Gamma Knife Radiosurgery Irradiation of Surgical Cavity of Brain Metastases: Factor Analysis and Gene Mutations
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Surgical Resection
2.3. SRS Procedures
2.4. Radiation Dose Scheme
2.5. Outcomes and Follow-Up
2.6. Statistical Analysis
3. Results
3.1. Tumor Response and Overall Survival Following GKRS
3.2. Prognostic Factors Associated with Tumor Control
3.3. Prognostic Factors Associated with Overall Survival
3.4. Demonstration Case
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ballard, P.; Yates, J.W.; Yang, Z.; Kim, D.W.; Yang, J.C.; Cantarini, M.; Pickup, K.; Jordan, A.; Hickey, M.; Grist, M.; et al. Preclinical Comparison of Osimertinib with Other EGFR-TKIs in EGFR-Mutant NSCLC Brain Metastases Models, and Early Evidence of Clinical Brain Metastases Activity. Clin. Cancer Res. 2016, 22, 5130–5140. [Google Scholar] [CrossRef] [Green Version]
- Economopoulou, P.; Mountzios, G. Non-small cell lung cancer (NSCLC) and central nervous system (CNS) metastases: Role of tyrosine kinase inhibitors (TKIs) and evidence in favor or against their use with concurrent cranial radiotherapy. Transl. Lung Cancer Res. 2016, 5, 588–598. [Google Scholar] [CrossRef] [Green Version]
- Schuler, M.; Wu, Y.L.; Hirsh, V.; O’Byrne, K.; Yamamoto, N.; Mok, T.; Popat, S.; Sequist, L.V.; Massey, D.; Zazulina, V.; et al. First-Line Afatinib versus Chemotherapy in Patients with Non-Small Cell Lung Cancer and Common Epidermal Growth Factor Receptor Gene Mutations and Brain Metastases. J. Thorac. Oncol. 2016, 11, 380–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.C.; Chou, C.L.; Chen, C.J.; Yang, H.C.; Wu, H.M.; Shiau, C.Y.; Pan, D.H.; Chung, W.Y. Stereotactic radiosurgery for hypervascular intracranial tumors. J. Neurooncol. 2018, 140, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Pai, F.Y.; Chen, C.J.; Wang, W.H.; Yang, H.C.; Lin, C.J.; Wu, H.M.; Lin, Y.C.; Chen, H.S.; Yen, Y.S.; Chung, W.Y.; et al. Low-Dose Gamma Knife Radiosurgery for Acromegaly. Neurosurgery 2018, 85, E20–E30. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Pan, D.H.; Chung, W.Y.; Liu, K.D.; Yang, H.C.; Wu, H.M.; Guo, W.Y.; Shih, Y.H. Brainstem cavernous malformations: The role of Gamma Knife surgery. J. Neurosurg. 2012, 117, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Wintermark, M.; Xu, Z.; Yen, C.P.; Schlesinger, D.; Sheehan, J.P. Application of diffusion-weighted magnetic resonance imaging to predict the intracranial metastatic tumor response to gamma knife radiosurgery. J. Neurooncol. 2014, 118, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Yen, C.P.; Xu, Z.; Schlesinger, D.; Sheehan, J. Large intracranial metastatic tumors treated by Gamma Knife surgery: Outcomes and prognostic factors. J. Neurosurg. 2014, 120, 52–59. [Google Scholar] [CrossRef]
- Andrews, D.W.; Scott, C.B.; Sperduto, P.W.; Flanders, A.E.; Gaspar, L.E.; Schell, M.C.; Werner-Wasik, M.; Demas, W.; Ryu, J.; Bahary, J.P.; et al. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: Phase III results of the RTOG 9508 randomised trial. Lancet 2004, 363, 1665–1672. [Google Scholar] [CrossRef]
- Aoyama, H.; Shirato, H.; Tago, M.; Nakagawa, K.; Toyoda, T.; Hatano, K.; Kenjyo, M.; Oya, N.; Hirota, S.; Shioura, H.; et al. Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: A randomized controlled trial. JAMA 2006, 295, 2483–2491. [Google Scholar] [CrossRef]
- Shaw, E.; Scott, C.; Souhami, L.; Dinapoli, R.; Kline, R.; Loeffler, J.; Farnan, N. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: Final report of RTOG protocol 90-05. Int. J. Radiat. Oncol. Biol. Phys. 2000, 47, 291–298. [Google Scholar] [CrossRef]
- Snell, J.W.; Sheehan, J.; Stroila, M.; Steiner, L. Assessment of imaging studies used with radiosurgery: A volumetric algorithm and an estimation of its error. Technical note. J. Neurosurg. 2006, 104, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, A.; Ahmed, S.; McAleer, M.F.; Weinberg, J.S.; Li, J.; Brown, P.; Settle, S.; Prabhu, S.S.; Lang, F.F.; Levine, N.; et al. Post-operative stereotactic radiosurgery versus observation for completely resected brain metastases: A single-centre, randomised, controlled, phase 3 trial. Lancet Oncol. 2017, 18, 1040–1048. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Wang, C.; Jiang, Y.; Zhang, X.; Zhang, Y.; Ruan, Z. Patients with single brain metastasis from non-small cell lung cancer equally benefit from stereotactic radiosurgery and surgery: A systematic review. Med. Sci. Monit. 2015, 21, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Patchell, R.A.; Tibbs, P.A.; Walsh, J.W.; Dempsey, R.J.; Maruyama, Y.; Kryscio, R.J.; Markesbery, W.R.; Macdonald, J.S.; Young, B. A randomized trial of surgery in the treatment of single metastases to the brain. N. Engl. J. Med. 1990, 322, 494–500. [Google Scholar] [CrossRef]
- Patchell, R.A.; Tibbs, P.A.; Regine, W.F.; Dempsey, R.J.; Mohiuddin, M.; Kryscio, R.J.; Markesbery, W.R.; Foon, K.A.; Young, B. Postoperative radiotherapy in the treatment of single metastases to the brain: A randomized trial. JAMA 1998, 280, 1485–1489. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.D.; Ballman, K.V.; Cerhan, J.H.; Anderson, S.K.; Carrero, X.W.; Whitton, A.C.; Greenspoon, J.; Parney, I.F.; Laack, N.N.I.; Ashman, J.B.; et al. Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC.3): A multicentre, randomised, controlled, phase 3 trial. Lancet Oncol. 2017, 18, 1049–1060. [Google Scholar] [CrossRef]
- Chang, E.L.; Wefel, J.S.; Hess, K.R.; Allen, P.K.; Lang, F.F.; Kornguth, D.G.; Arbuckle, R.B.; Swint, J.M.; Shiu, A.S.; Maor, M.H.; et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: A randomised controlled trial. Lancet Oncol. 2009, 10, 1037–1044. [Google Scholar] [CrossRef]
- Brown, P.D.; Pugh, S.; Laack, N.N.; Wefel, J.S.; Khuntia, D.; Meyers, C.; Choucair, A.; Fox, S.; Suh, J.H.; Roberge, D.; et al. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: A randomized, double-blind, placebo-controlled trial. Neuro Oncol. 2013, 15, 1429–1437. [Google Scholar] [CrossRef]
- Brown, P.D.; Jaeckle, K.; Ballman, K.V.; Farace, E.; Cerhan, J.H.; Anderson, S.K.; Carrero, X.W.; Barker, F.G., 2nd; Deming, R.; Burri, S.H.; et al. Effect of Radiosurgery Alone vs Radiosurgery With Whole Brain Radiation Therapy on Cognitive Function in Patients With 1 to 3 Brain Metastases: A Randomized Clinical Trial. JAMA 2016, 316, 401–409. [Google Scholar] [CrossRef]
- Das, A.K.; Sato, M.; Story, M.D.; Peyton, M.; Graves, R.; Redpath, S.; Girard, L.; Gazdar, A.F.; Shay, J.W.; Minna, J.D.; et al. Non-small-cell lung cancers with kinase domain mutations in the epidermal growth factor receptor are sensitive to ionizing radiation. Cancer Res. 2006, 66, 9601–9608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gow, C.H.; Chien, C.R.; Chang, Y.L.; Chiu, Y.H.; Kuo, S.H.; Shih, J.Y.; Chang, Y.C.; Yu, C.J.; Yang, C.H.; Yang, P.C. Radiotherapy in lung adenocarcinoma with brain metastases: Effects of activating epidermal growth factor receptor mutations on clinical response. Clin. Cancer Res. 2008, 14, 162–168. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.C.; Xiao, F.; Shih, J.Y.; Ho, C.C.; Chen, Y.F.; Tseng, H.M.; Chen, K.Y.; Liao, W.Y.; Yu, C.J.; Yang, J.C.; et al. Epidermal growth factor receptor mutation predicts favorable outcomes in non-small cell lung cancer patients with brain metastases treated with stereotactic radiosurgery. Radiother Oncol. 2018, 126, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Hsu, S.P.C.; Lin, C.J.; Wu, H.M.; Chen, Y.W.; Luo, Y.H.; Chiang, C.L.; Hu, Y.S.; Chung, W.Y.; Shiau, C.Y.; et al. Epidermal growth factor receptor mutations: Association with favorable local tumor control following Gamma Knife radiosurgery in patients with non-small cell lung cancer and brain metastases. J. Neurosurg. 2019, 133, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Shih, J.Y.; Gow, C.H.; Yu, C.J.; Yang, C.H.; Chang, Y.L.; Tsai, M.F.; Hsu, Y.C.; Chen, K.Y.; Su, W.P.; Yang, P.C. Epidermal growth factor receptor mutations in needle biopsy/aspiration samples predict response to gefitinib therapy and survival of patients with advanced nonsmall cell lung cancer. Int. J. Cancer 2006, 118, 963–969. [Google Scholar] [CrossRef]
- Wang, T.J.; Saad, S.; Qureshi, Y.H.; Jani, A.; Nanda, T.; Yaeh, A.M.; Rozenblat, T.; Sisti, M.B.; Bruce, J.N.; McKhann, G.M.; et al. Does lung cancer mutation status and targeted therapy predict for outcomes and local control in the setting of brain metastases treated with radiation? Neuro Oncol. 2015, 17, 1022–1028. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Li, Y.L.; Wang, Z.M.; Li, Z.; Zhang, T.X.; Wei, Z. Gefitinib as palliative therapy for lung adenocarcinoma metastatic to the brain. Lung Cancer 2007, 57, 359–364. [Google Scholar] [CrossRef]
- Iuchi, T.; Shingyoji, M.; Sakaida, T.; Hatano, K.; Nagano, O.; Itakura, M.; Kageyama, H.; Yokoi, S.; Hasegawa, Y.; Kawasaki, K.; et al. Phase II trial of gefitinib alone without radiation therapy for Japanese patients with brain metastases from EGFR-mutant lung adenocarcinoma. Lung Cancer 2013, 82, 282–287. [Google Scholar] [CrossRef]
- Park, S.J.; Kim, H.T.; Lee, D.H.; Kim, K.P.; Kim, S.W.; Suh, C.; Lee, J.S. Efficacy of epidermal growth factor receptor tyrosine kinase inhibitors for brain metastasis in non-small cell lung cancer patients harboring either exon 19 or 21 mutation. Lung Cancer 2012, 77, 556–560. [Google Scholar] [CrossRef]
- Yomo, S.; Oda, K. Impacts of EGFR-mutation status and EGFR-TKI on the efficacy of stereotactic radiosurgery for brain metastases from non-small cell lung adenocarcinoma: A retrospective analysis of 133 consecutive patients. Lung Cancer 2018, 119, 120–126. [Google Scholar] [CrossRef]
- Sperduto, P.W.; Yang, T.J.; Beal, K.; Pan, H.; Brown, P.D.; Bangdiwala, A.; Shanley, R.; Yeh, N.; Gaspar, L.E.; Braunstein, S.; et al. Estimating Survival in Patients With Lung Cancer and Brain Metastases: An Update of the Graded Prognostic Assessment for Lung Cancer Using Molecular Markers (Lung-molGPA). JAMA Oncol. 2017, 3, 827–831. [Google Scholar] [CrossRef] [PubMed]
- Robbins, J.R.; Ryu, S.; Kalkanis, S.; Cogan, C.; Rock, J.; Movsas, B.; Kim, J.H.; Rosenblum, M. Radiosurgery to the surgical cavity as adjuvant therapy for resected brain metastasis. Neurosurgery 2012, 71, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Iorio-Morin, C.; Masson-Cote, L.; Ezahr, Y.; Blanchard, J.; Ebacher, A.; Mathieu, D. Early Gamma Knife stereotactic radiosurgery to the tumor bed of resected brain metastasis for improved local control. J. Neurosurg. 2014, 121, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Brennan, C.; Yang, T.J.; Hilden, P.; Zhang, Z.; Chan, K.; Yamada, Y.; Chan, T.A.; Lymberis, S.C.; Narayana, A.; Tabar, V.; et al. A phase 2 trial of stereotactic radiosurgery boost after surgical resection for brain metastases. Int. J. Radiat. Oncol. Biol. Phys. 2014, 88, 130–136. [Google Scholar] [CrossRef] [Green Version]
- Abel, R.J.; Ji, L.; Yu, C.; Lederman, A.; Chen, T.; Liu, C.; Zada, G.; Kim, P.E.; Apuzzo, M.; Chang, E.L. Stereotactic radiosurgery to the resection cavity for brain metastases: Prognostic factors and outcomes. J. Radiosurg. SBRT 2015, 3, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Strauss, I.; Corn, B.W.; Krishna, V.; Shahar, T.; Matceyevsky, D.; Gez, E.; Shtraus, N.; Ram, Z.; Kanner, A.A. Patterns of Failure after Stereotactic Radiosurgery of the Resection Cavity Following Surgical Removal of Brain Metastases. World Neurosurg. 2015, 84, 1825–1831. [Google Scholar] [CrossRef]
- Soltys, S.G.; Adler, J.R.; Lipani, J.D.; Jackson, P.S.; Choi, C.Y.; Puataweepong, P.; White, S.; Gibbs, I.C.; Chang, S.D. Stereotactic radiosurgery of the postoperative resection cavity for brain metastases. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 187–193. [Google Scholar] [CrossRef]
- Mathieu, D.; Kondziolka, D.; Flickinger, J.C.; Fortin, D.; Kenny, B.; Michaud, K.; Mongia, S.; Niranjan, A.; Lunsford, L.D. Tumor bed radiosurgery after resection of cerebral metastases. Neurosurgery 2008, 62, 817–823. [Google Scholar] [CrossRef] [Green Version]
- Karlovits, B.J.; Quigley, M.R.; Karlovits, S.M.; Miller, L.; Johnson, M.; Gayou, O.; Fuhrer, R. Stereotactic radiosurgery boost to the resection bed for oligometastatic brain disease: Challenging the tradition of adjuvant whole-brain radiotherapy. Neurosurg. Focus 2009, 27, E7. [Google Scholar] [CrossRef] [Green Version]
- Do, L.; Pezner, R.; Radany, E.; Liu, A.; Staud, C.; Badie, B. Resection followed by stereotactic radiosurgery to resection cavity for intracranial metastases. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.W.; Abozed, M.M.; Hale, A.; Eisenberg, R.L.; Dvorak, T.; Yao, K.; Pfannl, R.; Mignano, J.; Zhu, J.J.; Price, L.L.; et al. Adjuvant Gamma Knife radiosurgery following surgical resection of brain metastases: A 9-year retrospective cohort study. J. Neurooncol. 2010, 98, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Jensen, C.A.; Chan, M.D.; McCoy, T.P.; Bourland, J.D.; deGuzman, A.F.; Ellis, T.L.; Ekstrand, K.E.; McMullen, K.P.; Munley, M.T.; Shaw, E.G.; et al. Cavity-directed radiosurgery as adjuvant therapy after resection of a brain metastasis. J. Neurosurg. 2011, 114, 1585–1591. [Google Scholar] [CrossRef] [PubMed]
- Rwigema, J.C.; Wegner, R.E.; Mintz, A.H.; Paravati, A.J.; Burton, S.A.; Ozhasoglu, C.; Heron, D.E. Stereotactic radiosurgery to the resection cavity of brain metastases: A retrospective analysis and literature review. Stereotact. Funct. Neurosurg. 2011, 89, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, R.; Shu, H.K.; Hadjipanayis, C.; Dhabaan, A.; Hall, W.; Raore, B.; Olson, J.; Curran, W.; Oyesiku, N.; Crocker, I. Current dosing paradigm for stereotactic radiosurgery alone after surgical resection of brain metastases needs to be optimized for improved local control. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, e61–e66. [Google Scholar] [CrossRef] [PubMed]
- Luther, N.; Kondziolka, D.; Kano, H.; Mousavi, S.H.; Engh, J.A.; Niranjan, A.; Flickinger, J.C.; Lunsford, L.D. Predicting tumor control after resection bed radiosurgery of brain metastases. Neurosurgery 2013, 73, 1001–1006. [Google Scholar] [CrossRef]
- Ojerholm, E.; Lee, J.Y.; Thawani, J.P.; Miller, D.; O’Rourke, D.M.; Dorsey, J.F.; Geiger, G.A.; Nagda, S.; Kolker, J.D.; Lustig, R.A.; et al. Stereotactic radiosurgery to the resection bed for intracranial metastases and risk of leptomeningeal carcinomatosis. J. Neurosurg. 2014, 121, 75–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rava, P.; Rosenberg, J.; Jamorabo, D.; Sioshansi, S.; DiPetrillo, T.; Wazer, D.E.; Hepel, J. Feasibility and safety of cavity-directed stereotactic radiosurgery for brain metastases at a high-volume medical center. Adv. Radiat. Oncol. 2016, 1, 141–147. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Value | Percentage or Range |
---|---|---|
Per patient (n = 97) | ||
Sex (Male:Female) | 49:48 | |
Age at time of SRS (median, min, max) | 59.20 | 29.2–80.2 |
Median max tumor vol. (mL) | ||
Multiple or solitary brain metastasis at SRS | ||
Solitary | 29 | 29.9% |
2–3 | 32 | 33.0% |
4–10 | 30 | 30.9% |
>10 | 6 | 6.2% |
Numbers of surgical cavities | ||
1 | 91 | 93.8% |
>1 | 6 | 6.2% |
Neurological status | ||
Long tract sign | 41 | 42.3% |
Cerebellar sign | 0 | 0% |
Cranial nerve sign | 10 | 10.3% |
High cortical dysfunction | 10 | 10.3% |
Asymptomatic | 44 | 45.4% |
KPS score (median) | 90 | 50–100 |
GPA score | ||
GPA 0–1 | 2 | 2.1% |
GPA 1.5–2 | 26 | 26.8% |
GPA 2.5–3 | 39 | 40.2% |
GPA 3.5–4 | 30 | 30.9% |
Median image follow-up (months) | 14 | 0–239 |
Median clinical follow-up (months) | 16 | 0–241 |
Median survival (months) | 25 | 0–241 |
Per tumor (n = 103) | ||
Non-small cell lung cancer pathology | ||
Adenocarcinoma | 89 | 86.4% |
Squamous cell carcinoma | 5 | 4.9% |
Neuroendocrine tumor | 1 | 1.0% |
Poorly differentiated carcinoma | 2 | 1.9% |
Pleomorphic carcinoma | 1 | 1.0% |
AdenoCA + large cell neuroendocrine CA. | 1 | 1.0% |
AdenoCA + squamous cell CA. | 2 | 1.9% |
Inconclusive | 2 | 1.9% |
EGFR mutation type | ||
EGFR wild-type | 38 | 36.9% |
EGFR mutation | 49 | 47.6% |
Exon 19 deletion | 19 | 18.4% |
Exon 21 deletion | 1 | 1.0% |
L858R point mutation | 15 | 14.6% |
T790M point mutation | 1 | 1.0% |
S7681I point mutation | 1 | 1.0% |
L861Q point mutation | 1 | 1.0% |
Combined mutations | ||
Exon 20 Q878Q + L858R mutation | 1 | 1.0% |
L858R + T790M | 4 | 3.9% |
Wild-type + Exon 19 deletion | 2 | 2.0% |
G719 + S7681I | 1 | 1.0% |
Exon 19 deletion + T790M | 3 | 2.9% |
EGFR wild-type + ALK + ROS1 | 1 | 1.0% |
ALK mutation | 2 | 2.0% |
Inconclusive | 15 | 13.4% |
Original tumor control | 52 | 53.6% |
Other metastases | 39 | 40.2% |
Chemotherapy use | 73 | 75.3% |
Target therapy use | 70 | 68% |
Prior WBRT | 34 | 35.1% |
Interval of lung ca. diagnosis to brain meta (months) | 0 | 0–115 |
Craniotomy (n = 103) | ||
Gross total resection | 69 | 67.0% |
Subtotal resection | 30 | 29.1% |
Unknown | 4 | 3.9% |
Interval of craniotomy to SRS | ||
<3 months | 68 | 66.0% |
>3 months | 35 | 34.0% |
Location of tumor (at SRS) | ||
op bed | 58 | 56.3% |
Other sites | 45 | 43.7% |
Tumor volume (median, min, max) | 3.31 | 1.41–6.79 |
SRS protocol | ||
Surgical cavity volume (TV1, mL) | 7.75 | 1.18–42.38 |
Margin dose (TP, Gy) | 17 | 12–20 |
Maximum dose (TC, Gy) | 32 | 21.4–40 |
Factors | Tumor Control | |||||
---|---|---|---|---|---|---|
Univariate | Multivariate | |||||
p Value | HR | 95% Cl | p Value | HR | 95% Cl | |
Age at time of GK (yrs) | 0.189 | 0.978 | 0.946–1.011 | |||
Sex (male vs. female) | 0.885 | 1.054 | 0.520–2.136 | |||
EGFR mutation (yes vs. no) | 0.855 | 0.930 | 0.430–2.014 | |||
Original tumor control (yes vs. no) | 0.551 | 1.245 | 0.605–2.562 | |||
Other metastasis (yes vs. no) | 0.135 | 0.544 | 0.244–1.210 | 0.143 | 0.550 | 0.247–1.225 |
Chemotherapy (yes vs. no) | 0.394 | 1.440 | 0.622–3.335 | |||
EGFR-TKI use (yes vs. no) | 0.175 | 1.628 | 0.805–3.292 | |||
Interval of lung CA to brain metastases | 0.571 | 0.996 | 0.980–1.011 | |||
Number of lesions | 0.477 | 0.958 | 0.851–1.078 | |||
Post-craniotomy residual tumor (yes vs. no) | 0.914 | 0.959 | 0.448–2.054 | |||
Post-craniotomy radiation (yes vs. no) | 0.033 | 2.137 | 1.065–4.286 | 0.035 | 2.116 | 1.055–4.243 |
TP margin dose | 0.449 | 0.915 | 0.728–1.151 | |||
TC maximum dose | 0.195 | 0.935 | 0.845–1.035 | |||
Tumor volume (mL) | 0.199 | 0.962 | 0.906–1.021 |
Factors | Overall Survival | |||||
---|---|---|---|---|---|---|
Univariate | Multivariate | |||||
p Value | HR | 95% Cl | p Value | HR | 95% Cl | |
Age (yrs) | 0.589 | 0.992 | 0.962–1.022 | |||
Sex (male vs. female) | 0.076 | 0.560 | 0.295–1.063 | 0.051 | 0.515 | 0.265–1.002 |
GPA score (>=4, <4) | 0.145 | 0.521 | 0.217–1.251 | 0.238 | 0.582 | 0.237–1.430 |
EGFR mutation (yes vs. no) | 0.667 | 1.179 | 0.557–2.498 | |||
Adenocarcinoma (yes vs. no) | 0.180 | 1.752 | 0.772–3.977 | |||
Original tumor control (yes vs. no) | 0.019 | 2.112 | 1.129–3.951 | 0.014 | 2.273 | 1.181–4.374 |
Other metastasis (yes vs. no) | 0.583 | 0.828 | 0.422–1.624 | |||
Chemotherapy use (yes vs. no) | 0.394 | 1.429 | 0.629–3.245 | |||
EGFR-TKI use (yes vs. no) | 0.779 | 1.097 | 0.574–2.098 | |||
Number of lesions | 0.279 | 1.046 | 0.964–1.134 | |||
Post-craniotomy residual tumor (yes vs. no) | 0.077 | 0.508 | 0.240–1.075 | 0.076 | 0.502 | 0.234–1.076 |
Post-craniotomy radiation (yes vs. no) | 0.588 | 1.194 | 0.629–2.267 |
Author | Pts | Cavities | Margin | Technology | Dose (Median Margin) | Median Overall Survival (OS) | Prognostic Factors for OS | 1 Year Local Control (LC) | Prognostic Factors for LC |
---|---|---|---|---|---|---|---|---|---|
2008 Soltys [37] | 72 | 76 | cyberknife | 18.6 Gy | 15.1 | RPA class1, extracranial metastasis | 79% | increase conformality index | |
2008 Mathieu [38] | 40 | 40 | 1 mm | GK | 16 Gy | 13 | X | 73% (13 mo) | X |
2009 Karlovits [39] | 52 | 52 | Linac | 15 Gy | 15 | No extracranial disease, solitary intracranial metastasis | LC: 92.3% (at median follow-up 14 months; no local control at 1 year) | X | |
2009 Do [40] | 30 | 33 | 1–3 mm | linac | 16 Gy | 12 | X | 82% for local recurrence-free survival, | X |
2010 Hwang [41] | 25 | 25 | GK | 15–20 Gy | 15 | Distant recurrence | 100 | X | |
2011 Jensen [42] | 106 | 112 | 1 mm | GK | 17 Gy | 10.9 | X | 80.3% | pre-operative tumor > 3 cm |
2011 Rwigema [43] | 77 | 89 | 1 mm | cyberknife | 18 Gy | 14.5 | X | 76.1% | X |
2012 Prabhu [44] | 62 | 64 | 0–2 mm | Linac | 18 Gy | 13 | X | 78% | small PTV, marginal dose < 18 Gy |
2012 Robbins [32] | 85 | 85 | 2–3 mm | LINAC | 16 Gy | 12.1 | Longer cancer to brain met time, solidary tumor | 81.4% | target volume > 15 cm3, marginal dose of < 16 Gy |
2013 Luther [45] | 120 | 120 | 2–3 mm | GK | 16 Gy | NA | X | 87% | PTV, cavity diameter, margin dose > 16 Gy |
2014 Lorio Mortin [33] | 110 | 113 | 1 mm | GK | 18 Gy | 63% | X | 73% | short surgery-to-SRS interval (<3 week), greater max radiation dose |
2014 Brennan [34] | 49 | 50 | 2 mm | LINAC | 18 Gy | 12 | X | 78% | NSCLC-histology, tumor maximal diameter < 3 cm, deep parenchymal tumor |
2014 Ojerholm [46] | 91 | 96 | 0 mm | GK | 16 Gy | 22.3 | Active extracranial disease | 81% | pre-operative metastasis < 3 cm, no residual/recurrent tumor |
2015 Abel [35] | 85 | 85 | 0–2 mm | GK | 17.3 Gy | 20 | Gross total resection | 87% | X |
2015 Strauss [36] | 100 | 102 | No margin | LINAC | 20 Gy | 18.9 | Active systemic disease, RPA class, KPS, multiple brain lesions, volume of brain metastases | 84% | shorter interval between surgery and SRS |
2016 Rava [47] | 85 | 85 | 1–2 mm | GK | 18 Gy | 14.3 | X | 82% | tumor diameter < 3 cm, resection cavity volume < 14 mL |
2017 Mahajan [13] | 64 | 64 | 1 mm | GK | 16 Gy | 17 | Stable disease | 72% | Metastatic size |
2017 Brown [17] | 98 | 98 | 2 mm | GK | 12–18 Gy | 12.2 | X | 60.5% | SRS: better preservation of neurocognition, QoL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.-H.; Yang, H.-C.; Chiang, C.-L.; Wu, H.-M.; Luo, Y.-H.; Hu, Y.-S.; Lin, C.-J.; Chung, W.-Y.; Shiau, C.-Y.; Guo, W.-Y.; et al. Gamma Knife Radiosurgery Irradiation of Surgical Cavity of Brain Metastases: Factor Analysis and Gene Mutations. Life 2023, 13, 236. https://doi.org/10.3390/life13010236
Huang Y-H, Yang H-C, Chiang C-L, Wu H-M, Luo Y-H, Hu Y-S, Lin C-J, Chung W-Y, Shiau C-Y, Guo W-Y, et al. Gamma Knife Radiosurgery Irradiation of Surgical Cavity of Brain Metastases: Factor Analysis and Gene Mutations. Life. 2023; 13(1):236. https://doi.org/10.3390/life13010236
Chicago/Turabian StyleHuang, Yi-Han, Huai-Che Yang, Chi-Lu Chiang, Hsiu-Mei Wu, Yung-Hung Luo, Yong-Sin Hu, Chung-Jung Lin, Wen-Yuh Chung, Cheng-Ying Shiau, Wan-Yuo Guo, and et al. 2023. "Gamma Knife Radiosurgery Irradiation of Surgical Cavity of Brain Metastases: Factor Analysis and Gene Mutations" Life 13, no. 1: 236. https://doi.org/10.3390/life13010236
APA StyleHuang, Y. -H., Yang, H. -C., Chiang, C. -L., Wu, H. -M., Luo, Y. -H., Hu, Y. -S., Lin, C. -J., Chung, W. -Y., Shiau, C. -Y., Guo, W. -Y., & Lee, C. -C. (2023). Gamma Knife Radiosurgery Irradiation of Surgical Cavity of Brain Metastases: Factor Analysis and Gene Mutations. Life, 13(1), 236. https://doi.org/10.3390/life13010236