Growth, physiology, and contaminant removal. Environ. Sci. Pollut. Res. 2020, 27, 22720–22734. [Google Scholar] [CrossRef]
- Criquet, S.; Joner, E.; Leglize, P.; Leyval, C. Anthracene and mycorrhiza affect the activity of oxidoreductases in the roots and the rhizosphere of lucerne (Medicago sativa L.). Biotechnol. Lett. 2000, 22, 1733–1737. [Google Scholar] [CrossRef]
- Chroma, L.; Mackova, M.; Kucerova, P.; Wiesche, C.; Burkhard, J.; Macek, T. Enzymes in plant metabolism of PCBs and PAHs. Acta Biotechnol. 2002, 22, 35–41. [Google Scholar] [CrossRef]
- Muratova, A.; Pozdnyakova, N.; Golubev, S.; Wittenmayer, L.; Makarov, O.; Merbach, W.; Turkovskaya, O. Oxidoreductase activity of sorghum root exudates in a phenanthrene-contaminated environment. Chemosphere 2009, 74, 1031–1036. [Google Scholar] [CrossRef]
- Dubrovskaya, E.; Pozdnyakova, N.; Golubev, S.; Muratova, A.; Grinev, V.; Bondarenkova, A.; Turkovskaya, O. Peroxidases from root exudates of Medicago sativa and Sorghum bicolor: Catalytic properties and involvement in PAH degradation. Chemosphere 2017, 169, 224–232. [Google Scholar] [CrossRef]
- Técher, D.; Laval-Gilly, P.; Henry, S.; Bennasroune, A.; Formanek, P.; Martinez-Chois, C.; D’Innocenzo, M.; Muanda, F.; Dicko, A.; Rejšek, K.; et al. Contribution of Miscanthus x giganteus root exudates to the biostimulation of PAH degradation: An in vitro study. Sci. Total Environ. 2011, 409, 4489–4495. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Wang, M.; Lu, W.; Zhang, L.; Jiang, Q.; Jin, Y.; Lu, K.; Sun, S.; Cao, Q.; Wang, Y.; et al. Effect of plants and their root exudate on bacterial activities during rhizobacterium–plant remediation of phenol from water. Environ. Int. 2019, 127, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Gaskin, S.E.; Bentham, R.H. Rhizoremediation of hydrocarbon contaminated soil using Australian native grasses. Sci. Total Environ. 2010, 408, 3683–3688. [Google Scholar] [CrossRef]
- Khan, S.; Afzal, M.; Iqbal, S.; Khan, Q.M. Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 2013, 90, 1317–1332. [Google Scholar] [CrossRef] [PubMed]
- Hussain, I.; Puschenreiter, M.; Gerhard, S.; Schöftner, P.; Yousaf, S.; Wang, A.; Syed, J.H.; Reichenauer, T.G. Rhizoremediation of petroleum hydrocarbon-contaminated soils: Improvement opportunities and field applications. Environ. Exp. Bot. 2018, 147, 202–219. [Google Scholar] [CrossRef]
- Ramenskiy, L.G. Uchet i Opisaniye Rastitel’nosti (na Osnove Proyektivnogo Metoda) (Accounting and Description of Vegetation [Based on the Projective Method]); VASHNIL: Moscow, Russia, 1937; 100p. (In Russian) [Google Scholar]
- Panchenko, L.; Muratova, A.; Dubrovskaya, E.; Golubev, S.; Turkovskaya, O. Dynamics of natural revegetation of hydrocarbon-contaminated soil and remediation potential of indige-nous plant species in the steppe zone of the southern Volga Uplands. Environ. Sci. Pollut. Res. 2018, 25, 3260–3274. [Google Scholar] [CrossRef] [PubMed]
- Muratova, A.Y.; Dmitrieva, T.V.; Panchenko, L.V.; Turkovskaya, O.V. Phytoremediation of oil-sludge-contaminated soil. Int. J. Phytoremediation 2008, 10, 486–502. [Google Scholar] [CrossRef]
- PND F 16.1:2:2.2:2.3:3.64-10. In Environmental Regulation Document at the Federal Level No. 16.1:2:2.2:2.3:3.64-10. Methods of Measurement of the Mass Fraction of Oil in the Samples of Soils, Sediments, Sludges, Sewage Sludge, Waste Production and Consumption by Gravimetric Method; Rostechnadzor: Moscow, Russia, 2010. (In Russian)
- Drugov, Y.; Rodin, A. Ekologicheskiye Analizy pri Razlivah nefti i Nefteproduktov. Prakticheskoye Rukovodstvo (Environmental Analyses in Oil and Oil-Product Spills: A Handbook); BINOM: Moscow, Russia, 2007; pp. 167–216. (In Russian) [Google Scholar]
- GOST 26489-85. Soils. Determination of Exchangeable Ammonium by CINAO Method. Available online: https://docs.cntd.ru/document/1200023496 (accessed on 1 October 2022).
- GOST 26488-85. Soils. Determination of Nitrates by CINAO Method. Available online: https://docs.cntd.ru/document/1200023495 (accessed on 1 October 2022).
- Bushnell, L.D.; Haas, H.F. The utilization of certain hydrocarbons by microorganisms. J. Bacteriol. 1941, 5, 653–674. [Google Scholar] [CrossRef] [Green Version]
- Cai, B.; Ma, J.; Yan, G.; Dai, X.; Li, M.; Guo, S. Comparison of phytoremediation, bioaugmentation and natural attenuation for remediating saline soil contaminated by heavy crude oil. Biochem. Eng. J. 2016, 112, 170–177. [Google Scholar] [CrossRef]
- García-Sánchez, M.; Košnář, Z.; Mercl, F.; Aranda, E.; Tlustoš, P. A comparative study to evaluate natural attenuation, mycoaugmentation, phytoremediation, and microbial-assisted phytoremediation strategies for the bioremediation of an aged PAH-polluted soil. Ecotoxicol. Environ. Saf. 2018, 147, 165–174. [Google Scholar] [CrossRef] [PubMed]
- González-Moscoso, M.; Rivera-Cruz, M.C.; Trujillo-Narcía, A. Decontamination of soil containing oil by natural attenuation, phytoremediation and chemical desorption. Int. J. Phytoremediation 2019, 21, 768–776. [Google Scholar] [CrossRef]
- Basumatary, B.; Bordoloi, S.; Sarma, H.P. Crude oil-contaminated soil phytoremediation by using Cyperus brevifolius (Rottb.) Hassk. Water Air Soil Pollut. 2012, 223, 3373–3383. [Google Scholar] [CrossRef]
- Gift, U.N.; Wegwu, M.O.; Belonwu, C.D. Comparison of the efficacy of remediation by enhanced natural attenuation with phytoremediation in the recovery of crude-oil polluted soils. J. Environ. Earth Sci. 2015, 5, 156–163. [Google Scholar]
- Olson, P.E.; Fletcher, J.S. Ecological recovery of vegetation at a former industrial sludge basin and its implications to phytoremediation. Environ. Sci. Pol. Res. 2000, 7, 195–204. [Google Scholar] [CrossRef]
- Robson, D.B.; Knight, J.D.; Farrell, R.E.; Germida, J.J. Natural revegetation of hydrocarbon-contaminated soil in semi-arid grassland. Can. J. Bot. 2004, 82, 22–30. [Google Scholar] [CrossRef]
- Phillips, L.A.; Greer, C.W.; Farrell, R.E.; Germida, J.J. Field-scale assessment of weathered hydrocarbon degradation by mixed and single plant treatments. Appl. Soil Ecol. 2009, 42, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Gurska, J.; Wang, W.; Gerhardt, K.E.; Khalid, A.M.; Isherwood, D.M.; Huang, X.D.; Glick, B.R.; Greenberg, B.M. Three year field test of a plant growth promoting rhizobacteria enhanced phytoremediation system at a land farm for treatment of hydrocarbon waste. Environ. Sci. Technol. 2009, 43, 4472–4479. [Google Scholar] [CrossRef]
- Al-Ateeqi, S.; Al-Musawi, L.I.; Sharma, V.K.; Abdullah, M.; Ma, X. Plant communities and potential native phytoremediator species in petroleum hydrocarbon-polluted desert systems. Land Degrad. Dev. 2022, 33, 1745–1757. [Google Scholar] [CrossRef]
- Franchi, E.; Cardaci, A.; Pietrini, I.; Fusini, D.; Conte, A.; De Folly D’Auris, A.; Grifoni, M.; Pedron, F.; Barbafieri, M.; Petruzzelli, G.; et al. Nature-based solutions for restoring an agricultural area contaminated by an oil spill. Plants 2022, 11, 2250. [Google Scholar] [CrossRef]
- Sivkov, Y.; Nikiforov, A. Study of oil-contaminated soils phytotoxicity during bioremediation activities. J. Ecol. Eng. 2021, 22, 67–72. [Google Scholar] [CrossRef]
- Hou, J.; Wang, Q.; Liu, W.; Zhong, D.; Ge, Y.; Christie, P.; Luo, Y. Soil microbial community and association network shift induced by several tall fescue cultivars during the phytoremediation of a petroleum hydrocarbon-contaminated soil. Sci. Total Environ. 2021, 792, 148411. [Google Scholar] [CrossRef] [PubMed]
- Dados, A.; Omirou, M.; Demetriou, K.; Papastephanou, C.; Ioannides, I.M. Rapid remediation of soil heavily contaminated with hydrocarbons: A comparison of different approaches. Ann. Microbiol. 2015, 65, 241–251. [Google Scholar] [CrossRef]
- Jiang, Z.; Liu, Y.; Yang, J.; Gunina, A. Effects of nitrogen fertilization on the rhizosphere priming. Plant Soil 2021, 462, 489–503. [Google Scholar] [CrossRef]
- Hutchinson, S.L.; Banks, M.K.; Schwab, A.P. Phytoremediation of aged petroleum sludge: Effect of inorganic fertilizer. J. Environ. Qual. 2001, 30, 395–403. [Google Scholar] [CrossRef]
- Pleshakova, E.; Dubrovskaya, E.; Turkovskaya, O. Stimulation of the activity of oil oxidizing microorganisms in contaminated soil. In New Research on the Environment and Biotechnology; Kuznetsov, A., Zaikov, G., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2006; pp. 37–49. [Google Scholar]
- Abdel Ghany, T.M.; Al Abboud, M.A.; Negm, M.E.; Shater, A.R.M. Rhizosphere microorganisms as inducers for phytoremediation. Int. J. Bioinform. Res. Appl. 2015, 1, 7–15. [Google Scholar]
Procedure | Quantity | Period |
---|---|---|
Soil milling | WM1100BE walk-behind tractor (Weima China) Processing depth, 25–30 cm | Before remediation |
Fertilization: Azophoska mineral fertilizer (NPK, 22:11:11) | 3 kg/100 m2 × 2 | Before and 1.5 months after sowing |
Watering | 30 L/m2 | One day before sowing |
Sowing: Medicago sativa Lolium perenne | 0.4 kg/100 m2 0.5 kg/100 m2 | April–May |
Rolling seedlings | After sowing | |
Soil sampling | One mixed sample was made from five to eight local point samples taken from a depth of 5–15 cm at each site | Before sowing, after 3, 12 months, then annually |
Watering | 20 L/m2 × 2 | Before sowing, and 3 weeks after seedling appearance |
Site No. | Characterization | Area (m2) | Foliage Projective Cover (%) | TPHs (g/kg) |
---|---|---|---|---|
S-1 | Former oil sludge pit (aged oil pollution) | 12,000 * | 25–30 | 5.3 ± 0.3 |
S-2 | Fresh and aged oil spills near oil pipelines | 2800 | 65–70 | 18.8 ± 2.6 |
S-3 | Fresh and aged oil spills near oil pipelines | 5000 | 50–55 | 4.2 ± 0.2 |
S-4 | Fresh and aged oil spills near oil pipelines | 4800 | 60–65 | 6.6 ± 0.5 |
S-5 | Fresh and aged oil spills near oil pipelines | 1400 | 50–55 | 6.8 ± 0.4 |
S-6 | Aged subsurface oil pollution near oil pipelines and tanks | 2100 | 25–30 | 6.1 ± 0.3 |
S-7 | Fresh and aged oil spills near oil pipelines | 16,200 | 40–45 | 24.5 ± 2.3 |
S-8 | Aged subsurface oil pollution near oil pipelines and tanks | 5100 | 35–40 | 12.6 ± 0.7 |
S-9 | Aged subsurface oil pollution near oil pipelines | 1800 | 40–45 | 27.4 ± 2.5 |
S-10 | Former oil sludge pit (subsurface aged oil pollution) | 10,000 | 20 | 18.2 ± 1.0 |
S-11 | Fresh and aged oil spills near oil pipelines and tanks | 800 | <20 | 10.8 ± 0.5 |
S-12 | Fresh and aged oil spills near oil pipelines and tanks | 850 | <20 | 8.4 ± 0.8 |
S-13 | Fresh and aged oil spills near oil pipelines and tanks | 820 | <20 | 16.6 ± 1.8 |
S-14 | Fresh and aged oil spills near oil pipelines and tanks | 860 | <20 | 9.4 ± 0.5 |
S-15 | Fresh and aged oil spills near oil pipelines and tanks | 920 | <20 | 15.6 ± 1.4 |
S-16 | Fresh and aged oil spills near oil pipelines and tanks | 800 | <20 | 14.8 ± 0.8 |
S-17 | Former oil sludge pit (aged oil pollution) | 1200 | <20 | 5.5 ± 0.3 |
S-18 | Former oil sludge pit (aged oil pollution) | 1200 | <20 | 19.4 ± 0.9 |
S-19 | Former oil sludge pit (aged oil pollution) | 1100 | <20 | 27.1 ± 1.4 |
S-20 | Former oil sludge pit (aged oil pollution) | 800 | <20 | 16.3 ± 0.7 |
Site No. | N-NH4+ (mg/kg) | N-NO3− (mg/kg) | TPHs (g/kg) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Initial | 1st Year | 3rd Year | 5th Year | Initial | 1st Year | 3rd Year | 5th Year | Initial | 1st Year | 3rd Year | 5th Year | |
S-1 | 12.1 ± 0.6 * | 18.2 ± 1.0 | 26.1 ± 1.7 | 27.9 ± 1.3 | 2.4 ± 0.2 | 2.3 ± 0.1 | 3.5 ± 0.2 | 3.5 ± 0.1 | 5.3 ± 0.3 | 3.8 ± 0.3 | 1.0 ± 0.1 | 0.2 ± 0.0 |
S-2 | 25.0 ± 0.1 | 29.3 ± 1.3 | 31.7 ± 1.5 | 37.3 ± 1.8 | 4.5 ± 1.9 | 5.2 ± 0.3 | 6.3 ± 0.3 | 6.5 ± 0.3 | 18.8 ± 2.6 | 6.4 ± 0.4 | 4.5 ± 0.3 | 0.2 ± 0.0 |
S-3 | 28.2 ± 1.5 | 30.9 ± 1.4 | 32.3 ± 1.4 | 36.7 ± 2.0 | 6.1 ± 0.3 | 5.4 ± 0.2 | 5.6 ± 0.2 | 6.1 ± 0.4 | 4.2 ± 0.2 | 1.2 ± 0.0 | 0.2 ± 0.0 | 0.2 ± 0.0 |
S-4 | 26.1 ± 1.2 | 31.3 ± 1.5 | 34.3 ± 1.5 | 35.9 ± 1.4 | 5.9 ± 0.4 | 6.2 ± 0.3 | 6.1 ± 0.4 | 6.1 ± 0.3 | 6.6 ± 0.5 | 1.2 ± 0.1 | 0.4 ± 0.0 | 0.4 ± 0.0 |
S-5 | 18.3 ± 1.0 | 26.2 ± 1.4 | 25.4 ± 1.6 | 29.1 ± 1.6 | 2.2 ± 0.1 | 4.8 ± 0.2 | 4.4 ± 0.3 | 5.2 ± 0.3 | 6.8 ± 0.4 | 2.2 ± 0.1 | 1.7 ± 0.1 | 0.7 ± 0.1 |
S-6 | 18.2 ± 0.9 | 26.8 ± 1.5 | 26.2 ± 1.2 | 31.3 ± 1.5 | 3.1 ± 0.1 | 5.3 ± 0.3 | 5.2 ± 0.3 | 5.1 ± 0.3 | 6.2 ± 0.3 | 4.8 ± 0.3 | 2.1 ± 0.1 | 0.5 ± 0.1 |
S-7 | 16.4 ± 0.7 | 23.8 ± 1.1 | 25.1 ± 1.2 | 32.2 ± 1.5 | 2.5 ± 0.1 | 3.6 ± 0.4 | 4.8 ± 0.2 | 5.5 ± 0.5 | 24.5 ± 2.3 | 15.3 ± 0.9 | 8.7 ± 0.6 | 1.6 ± 0.1 |
S-8 | 15.0 ± 0.7 | 20.3 ± 0.9 | 21.9 ± 1.4 | 31.4 ± 1.7 | 5.1 ± 0.2 | 5.2 ± 0.2 | 5.4 ± 0.3 | 6.3 ± 0.3 | 12.6 ± 0.7 | 7.4 ± 0.3 | 4.7 ± 0.3 | 1.8 ± 0.1 |
S-9 | 14.2 ± 0.8 | 181 ± 1.1 | 21.7 ± 1.0 | 26.1 ± 1.8 | 5.3 ± 0.3 | 5.4 ± 0.3 | 5.7 ± 0.4 | 5.6 ± 0.3 | 27.4 ± 2.5 | 18.5 ± 1.5 | 13.2 ± 0.7 | 4.1 ± 0.3 |
S-10 | 1.3 ± 0.2 | 11.4 ± 0.5 | 24.4 ± 1.6 | 30.8 ± 1.4 | 2.6 ± 0.1 | 4.7 ± 0.2 | 5.5 ± 0.2 | 6.0 ± 0.5 | 18.2 ± 1.0 | 17.4 ± 0.9 | 11.3 ± 0.6 | 7.9 ± 0.6 |
Site No. | N-NH4+ (mg/kg) | N-NO3− (mg/kg) | TPHs (g/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Initial | 3rd Month | 1st Year | Initial | 3rd Month | 1st Year | Initial | 1st Year | 3rd Year | 5th Year | |
S-11 | 23.5 ± 1.1 * | 37.2 ± 1.8 | 29.1 ± 1.7 | 1.8 ± 0.1 | 17.5 ± 0.8 | 5.4 ± 0.2 | 10.8 ± 0.5 | 2.5 ± 0.1 | 1.5 ± 0.1 | 1.1 ± 0.1 |
S-12 | 24.1 ± 1.3 | 37.5 ± 2.0 | 28.5 ± 1.4 | 3.4 ± 0.2 | 20.2 ± 1.0 | 4.3 ± 0.3 | 8.4 ± 0.8 | 0.9 ± 0.1 | 0.8 ± 0.1 | 0.7 ± 0.1 |
S-13 | 19.4 ± 0.9 | 38.4 ± 1.8 | 28.2 ± 1.4 | 2.7 ± 0.1 | 18.4 ± 1.1 | 5.2 ± 0.2 | 16.6 ± 1.8 | 2.9 ± 0.2 | 2.6 ± 0.1 | 1.3 ± 0.1 |
S-14 | 24.5 ± 1.1 | 40.6 ± 2.0 | 27.4 ± 1.5 | 2.3 ± 0.1 | 24.0 ± 1.1 | 6.5 ± 0.3 | 9.4 ± 0.5 | 0.9 ± 0.1 | 0.8 ± 0.1 | 0.7 ± 0.1 |
S-15 | 22.1 ± 1.4 | 37.1 ± 1.9 | 29.0 ± 1.3 | 1.6 ± 0.2 | 21.0 ± 0.9 | 6.1 ± 0.4 | 15.6 ± 1.4 | 2.9 ± 0.1 | 2.4 ± 0.1 | 1.0 ± 0.1 |
S-16 | 20.3 ± 1.2 | 39.5 ± 1.6 | 26.2 ± 1.2 | 1.9 ± 0.2 | 25.4 ± 1.2 | 5.0 ± 0.2 | 14.8 ± 0.8 | 2.9 ± 0.2 | 2.4 ± 0.1 | 1.0 ± 0.1 |
S-17 | 16.2 ± 0.7 | 22.5 ± 1.1 | 16.4 ± 1.1 | 3.7 ± 0.1 | 15.4 ± 0.9 | 1.7 ± 0.1 | 5.5 ± 0.3 | 1.5 ± 0.2 | 1.1 ± 0.1 | 1.1 ± 0.1 |
S-18 | 15.5 ± 0.7 | 25.2 ± 1.5 | 16.3 ± 1.2 | 4.2 ± 0.2 | 15.5 ± 0.7 | 1.8 ± 0.2 | 19.4 ± 0.9 | 2.9 ± 0.1 | 2.2 ± 0.1 | 1.2 ± 0.1 |
S-19 | 21.1 ± 1.5 | 35.1 ± 1.6 | 20.0 ± 0.9 | 1.6 ± 0.1 | 11.8 ± 0.6 | 2.4 ± 0.2 | 27.1 ± 1.4 | 4.9 ± 0.2 | 3.2 ± 0.2 | 1.9 ± 0.2 |
S-20 | 28.4 ± 1.4 | 42.3 ± 2.1 | 19.5 ± 1.0 | 2.4 ± 0.1 | 16.5 ± 0.7 | 2.9 ± 0.2 | 16.3 ± 0.7 | 2.5 ± 0.1 | 1.8 ± 0.1 | 1.0 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panchenko, L.; Muratova, A.; Dubrovskaya, E.; Golubev, S.; Turkovskaya, O. Natural and Technical Phytoremediation of Oil-Contaminated Soil. Life 2023, 13, 177. https://doi.org/10.3390/life13010177
Panchenko L, Muratova A, Dubrovskaya E, Golubev S, Turkovskaya O. Natural and Technical Phytoremediation of Oil-Contaminated Soil. Life. 2023; 13(1):177. https://doi.org/10.3390/life13010177
Chicago/Turabian StylePanchenko, Leonid, Anna Muratova, Ekaterina Dubrovskaya, Sergey Golubev, and Olga Turkovskaya. 2023. "Natural and Technical Phytoremediation of Oil-Contaminated Soil" Life 13, no. 1: 177. https://doi.org/10.3390/life13010177
APA StylePanchenko, L., Muratova, A., Dubrovskaya, E., Golubev, S., & Turkovskaya, O. (2023). Natural and Technical Phytoremediation of Oil-Contaminated Soil. Life, 13(1), 177. https://doi.org/10.3390/life13010177