A Deep-Learning-Based Artificial Intelligence System for the Pathology Diagnosis of Uterine Smooth Muscle Tumor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Set
2.2. Deep Learning Models
2.3. Evaluation Metrics
3. Results
3.1. Image Annotation
3.2. Automatic Classification of Necrosis and Tumor Cytological Atypia
3.3. Automatic Detection of Mitoses
3.4. AI for Logical Judgment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.; Ubago, J.; Li, L.; Guo, H.; Liu, Y.; Qiang, W.; Kim, J.J.; Kong, B.; Wei, J.J. Molecular analyses of 6 different types of uterine smooth muscle tumors: Emphasis in atypical leiomyoma. Cancer 2014, 120, 3165–3177. [Google Scholar] [CrossRef] [PubMed]
- Segars, J.H.; Parrott, E.C.; Nagel, J.D.; Guo, X.C.; Gao, X.; Birnbaum, L.S.; Pinn, V.W.; Dixon, D. Proceedings from the Third National Institutes of Health International Congress on Advances in Uterine Leiomyoma Research: Comprehensive review, conference summary, and future recommendations. Hum. Reprod. Update 2014, 20, 309–333. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Chen, J. Introduction of WHO classification of tumours of female reproductive organs, fourth edition. Zhonghua Bing Li Xue Za Zhi 2014, 43, 649–650. [Google Scholar] [PubMed]
- Gupta, M.; Laury, A.L.; Nucci, M.R.; Quade, B.J. Predictors of adverse outcome in uterine smooth muscle tumours of uncertain malignant potential (STUMP): A clinicopathological analysis of 22 cases with a proposal for the inclusion of additional histological parameters. Histopathology 2018, 73, 284–298. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.; Alvarez, T.; Nucci, M.R.; Gilks, B.; Longacre, T.; Soslow, R.A.; Oliva, E. Interobserver variability in the interpretation of tumor cell necrosis in uterine leiomyosarcoma. Am. J. Surg. Pathol. 2013, 37, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Bell, S.W.; Kempson, R.L.; Hendrickson, M.R. Problematic uterine smooth muscle neoplasms. A clinicopathologic study of 213 cases. Am. J. Surg. Pathol. 1994, 18, 535–558. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xu, X.; Shao, J.; Zhou, K.; Zhao, K.; He, Y.; Li, J.; Guo, J.; Yi, Z.; Li, W. Deep learning to predict EGFR mutation and PD-L1 expression status in non-small-cell lung cancer on computed tomography images. J. Oncol. 2021, 2021, 5499385. [Google Scholar] [CrossRef] [PubMed]
- Echle, A.; Rindtorff, N.T.; Brinker, T.J.; Luedde, T.; Pearson, A.T.; Kather, J.N. Deep learning in cancer pathology: A new generation of clinical biomarkers. Br. J. Cancer 2021, 124, 686–696. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Mi, W.; Li, J.; Guo, Y.; Ren, X.; Liang, Z.; Zhang, T.; Zou, H. Deep learning-based multi-class classification of breast digital pathology images. Cancer Manag. Res. 2021, 13, 4605–4617. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Zou, S.; Zhou, W.; Huang, Y.; Shao, L.; Yuan, J.; Gou, X.; Jin, W.; Wang, Z.; Chen, X.; et al. Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning. Nat. Commun. 2020, 11, 4294. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.; Gamble, P.; Jaroensri, R.; Abdelsamea, M.M.; Mermel, C.H.; Chen, P.C.; Rakha, E.A. Artificial intelligence in digital breast pathology: Techniques and applications. Breast 2020, 49, 267–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Courtiol, P.; Maussion, C.; Moarii, M.; Pronier, E.; Pilcer, S.; Sefta, M.; Manceron, P.; Toldo, S.; Zaslavskiy, M.; Le Stang, N.; et al. Deep learning-based classification of mesothelioma improves prediction of patient outcome. Nat. Med. 2019, 25, 1519–1525. [Google Scholar] [CrossRef] [PubMed]
- Bulten, W.; Bándi, P.; Hoven, J.; Loo, R.V.; Lotz, J.; Weiss, N.; Laak, J.V.; Ginneken, B.V.; Hulsbergen-van de Kaa, C.; Litjens, G. Epithelium segmentation using deep learning in H&E-stained prostate specimens with immunohistochemistry as reference standard. Sci. Rep. 2019, 9, 864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coudray, N.; Ocampo, P.S.; Sakellaropoulos, T.; Narula, N.; Snuderl, M.; Fenyö, D.; Moreira, A.L.; Razavian, N.; Tsirigos, A. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 2018, 24, 1559–1567. [Google Scholar] [CrossRef] [PubMed]
- Khasawneh, N.; Fraiwan, M.; Fraiwan, L. Detection of K-complexes in EEG waveform images using faster R-CNN and deep transfer learning. BMC Med. Inform. Decis. Mak. 2022, 22, 297. [Google Scholar] [CrossRef] [PubMed]
- Fraiwan, M.; Faouri, E. On the Automatic Detection and Classification of Skin Cancer Using Deep Transfer Learning. Sensors 2022, 22, 4963. [Google Scholar] [CrossRef] [PubMed]
- Devereaux, K.A.; Schoolmeester, J.K. Smooth muscle tumors of the female Ge nital Tract. Surg. Pathol. Clin. 2019, 12, 397–455. [Google Scholar] [CrossRef] [PubMed]
- Xing, F.; Xie, Y.; Yang, L. An automatic learning-based framework for robust nucleus segmentation. IEEE Trans. Med. Imaging 2016, 35, 550–566. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhang, L.; Chen, S.; Ni, D.; Li, B.; Zhou, Y.; Lei, B.; Wang, T. A deep learning based framework for accurate segmentation of cervical cytoplasm and nuclei. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 2903–2906. [Google Scholar] [CrossRef]
- Qi, Y.; Yang, L.; Liu, B.; Liu, L.; Liu, Y.; Zheng, Q.; Liu, D.; Luo, J. Highly accurate diagnosis of lung adenocarcinoma and squamous cell carcinoma tissues by deep learning. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 265, 120400. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Wang, L.; Jiang, J.; Liu, Y.; Ni, M.; Fu, Y.; Guo, H.; Wang, Z.; An, F.; Zhang, K.; et al. A novel deep learning system for diagnosing early esophageal squamous cell carcinoma: A multicenter diagnostic study. Clin. Transl. Gastroenterol. 2021, 12, e00393, PMCID:PMC8341371. [Google Scholar] [CrossRef] [PubMed]
- Bulten, W.; Pinckaers, H.; van Boven, H.; Vink, R.; de Bel, T.; van Ginneken, B.; van der Laak, J.; Hulsbergen-van de Kaa, C.; Litjens, G. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: A diagnostic study. Lancet Oncol. 2020, 21, 233–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, M.; Wang, K.; Liu, S.; Du, Y.; Liu, P.; Su, Q.; Lv, G. Recognition of thyroid ultrasound standard plane images based on residual network. Comput. Intell. Neurosci. 2021, 2021, 5598001. [Google Scholar] [CrossRef] [PubMed]
- Balkenhol, M.C.A.; Tellez, D.; Vreuls, W.; Clahsen, P.C.; Pinckaers, H.; Ciompi, F.; Bult, P.; van der Laak, J.A.W.M. Deep learning assisted mitotic counting for breast cancer. Lab. Investig. 2019, 99, 1596–1606. [Google Scholar] [CrossRef] [PubMed]
- Nateghi, R.; Danyali, H.; Helfroush, M.S. Maximized inter-class weighted mean for fast and accurate mitosis cells detection in breast cancer histopathology images. J. Med. Syst. 2017, 41, 146. [Google Scholar] [CrossRef] [PubMed]
- Mohiyuddin, A.; Basharat, A.; Ghani, U.; Peter, V.; Abbas, S.; Naeem, O.B.; Rizwan, M. Breast tumor detection and classification in mammogram images using modified YOLOv5 network. Comput. Math. Methods Med. 2022, 2022, 1359019. [Google Scholar] [CrossRef] [PubMed]
- Mas, A.; Alonso, R.; Garrido-Gómez, T.; Escorcia, P.; Montero, B.; Jiménez-Almazán, J.; Martín, J.; Pellicer, N.; Monleón, J.; Simón, C. The differential diagnoses of uterine leiomyomas and leiomyosarcomas using DNA and RNA sequencing. Am. J. Obstet. Gynecol. 2019, 221, 320.e1–320.e23. [Google Scholar] [CrossRef] [PubMed]
- Cui, R.R.; Wright, J.D.; Hou, J.Y. Uterine leiomyosarcoma: A review of recent advances in molecular biology, clinical management and outcome. BJOG 2017, 124, 1028–1037. [Google Scholar] [CrossRef] [PubMed]
Types | Accuracy | Precision | Recall | F1 Index |
---|---|---|---|---|
Moderate-to-severe cytological atypia vs. normal and mild cytological atypia | 0.962 | 0.928 | 0.998 | 0.963 |
Tumor necrosis vs. normal | 0.947 | 0.930 | 0.969 | 0.949 |
Detected as Mitosis | Detected as Normal or Apoptotic Body | Total | Precision | Recall | Accuracy | F1 Index | |
---|---|---|---|---|---|---|---|
Actually mitotic | 469 | 56 | 525 | 0.938 | 0.893 | 0.913 | 0.915 |
Actually normal or apoptotic body | 31 | 444 | 475 | ||||
Total | 500 | 500 | 1000 |
Types | Accuracy | Precision | Recall | F1 Index |
---|---|---|---|---|
Leiomyosarcoma vs. STUMP and leiomyoma | 0.950 | 1.000 | 0.900 | 0.947 |
STUMP vs. leiomyosarcoma and leiomyoma | 0.900 | 0.800 | 0.800 | 0.800 |
Total for three categories | / | 0.900 | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Luo, S.; Ji, J.; Wang, Z.; Zhi, W.; Mo, N.; Zhong, P.; He, C.; Wan, T.; Jin, Y. A Deep-Learning-Based Artificial Intelligence System for the Pathology Diagnosis of Uterine Smooth Muscle Tumor. Life 2023, 13, 3. https://doi.org/10.3390/life13010003
Yu H, Luo S, Ji J, Wang Z, Zhi W, Mo N, Zhong P, He C, Wan T, Jin Y. A Deep-Learning-Based Artificial Intelligence System for the Pathology Diagnosis of Uterine Smooth Muscle Tumor. Life. 2023; 13(1):3. https://doi.org/10.3390/life13010003
Chicago/Turabian StyleYu, Haiyun, Shaoze Luo, Junyu Ji, Zhiqiang Wang, Wenxue Zhi, Na Mo, Pingping Zhong, Chunyan He, Tao Wan, and Yulan Jin. 2023. "A Deep-Learning-Based Artificial Intelligence System for the Pathology Diagnosis of Uterine Smooth Muscle Tumor" Life 13, no. 1: 3. https://doi.org/10.3390/life13010003
APA StyleYu, H., Luo, S., Ji, J., Wang, Z., Zhi, W., Mo, N., Zhong, P., He, C., Wan, T., & Jin, Y. (2023). A Deep-Learning-Based Artificial Intelligence System for the Pathology Diagnosis of Uterine Smooth Muscle Tumor. Life, 13(1), 3. https://doi.org/10.3390/life13010003