Trace Element Uptake by Willows Used for the Phytoremediation of Biosolids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Greenhouse Experiment
2.2. Field Experiment
2.3. Chemical Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sastre, I.; Vicente, M.A.; Lobo, M.C. Influence of the Application of Sewage Sludges on Soil Microbial Activity. Bioresour. Technol. 1996, 57, 19–23. [Google Scholar] [CrossRef]
- Albiach, R.; Canet, R.; Pomares, F.; Ingelmo, F. Microbial Biomass Content and Enzymatic Activities after the Application of Organic Amendments to a Horticultural Soil. Bioresour. Technol. 2000, 75, 43–48. [Google Scholar] [CrossRef]
- Vasseur, L.; Cloutier, C.; Ansseau, C. Effects of Repeated Sewage Sludge Application on Plant Community Diversity and Structure under Agricultural Field Conditions on Podzolic Soils in Eastern Quebec. Agric. Ecosyst. Environ. 2000, 81, 209–216. [Google Scholar] [CrossRef]
- Bohm, K.; Hatley, G.A.; Robinson, B.H. Black Soldier Fly-Based Bioconversion of Biosolids Creates High-Value Products with Low Heavy Metal Concentrations. Conserv. Recycl. 2022, 180, 106149. [Google Scholar] [CrossRef]
- Focker, M.; van Asselt, E.D.; Berendsen, B.J.A.; van de Schans, M.G.M.; van Leeuwen, S.P.J.; Visser, S.M.; van der Fels-Klerx, H.J. Review of Food Safety Hazards in Circular Food Systems in Europe. Food Res. Int. 2022, 158, 111505. [Google Scholar] [CrossRef]
- McBride, M.B. Long-Term Biosolids Application on Land: Beneficial Recycling of Nutrients or Eutrophication of Agroecosystems? Soil Syst. 2022, 6, 9. [Google Scholar] [CrossRef]
- Underwood, E.J.; Suttle, N.F. The Mineral Nutrition of Livestock, 3rd ed.; CAB International: Wallingford, UK, 1999; p. 614. [Google Scholar]
- Anderson, C.W.N.; Robinson, B.H.; West, D.M.; Clucas, L.; Portmann, D. Zinc-Enriched and Zinc-Biofortified Feed as a Possible Animal Remedy in Pastoral Agriculture: Animal Health and Environmental Benefits. J. Geochem. Explor. 2012, 121, 30–35. [Google Scholar] [CrossRef]
- Song, C.; Shen, X. Effects of Environmental Zinc Deficiency on Antioxidant System Function in Wumeng Semi-Fine Wool Sheep. Biol. Trace Elem. Res. 2020, 195, 110–116. [Google Scholar] [CrossRef]
- Hill, G.M.; Shannon, M.C. Copper and Zinc Nutritional Issues for Agricultural Animal Production. Biol. Trace Elem. Res. 2019, 188, 148–159. [Google Scholar] [CrossRef] [Green Version]
- Gartler, J.; Robinson, B.; Burton, K.; Clucas, L. Carbonaceous Soil Amendments to Biofortify Crop Plants with Zinc. Sci. Total Environ. 2013, 465, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Alloway, B.J.; Jackson, A.P. The Behaviour of Heavy Metals in Sewage Sludge-Amended Soils. Sci. Total Environ. 1991, 100, 151–176. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ryan, J.A.; Chen, J.L.; Al-Abed, S.R. Adsorption of Cadmium on Biosolids-Amended Soils. J. Environ. Qual. 2001, 30, 903–911. [Google Scholar] [CrossRef] [PubMed]
- Stadelmann, F.X.; Furrer, O.J. Long-Term Effects of Sewage and Pig Slurry Applications on Micro-Biological and Chemical Soil Properties in Field Experiments. In Long-Term Effects of Sewage Sludge and Farm Slurries Applications; Elsevier Applied Science Publishers: London, UK, 1985; pp. 136–145. [Google Scholar]
- Brown, S.L.; Henry, C.L.; Chaney, R.; Compton, H.; DeVolder, P.S. Using Municipal Biosolids in Combination with Other Residuals to Restore Metal-Contaminated Mining Areas. Plant Soil 2003, 249, 203–215. [Google Scholar] [CrossRef]
- Labrecque, M.; Teodorescu, T.I.; Daigle, S. Effect of Wastewater Sludge on Growth and Heavy Metal Bioaccumulation of Two Salix Species. Plant Soil 1995, 171, 303–316. [Google Scholar] [CrossRef]
- Correa, R.S.; White, R.E.; Weatherley, A.J. Risk of Nitrate Leaching from Two Soils Amended with Biosolids. Water Resour. 2006, 33, 453–462. [Google Scholar] [CrossRef]
- Paramashivam, D.; Dickinson, N.M.; Clough, T.J.; Horswell, J.; Robinson, B.H. Potential Environmental Benefits from Blending Biosolids with Other Organic Amendments before Application to Land. J. Environ. Qual. 2017, 46, 481–489. [Google Scholar] [CrossRef] [Green Version]
- Knowles, O.A.; Robinson, B.H.; Contangelo, A.; Clucas, L. Biochar for the Mitigation of Nitrate Leaching from Soil Amended with Biosolids. Sci. Total Environ. 2011, 409, 3206–3210. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Cui, L.; Pan, G.; Li, L.; Hussain, Q.; Zhang, X.; Zheng, J.; Crowley, D. Effect of Biochar Amendment on Yield and Methane and Nitrous Oxide Emissions from a Rice Paddy from Tai Lake Plain, China. Agric. Ecosyst. Environ. 2010, 139, 469–475. [Google Scholar] [CrossRef]
- Chan, K.Y.; Xu, Z. Biochar: Nutrient Properties and Their Enhancement. Biochar Environ. Manag. Sci. Technol. 2009, 1, 67–84. [Google Scholar]
- Novak, J.M.; Busscher, W.J.; Laird, D.L.; Ahmedna, M.; Watts, D.W.; Niandou, M.A.S. Impact of Biochar Amendment on Fertility of a Southeastern Coastal Plain Soil. Soil Sci. 2009, 174, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating Physical and Chemical Properties of Highly Weathered Soils in the Tropics with Charcoal—A Review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Topoliantz, S.; Ponge, J.-F.; Ballof, S. Manioc Peel and Charcoal: A Potential Organic Amendment for Sustainable Soil Fertility in the Tropics. Biol. Fertil. Soils 2005, 41, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.-H.; Lehmann, J.; Thies, J.E.; Burton, S.D. Stability of Black Carbon in Soils across a Climatic Gradient. J. Geophys. Res. 2008, 113, G02027. [Google Scholar] [CrossRef] [Green Version]
- Güereña, D.; Lehmann, J.; Hanley, K.; Enders, A.; Hyland, C.; Riha, S. Nitrogen Dynamics Following Field Application of Biochar in a Temperate North American Maize-Based Production System. Plant Soil 2013, 365, 239–254. [Google Scholar] [CrossRef]
- Clough, T.J.; Condron, L.M. Biochar and the Nitrogen Cycle: Introduction. J. Environ. Qual. 2010, 39, 1218–1223. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.P.; Hatton, B.J.; Singh, B.; Cowie, A.L.; Kathuria, A. Influence of Biochars on Nitrous Oxide Emission and Nitrogen Leaching from Two Contrasting Soils. J. Environ. Qual. 2010, 39, 1224. [Google Scholar] [CrossRef]
- Steiner, C.; Das, K.C.; Garcia, M.; Förster, B.; Zech, W. Charcoal and Smoke Extract Stimulate the Soil Microbial Community in a Highly Weathered Xanthic Ferralsol. Pedobiologia 2008, 51, 359–366. [Google Scholar] [CrossRef]
- Warnock, D.D.; Lehmann, J.; Kuyper, T.W.; Rillig, M.C. Mycorrhizal Responses to Biochar in Soil—Concepts and Mechanisms. Plant Soil 2007, 300, 9–20. [Google Scholar] [CrossRef]
- Gujre, N.; Soni, A.; Rangan, L.; Tsang, D.C.W.; Mitra, S. Sustainable Improvement of Soil Health Utilizing Biochar and Arbuscular Mycorrhizal Fungi: A Review. Environ. Pollut. 2021, 268, 115549. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a Sorbent for Contaminant Management in Soil and Water: A Review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Beesley, L.; Moreno-Jiménez, E.; Gomez-Eyles, J.L.; Harris, E.; Robinson, B.; Sizmur, T. A Review of Biochars’ Potential Role in the Remediation, Revegetation and Restoration of Contaminated Soils. Environ. Pollut. 2011, 159, 3269–3282. [Google Scholar] [CrossRef] [PubMed]
- Suthar, R.; Wang, C.; Nunes, M.; Chen, J.; Sargent, S.; Bucklin, R.; Gao, B. Bamboo Biochar Pyrolyzed at Low Temperature Improves Tomato Plant Growth and Fruit Quality. Agriculture 2018, 8, 153. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic Values of Greenwaste Biochar as a Soil Amendment. Soil Res. 2008, 45, 629–634. [Google Scholar] [CrossRef]
- Shinogi, Y.; Yoshida, H.; Koizumi, T.; Yamaoka, M.; Saito, T. Basic Characteristics of Low-Temperature Carbon Products from Waste Sludge. Adv. Environ. Res. 2003, 7, 661–665. [Google Scholar] [CrossRef]
- Newman, S.M. Poplar Agroforestry in India. For. Ecol. Manag. 1997, 90, 13–17. [Google Scholar] [CrossRef]
- Oppong, S.; Kemp, P.D.; Douglas, G.B.; Bulloch, B.T. Management of Browse Plants as Drought Fodder for Sheep: A Preliminary Study. In Proceedings of the Conference-New Zealand Grassland Association, Waitangi, New Zealand, December 1996; Volume 57, pp. 93–98. [Google Scholar]
- McIvor, I.R.; Hedderley, D.; Mason, K. Effect of Pollarding for Fodder on Fine Root Dynamics of Soil Conservation Willow Trees in New Zealand. Adv. Environ. Stud. 2020, 4, 252–260. [Google Scholar] [CrossRef]
- Wilkinson, A.G. Poplars and Willows for Soil Erosion Control in New Zealand. Biomass Bioenergy 1999, 16, 263–274. [Google Scholar] [CrossRef]
- Hathaway, R.L. Short-Rotation Biomass Production of Willows. In Proceedings of the International Poplar Commission Ad Hoc Committee on Biomass Production Systems in Salicaceae Eng, Monferrato, Italy, 3–5 September 1986. [Google Scholar]
- Barry, T.; Kemp, P. Ewes Respond to Poplar Feed. Tree Feed 2001, 1, 2–3. [Google Scholar]
- Robinson, B.; Mills, T.; Green, S.; Chancerel, B.; Clothier, B.; Fung, L.; Hurst, S.; McIvor, I. Trace Element Accumulation by Poplars and Willows Used for Stock Fodder. N. Z. J. Agric. Res. 2005, 48, 489–497. [Google Scholar] [CrossRef]
- Granel, T.; Robinson, B.; Mills, T.; Clothier, B.; Green, S.; Fung, L. Cadmium Accumulation by Willow Clones Used for Soil Conservation, Stock Fodder, and Phytoremediation. Soil Res. 2002, 40, 1331–1337. [Google Scholar] [CrossRef]
- Robinson, B.; Green, S.; Mills, T.; Clothier, B.; van der Velde, M.; Laplane, R.; Fung, L.; Deurer, M.; Hurst, S.; Thayalakumaran, T.; et al. Phytoremediation: Using Plants as Biopumps to Improve Degraded Environments. Soil Res. 2003, 41, 599–611. [Google Scholar] [CrossRef]
- Punshon, T.; Dickinson, N.M. Acclimation of Salix to Metal Stress. New Phytol. 1997, 137, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Stoltz, E.; Greger, M. Accumulation Properties of As, Cd, Cu, Pb and Zn by Four Wetland Plant Species Growing on Submerged Mine Tailings. Environ. Exp. Bot. 2002, 47, 271–280. [Google Scholar] [CrossRef]
- Rosselli, W.; Keller, C.; Boschi, K. Phytoextraction Capacity of Trees Growing on a Metal Contaminated Soil. Plant Soil 2003, 256, 265–272. [Google Scholar] [CrossRef]
- Lunácková, J.; Chmelík, V.; Sipova, I.; Zampachova, E.; Becvarova, J. Epidemiologic Monitoring of Tick-Borne Encephalitis in Rimov in Southern Bohemia. Epidemiol. Mikrobiol. Imunol. 2003, 52, 51–58. [Google Scholar]
- Vandecasteele, B.; Quataert, P.; De Vos, B.; Tack, F.M.G.; Muys, B. Foliar Concentrations of Volunteer Willows Growing on Polluted Sediment-Derived Sites versus Sites with Baseline Contamination Levels. J. Environ. Monit. 2004, 6, 313–321. [Google Scholar] [CrossRef]
- Vandecasteele, B.; Meers, E.; Vervaeke, P.; De Vos, B.; Quataert, P.; Tack, F.M.G. Growth and Trace Metal Accumulation of Two Salix Clones on Sediment-Derived Soils with Increasing Contamination Levels. Chemosphere 2005, 58, 995–1002. [Google Scholar] [CrossRef] [Green Version]
- Landberg, T.; Greger, M. Interclonal Variation of Heavy Metal Interactions inSalix Viminalis. Environ. Toxicol. Chem. 2002, 21, 2669–2674. [Google Scholar] [CrossRef]
- Klang-Westin, E.; Perttu, K. Effects of Nutrient Supply and Soil Cadmium Concentration on Cadmium Removal by Willow. Biomass Bioenergy 2002, 23, 415–426. [Google Scholar] [CrossRef]
- Keller, C.; Hammer, D.; Kayser, A.; Richner, W.; Brodbeck, M.; Sennhauser, M. Root Development and Heavy Metal Phytoextraction Efficiency: Comparison of Different Plant Species in the Field. Plant Soil 2003, 249, 67–81. [Google Scholar] [CrossRef]
- Clough, T.J.; Bertram, J.E.; Ray, J.L.; Condron, L.M.; O’Callaghan, M.; Sherlock, R.R.; Wells, N.S. Unweathered Wood Biochar Impact on Nitrous Oxide Emissions from a Bovine-Urine-Amended Pasture Soil. Soil Sci. Soc. Am. J. 2010, 74, 852–860. [Google Scholar] [CrossRef] [Green Version]
- Taghizadeh-Toosi, A.; Clough, T.J.; Condron, L.M.; Sherlock, R.R.; Anderson, C.R.; Craigie, R.A. Biochar Incorporation into Pasture Soil Suppresses in Situ Nitrous Oxide Emissions from Ruminant Urine Patches. J. Environ. Qual. 2011, 40, 468–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLaren, R.G.; Clucas, L.M.; Taylor, M.D. Leaching of Macronutrients and Metals from Undisturbed Soils Treated with Metal-Spiked Sewage Sludge. 3. Distribution of Residual Metals. Soil Res. 2005, 43, 159–170. [Google Scholar] [CrossRef]
- Black, A.; Mclaren, R.G.; Reichman, S.M.; Speir, T.W.; Condron, L.M. Examining the Integrity of Soil Metal Bioavailability Assays in the Presence of Organic Amendments to Metal-Spiked Soils: The Integrity of Soil Metal Assays. Soil Use Manag. 2012, 28, 89–100. [Google Scholar] [CrossRef]
- Simcock, R.; Cavanagh, J.; Robinson, B.; Gutierrez-Gines, M.J. Using Biowastes to Establish Native Plants and Ecosystems in New Zealand. Front. Sustain. Food Syst. 2019, 3, 85. [Google Scholar] [CrossRef] [Green Version]
- Joseph, S.; Cowie, A.L.; Van Zwieten, L.; Bolan, N.; Budai, A.; Buss, W.; Cayuela, M.L.; Graber, E.R.; Ippolito, J.A.; Kuzyakov, Y.; et al. How Biochar Works, and When It Doesn’t: A Review of Mechanisms Controlling Soil and Plant Responses to Biochar. Glob. Chang. Biol. Bioenergy 2021, 13, 1731–1764. [Google Scholar] [CrossRef]
- Lane, E.A.; Canty, M.J.; More, S.J. Cadmium Exposure and Consequence for the Health and Productivity of Farmed Ruminants. Res. Vet. Sci. 2015, 101, 132–139. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA) Opinion of the Scientific Panel on Contaminants in the Food Chain [CONTAM] Related to Cadmium as Undesirable Substance in Animal Feed. EFSA J. 2004, 2, 72. [CrossRef]
- Brzóska, M.M.; Moniuszko-Jakoniuk, J. Interactions between Cadmium and Zinc in the Organism. Food Chem. Toxicol. 2001, 39, 967–980. [Google Scholar] [CrossRef]
- Klaassen, C.D.; Liu, J.; Choudhuri, S. METALLOTHIONEIN: An Intracellular Protein to Protect Against Cadmium Toxicity. Annu. Rev. Pharmacol. Toxicol. 1999, 39, 267–294. [Google Scholar] [CrossRef] [Green Version]
- Esperschütz, J.; Lense, O.; Anderson, C. Biowaste Mixtures Affecting the Growth and Elemental Composition of Italian Ryegrass (Lolium multiflorum). J. Environ. Qual. 2016, 45, 1054–1061. [Google Scholar] [CrossRef] [Green Version]
- Grace, N.D.; Knowles, S.O. Trace Element Supplementation of Livestock in New Zealand: Meeting the Challenges of Free-Range Grazing Systems. Vet. Med. Int. 2012, 2012, 639472. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.K.; Behera, S.K.; Prakash, C.; Tripathi, A.; Patra, A.K.; Dwivedi, B.S.; Trivedi, V.; Rao, C.S.; Chaudhari, S.K.; Das, S.; et al. Deficiency of Phyto-Available Sulphur, Zinc, Boron, Iron, Copper and Manganese in Soils of India. Sci. Rep. 2021, 11, 19760. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, N.; Marmiroli, M.; Das, B.; McLaughlin, D.; Leung, D.; Robinson, B. Endemic Plants as Browse Crops in Agricultural Landscapes of New Zealand. Agroecol. Sustain. Food Syst. 2015, 39, 224–242. [Google Scholar] [CrossRef]
- Dos Santos Utmazian, M.N.; Wenzel, W.W. Cadmium and Zinc Accumulation in Willow and Poplar Species Grown on Polluted Soils. J. Plant Nutr. Soil Sci. 2007, 170, 265–272. [Google Scholar] [CrossRef]
- Ashworth, D.J.; Alloway, B.J. Soil Mobility of Sewage Sludge-Derived Dissolved Organic Matter, Copper, Nickel and Zinc. Environ. Pollut. 2004, 127, 137–144. [Google Scholar] [CrossRef]
- Robinson, B.H.; Bañuelos, G.; Conesa, H.M.; Evangelou, M.W.H.; Schulin, R. The Phytomanagement of Trace Elements in Soil. CRC Crit. Rev. Plant Sci. 2009, 28, 240–266. [Google Scholar] [CrossRef]
- Mikan, C.J.; Abrams, M.D. Altered Forest Composition and Soil Properties of Historic Charcoal Hearths in Southeastern Pennsylvania. Can. J. For. Res. 1995, 25, 687–696. [Google Scholar] [CrossRef]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A Review of Biochar and Its Use and Function in Soil. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2010; Volume 105, pp. 47–82. [Google Scholar]
- Namgay, T.; Singh, B.; Singh, B.P. Influence of Biochar Application to Soil on the Availability of As, Cd, Cu, Pb, and Zn to Maize (Zea mays L.). Soil Res. 2010, 48, 638. [Google Scholar] [CrossRef]
- Vácha, R.; Podlešáková, E.; Němeček, J.; Poláček, O. Immobilisation of As, Cd, Pb and Zn in Agricultural Soils by the Use of Organic and Inorganic Additives. Plant Soil Environ. 2011, 48, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Bolan, N.S.; Duraisamy, V.P. Role of Inorganic and Organic Soil Amendments on Immobilisation and Phytoavailability of Heavy Metals: A Review Involving Specific Case Studies. Aust. J. Soil Res. 2003, 41, 533–555. [Google Scholar] [CrossRef]
- Al Mamun, S.; Lehto, N.J.; Cavanagh, J.; McDowell, R.; Aktar, M.; Benyas, E.; Robinson, B.H. Effects of Lime and Organic Amendments Derived from Varied Source Materials on Cadmium Uptake by Potato. J. Environ. Qual. 2017, 46, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.U.; Nawaz, M.; Mahmood, A.; Shah, A.A.; Shah, A.N.; Muhammad, F.; Batool, M.; Rasheed, A.; Jaremko, M.; Abdelsalam, N.R.; et al. The Role of Zinc to Mitigate Heavy Metals Toxicity in Crops. Front. Environ. Sci. Eng. China 2022, 10, 990223. [Google Scholar] [CrossRef]
- Hamon, R.E.; McLaughlin, M.J. Use of the Hyperaccumulator Thlaspi Caerulescens for Bioavailable Contaminant Stripping. In Proceedings of the 5th International Conference on the Biogeochemistry of Trace Elements, Vienna, Austria, 11–15 July 1999; pp. 11–15. [Google Scholar]
- Bolan, N.S.; Adriano, D.C.; Kunhikrishnan, A.; James, T.; McDowell, R.; Senesi, N. Chapter One—Dissolved Organic Matter: Biogeochemistry, Dynamics, and Environmental Significance in Soils. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2011; Volume 110, pp. 1–75. [Google Scholar]
Pseudo-Total | ||||
---|---|---|---|---|
Control | Biosolids | Biochar | Biosolids/Biochar | |
C % | 3.3 (0.4) | 3.7 | 5.6 | 5.8 |
N % | 0.22 (0.01) | 0.31 | 0.24 | 0.36 |
P | 672 (21) | 814 (24) | 770 (8) | 834 (12) |
K | 3209 (102) | 3521 (64) | 3565 (107) | 3671 (29) |
S | 296 (8) | 482 (22) | 353 (5) | 505 (13) |
Ca | 3058 (52) | 3261 (52) | 3664 (69) | 3325 (46) |
Mg | 3341 (37) | 3387 (9) | 3227 (45) | 3240 (14) |
Na | 206 (5) | 219 (3) | 240 (14) | 215 (2) |
As | 3.3 (0.1) | 3.7 (<0.1) | 3.4 (0.1) | 3.8 (0.1) |
B | 15 (1) | 14 (1) | 15 (<1) | 15 (<1) |
Cd | 0.30 (0.01) | 0.39 (0.02) | 0.35 (0.01) | 0.40 (0.02) |
Cr | 59 (11) | 60 (1) | 49 (9) | 56 (10) |
Cu | 15 (3) | 52 (11) | 20 (6) | 74 (1) |
Fe | 32,711 (5917) | 30,809 (1014) | 33,051 (5981) | 43,327 (1900) |
Mn | 1188 (229) | 1098 (49) | 935 (175) | 1123 (18) |
Mo | 0.55 (0.09) | 0.90 (0.05) | 0.47 (0.12) | 1.11 (0.03) |
Ni | 30 (5) | 29 (1) | 23 (5) | 30 (1) |
Pb | 47 (8) | 53 (1) | 38 (7) | 52 (1) |
Zn | 59 (1) | 90 (4) | 62 (1) | 98 (1) |
Ca(NO3)2-extractable | ||||
As | 0.03 (<0.01) | 0.02 (<0.01) | 0.03 (0.01) | 0.03 (<0.01) |
Co | 0.37 (0.01) | 0.46 (<0.01) | 0.23 (0.01) | 0.35 (<0.01) |
Cd | 0.02 (<0.01) | 0.05 (<0.01) | 0.02 (<0.01) | 0.04 (<0.01) |
Cr | 0.02 (<0.01) | 0.02 (<0.01) | 0.02 (<0.01) | 0.02 (<0.01) |
Cu | <0.01 | 0.12 (0.01) | 0.02 (0.01) | 0.13 (0.01) |
Fe | 8.8 (0.72) | 10.8 (0.19) | 5.4 (0.39) | 7.9 (0.22) |
Mn | 46 (1) | 53 (1) | 47 (1) | 44 (1) |
Ni | 0.15 (<0.01) | 0.26 (0.01) | 0.09 (<0.01) | <0.01 |
Zn | 1.7 (0.08) | 16 (1) | 1.1 (0.05) | 13 (1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contangelo, A.; Esperschuetz, J.; Robinson, B.H. Trace Element Uptake by Willows Used for the Phytoremediation of Biosolids. Life 2023, 13, 243. https://doi.org/10.3390/life13010243
Contangelo A, Esperschuetz J, Robinson BH. Trace Element Uptake by Willows Used for the Phytoremediation of Biosolids. Life. 2023; 13(1):243. https://doi.org/10.3390/life13010243
Chicago/Turabian StyleContangelo, Angela, Juergen Esperschuetz, and Brett H. Robinson. 2023. "Trace Element Uptake by Willows Used for the Phytoremediation of Biosolids" Life 13, no. 1: 243. https://doi.org/10.3390/life13010243
APA StyleContangelo, A., Esperschuetz, J., & Robinson, B. H. (2023). Trace Element Uptake by Willows Used for the Phytoremediation of Biosolids. Life, 13(1), 243. https://doi.org/10.3390/life13010243