Phytochemical Composition, Antioxidant, and Anticancer Activities of Sidr Honey: In Vitro and In Silico Computational Investigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Honey Sampling
2.2. Phytochemical Screening of ZH
2.2.1. Polyphenol Evaluation
2.2.2. Flavonoid Estimation
2.2.3. Determination of Total Tannins
2.3. Antioxidant Activity
2.3.1. DPPH Radical Scavenging Activity
2.3.2. ABTS Radical Scavenging Activity
2.3.3. β-Carotene/Linoleic Acid Method
2.4. MTT Assay
2.5. LCMS Analysis
2.6. ADMET Analysis
2.7. Computational Analysis
2.8. Statistical Analysis
3. Results
3.1. Phytochemical Profiling
3.2. MTT Assay
3.3. Anti-Oxidant Potential
3.4. ADMET Analysis
3.5. Docking Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Dyba, T.A.; Randi, G.; Martos, C.; Giusti, F.; Calvalho, R.; Neamtiu, L.; Bettio, M. 1501O Long-term estimates of cancer incidence and mortality for the EU and EFTA countries according to different demographic scenarios. Ann. Oncol. 2021, 32, S1102. [Google Scholar] [CrossRef]
- Waheed, M.; Hussain, M.B.; Javed, A.; Mushtaq, Z.; Hassan, S.; Shariati, M.A.; Khan, M.U.; Majeed, M.; Nigam, M.; Mishra, A.P.; et al. Honey and cancer: A mechanistic review. Clin. Nutr. 2019, 38, 2499–2503. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.E.A.; Alaergani, W.; Suleiman, M.H.; Al-Gramah, H.A. Hydrogen peroxide and dicarbonyl compounds concentration in honey samples from different botanical origins and altitudes in the South of Saudi Arabia. Curr. Res. Nutr. Food Sci. J. 2019, 7, 150–160. [Google Scholar] [CrossRef]
- Farooq, R.; Majid, S.; Hanif, A.; Ashraf, A.; Khan, A. Different types of honey and their properties. In Therapeutic Applications of Honey and Its Phytochemicals; Springer: Singapore, 2022; pp. 261–278. [Google Scholar]
- Taha, E.K.A.; Al-Kahtani, S.; Taha, R. Comparison of the physicochemical characteristics of sidr (Ziziphus spp.) honey produced by Apis florea F. and Apis mellifera L. J. Apic. Res. 2021, 60, 470–477. [Google Scholar] [CrossRef]
- Ali, H.; Khan, S.; Ullah, R.; Khan, B. Fluorescence fingerprints of Sidr honey in comparison with uni/polyfloral honey samples. Eur. Food Res. Technol. 2020, 246, 1829–1837. [Google Scholar] [CrossRef]
- Al-Ghamdi, G.; Hussein, R.H.; Al-azragi, R. The antioxidant impact of Saudi sidr honey against acetyl salicylic acid-induced gastric ulcer. Med. Sci. 2020, 24, 1923–1929. [Google Scholar]
- Almalki, R.A.; Alzahrani, D.A. Morphological investigation of genus Ziziphus mill.(Rhamnaceae) in saudi arabia. Am. J. Plant Sci. 2018, 9, 2644. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V. Evaluation of the antioxidant activity of fruit extracts of indigenous medicinal plant, Zizyphus xylopyrus (Retz.) Willd. Int. J. Green Pharm. 2018, 4, 12. [Google Scholar] [CrossRef]
- Soliman, S.; Hamoda, A.M.; El-Shorbagi, A.N.A.; El-Keblawy, A.A. Novel betulin derivative is responsible for the anticancer folk use of Ziziphus spina-christi from the hot environmental habitat of UAE. J. Ethnopharmacol. 2019, 231, 403–408. [Google Scholar] [CrossRef]
- Al-Ghamdi, A.A.; Ansari, M.J. Biological and therapeutic roles of Saudi Arabian honey: A comparative review. J. King Saud Univ. -Sci. 2021, 33, 101329. [Google Scholar] [CrossRef]
- Zerrouk, S.; Seijo, M.C.; Escuredo, O.; Rodríguez-Flores, M.S. Characterization of Ziziphus lotus (jujube) honey produced in Algeria. J. Apic. Res. 2018, 57, 166–174. [Google Scholar] [CrossRef]
- Mărgăoan, R.; Topal, E.; Balkanska, R.; Yücel, B.; Oravecz, T.; Cornea-Cipcigan, M.; Vodnar, D.C. Monofloral Honeys as a Potential Source of Natural Antioxidants, Minerals and Medicine. Antioxidants. 2021, 10, 1023. [Google Scholar] [CrossRef]
- Sampaio, L.A.; Pina, L.T.S.; Serafini, M.R.; dos Santos Tavares, D.; Guimarães, A.G. Antitumor effects of carvacrol and thymol: A systematic review. Front. Pharmacol. 2021, 12, 702487. [Google Scholar] [CrossRef] [PubMed]
- Taha, M.M.E.; Abdelwahab, S.I.; Elsanousi, R.; Sheikh, B.Y.; Abdulla, M.A.; Babiker, S.E.; Mohamed, E. Effectiveness of Sidr Honey on the prevention of ethanol-induced gatroulcerogenesis: Role of antioxidant and antiapoptotic mechanism. Pharmacogn. J. 2015, 7, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Sponghini, A.P.; Rondonotti, D.; Platini, F.; Cena, T.; Ferrante, D.; Stratica, F.; Gennari, A. A Simon’s two-stage design trial evaluating the potential role of a kind of honey in preventing chemotherapy- hematopoietic toxicities. J. Tradit. Complement. Med. 2021, 11, 466–469. [Google Scholar] [CrossRef] [PubMed]
- Almeer, R.; Alqarni, A.; Alqattan, S.; Abdi, S.; Alarifi, S.; Hassan, Z.; Semlali, A. Effect of honey in improving breast cancer treatment and gene expression modulation of MMPs and TIMPs in triple-negative breast cancer cells. Pak. J. Zool. 2018, 50, 1999–2007. [Google Scholar] [CrossRef]
- Hamadou, W.S.; Bouali, N.; Badraoui, R.; Hadj Lajimi, R.; Hamdi, A.; Alreshidi, M.; Patel, M.; Adnan, M.; Siddiqui, A.J.; Noumi, E.; et al. Chemical Composition and the Anticancer, Antimicrobial, and Antioxidant Properties of Acacia Honey from the Hail Region: The in vitro and in silico Investigation. Evid.-Based Complement. Altern. Med. 2022, 1518511. [Google Scholar] [CrossRef] [PubMed]
- Bagameri, L.; Giurgiu, A.I.; Baci, G.M.; Bobiş, O.; Dezmirean, D.S. Microscopical techniques used in melissopalinology for botanical origin of honey determination. Anim. Sci. 2021, 1, 64. [Google Scholar]
- Julkunen-Tiitto, R. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. J. Agric. Food Chem. 1985, 33, 213–217. [Google Scholar] [CrossRef]
- Haddaji, F.; Papetti, A.; Noumi, E.; Colombo, R.; Deshpande, S.; Aouadi, K.; Adnan, M.; Kadri, A.; Selmi, B.; Snoussi, M. Bioactivities and in silico study of Pergularia tomentosa L. phytochemicals as potent antimicrobial agents targeting type IIA topoisomerase, TyrRS, and Sap1 virulence proteins. Environ. Sci. Pollut. Res. 2021, 28, 25349–25367. [Google Scholar] [CrossRef]
- Amanat, A.; Ahmed, A.; Kazmi, A.; Aziz, B. The effect of honey on radiation-induced oral mucositis in head and neck cancer patients. Indian J. Palliat. Care 2017, 23, 317. [Google Scholar] [CrossRef] [PubMed]
- Noumi, E.; Snoussi, M.; Anouar, E.H.; Alreshidi, M.; Veettil, V.N.; Elkahoui, S.; Adnan, M.; Patel, M.; Kadri, A.; Aouadi, K.; et al. HR-LCMS-Based metabolite profiling, antioxidant, and anticancer properties of teucrium polium L. methanolic extract: Computational and In Vitro study. Antioxidants 2020, 9, 1089. [Google Scholar] [CrossRef] [PubMed]
- Ikram, E.H.K.; Eng, K.H.; Jalil, A.M.M.; Ismail, A.; Idris, S.; Azlan, A.; Nazri, H.S.M.; Diton, N.A.M.; Mokhtar, R.A.M. Antioxidant capacity and total phenolic content of Malaysian underutilized fruits. J. Food Compos. Anal. 2009, 22, 388–393. [Google Scholar] [CrossRef]
- Adnan, M.; Siddiqui, A.J.; Hamadou, W.S.; Snoussi, M.; Badraoui, R.; Ashraf, S.A.; Patel, M. Deciphering the molecular mechanism responsible for efficiently inhibiting metastasis of human non-small cell lung and colorectal cancer cells targeting the matrix metalloproteinases by Selaginella repanda. Plants 2021, 10, 979. [Google Scholar] [CrossRef]
- Reddy, M.N.; Adnan, M.; Alreshidi, M.M.; Saeed, M.; Patel, M. Evaluation of anticancer, antibacterial and antioxidant properties of a medicinally treasured fern tectaria coadunata with its phytoconstituents analysis by HR-LCMS. Anti-Cancer Agents Med. Chem. 2020, 20, 1845–1856. [Google Scholar] [CrossRef] [PubMed]
- Badraoui, R.; Rebai, T.; Elkahoui, S.; Alreshidi, M.; Veettil, V.N.; Noumi, E.; Al-Motair, K.A.; Aouadi, K.; Kadri, A.; De Feo, V.; et al. Allium subhirsutum L. as a Potential Source of Antioxidant and Anticancer Bioactive Molecules: HR-LCMS Phytochemical Profiling, In Vitro and In Vivo Pharmacological Study. Antioxidants 2020, 9, 1003. [Google Scholar] [CrossRef]
- Badraoui, R.; Saeed, M.; Bouali, N.; Hamadou, W.S.; Elkahoui, S.; Alam, M.J.; Siddiqui, A.J.; Adnan, M.; Saoudi, M.; Rebai, T. Expression profiling of selected immune genes and trabecular microarchitecture in breast cancer skeletal metastases model: Effect of α–tocopherol acetate supplementation. Calcif. Tissue Int. 2022, 110, 475–488. [Google Scholar] [CrossRef]
- Hchicha, K.; Korb, M.; Badraoui, R.; Naïli, H. A novel sulfate-bridged binuclear copper (II) complex: Structure, optical, ADMET and in vivo approach in a murine model of bone metastasis. New J. Chem. 2021, 45, 13775–13784. [Google Scholar] [CrossRef]
- Zammel, N.; Jedli, O.; Rebai, T.; Hamadou, W.S.; Elkahoui, S.; Jamal, A.; Alam, J.M.; Adnan, M.; Siddiqui, A.J.; Alreshidi, M.M.; et al. Kidney injury and oxidative damage alleviation by Zingiber officinale: Pharmacokinetics and protective approach in a combined murine model of osteoporosis. 3 Biotech 2022, 12, 112. [Google Scholar] [CrossRef]
- Mhadhbi, N.; Issaoui, N.; Hamadou, W.S.; Jahoor, M.A.; Elhadi, A.S.; Adnan, M.; Naϊli, H.; Badraoui, R. Physico- Cjhemical Properties, Pharmacokinetics, Molecular Dcking and In-Vitro Pharmacological Study of a Cobalt(II) Complex Based on 2-Aminopyridine. ChemitrySelect 2022, 7, e202103592. [Google Scholar] [CrossRef]
- Akacha, A.; Badraoui, R.; Rebai, T.; Zourgui, L. Effect of Opuntia ficus indica extract on methotrexate-induced testicular injury: A biochemical, docking and histological study. J. Biomol. Struct. Dyn. 2022, 40, 4341–4351. [Google Scholar] [CrossRef]
- Badraoui, R.; Adnan, M.; Bardakci, F.; Alreshidi, M.M. Chloroquine and Hydroxychloroquine Interact Differently with ACE2 Domains Reported to Bind with the Coronavirus Spike Protein: Mediation by ACE2 Polymorphism. Molecules 2021, 26, 673. [Google Scholar] [CrossRef] [PubMed]
- Mzid, M.; Badraoui, R.; Khedir, S.B.; Sahnoun, Z.; Rebai, T. Protective effect of ethanolic extract of Urtica urens L. against the toxicity of imidacloprid on bone remodeling in rats and antioxidant activities. Biomed. Pharmacother. 2017, 91, 1022–1041. [Google Scholar] [CrossRef]
- Rahmouni, F.; Saoudi, M.; Amri, N.; El-Feki, A.; Rebai, T.; Badraoui, R. Protective effect of Teucrium polium on carbon tetrachloride induced genotoxicity and oxidative stress in rats. Arch. Physiol. Biochem. 2018, 124, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Badolato, M.; Carullo, G.; Cione, E.; Aiello, F.; Caroleo, M.C. From the hive: Honey, a novel weapon against cancer. Eur. J. Med. Chem. 2017, 142, 290–299. [Google Scholar] [CrossRef]
- Rouamba, A.; Compaoré, M.; Kiendrebeogo, M. Molecular targets of honey bee’s products in cancer prevention and treatment. J. Herbmed Pharmacol. 2019, 8, 261–268. [Google Scholar] [CrossRef]
- Tripathi, S. Ziziphus jujuba: A phytopharmacological review. Int. J. Res. Dev. Pharm. Life Sci. 2014, 3, 959–966. [Google Scholar]
- Lu, Y.; Bao, T.; Mo, J.; Ni, J.; Chen, W. Research advances in bioactive components and health benefits of jujube (Ziziphus jujuba Mill.) fruit. J. Zhejiang Univ. Sci. B 2021, 22, 431–449. [Google Scholar] [CrossRef]
- Oukhrib, R.; El Issami, S.; El Ibrahimi, B.; El Mouaden, K.; Bazzi, L.; Bammou, L.; Chaouay, A.; Salghi, R.; Jodeh, S.; Hammouti, B.; et al. Ziziphus lotus as green inhibitor of copper corrosion in natural sea water. Port. Electrochim. Acta 2017, 35, 187–200. [Google Scholar] [CrossRef]
- Fletcher, M.T.; Hungerford, N.L.; Webber, D.; Carpinelli de Jesus, M.; Zhang, J.; Stone, I.S.; Zawawi, N. Stingless bee honey, a novel source of trehalulose: A biologically active disaccharide with health benefits. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Shyam, S.; Ramadas, A.; Chang, S.K. Isomaltulose: Recent evidence for health benefits. J. Funct. Foods 2018, 48, 173–178. [Google Scholar] [CrossRef]
- Lin, S.X.; Curtis, M.A.; Sperry, J. Pyridine alkaloids with activity in the central nervous system. Bioorganic Med. Chem. 2020, 28, 115820. [Google Scholar] [CrossRef]
- ALaerjani, W.M.A.; Abu-Melha, S.A.; Khan, K.A.; Ghramh, H.A.; Alalmie, A.Y.A.; Alshareef, R.M.H.; Mohammed, M.E.A. Presence of short and cyclic peptides in Acacia and Ziziphus honeys may potentiate their medicinal values. Open Chem. 2021, 19, 1171–1182. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Zhao, H.; Zhang, G.; Peng, D.; Cao, W. Characterization of novel protein component as marker for floral origin of jujube (Ziziphus jujuba Mill.) honey. J. Agric. Food Chem. 2019, 67, 12255–12263. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhao, L.; Zhong, W.; Chen, H.Y.; Shan, X.; Tang, N.; Chen, C.Y.C. Insight into potent leads for alzheimer’s disease by using several artificial intelligence algorithms. Biomed. Pharmacother. 2020, 129, 110360. [Google Scholar] [CrossRef] [PubMed]
- Pangestu, A.P.; Indarto, D.; Balgis. Neuroglobin activator In Silico found from Mirabilis Jalapa for stroke treatment. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2018; Volume 2021, No. 1; p. 070002. [Google Scholar]
- Kusumawati, R.; Nasrullah, A.H.; Pesik, R.N.; Indarto, D. Secondary metabolites of Mirabilis jalapa structurally inhibit Lactate Dehydrogenase A in silico: A potential cancer treatment. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 333, No. 1; p. 012078. [Google Scholar]
- Masad, R.J.; Haneefa, S.M.; Mohamed, Y.A.; Al-Sbiei, A.; Bashir, G.; Fernandez-Cabezudo, M.J.; Al- Ramadi, B.K. The immunomodulatory effects of honey and associated flavonoids in cancer. Nutrients 2021, 13, 1269. [Google Scholar] [CrossRef]
- Martinotti, S.; Pellavio, G.; Patrone, M.; Laforenza, U.; Ranzato, E. Manuka honey induces apoptosis of epithelial cancer cells through aquaporin-3 and calcium signaling. Life 2020, 10, 256. [Google Scholar] [CrossRef]
- Eteraf-Oskouei, T.; Najafi, M. Uses of natural honey in cancer: An updated review. Adv. Pharm. Bull. 2021, 12, 248–261. [Google Scholar] [CrossRef]
- Owayss, A.A.; Elbanna, K.; Iqbal, J.; Abulreesh, H.H.; Organji, S.R.; Raweh, H.S.; Alqarni, A.S. In vitro antimicrobial activities of Saudi honeys originating from Ziziphus spina-christi L. and Acacia gerrardii Benth. trees. Food Sci. Nutr. 2020, 8, 390–401. [Google Scholar] [CrossRef] [Green Version]
- Badria, F.; Fathy, H.; Fatehe, A.; Elimam, D.; Ghazy, M. Evaluate the cytotoxic activity of honey, propolis, and bee venom from different localities in Egypt against liver, breast, and colorectal cancer. J. Apither. 2017, 2, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Ghramh, H.A.; Ibrahim, E.H.; Kilany, M. Study of anticancer, antimicrobial, immunomodulatory, and silver nanoparticles production by Sidr honey from three different sources. Food Sci. Nutr. 2020, 8, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Cheng, N.; Zhao, H.; Chen, S.; He, Q.; Cao, W. Jujube honey induces apoptosis in human hepatocellular carcinoma HepG2 cell via DNA damage, p53 expression, and caspase activation. J. Food Biochem. 2019, 43, e12998. [Google Scholar] [CrossRef]
- Mesaik, M.A.; Dastagir, N.; Uddin, N.; Rehman, K.; Azim, M.K. Characterization of immunomodulatory activities of honey glycoproteins and glycopeptides. J. Agric. Food Chem. 2015, 63, 177–184. [Google Scholar] [CrossRef]
- Sarv, V.; Venskutonis, P.R.; Bhat, R. The Sorbus spp.—Underutilised plants for foods and nutraceuticals: Review on polyphenolic phytochemicals and antioxidant potential. Antioxidants 2020, 9, 813. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Meckling, K.A.; Marcone, M.F.; Kakuda, Y.; Tsao, R. Can phytochemical antioxidant rich foods act as anti-cancer agents? Food Res. Int. 2011, 44, 2545–2554. [Google Scholar] [CrossRef]
- Al-Yahya, M.; Mothana, R.; Al-Said, M.; Al-Dosari, M.; Al-Musayeib, N.; Al-Sohaibani, M.; Rafatullah, S. Attenuation of CCl4-induced oxidative stress and hepatonephrotoxicity by Saudi Sidr honey in rats. Evid.-Based Complement. Altern. Med. 2013, 2013, 569037. [Google Scholar] [CrossRef] [Green Version]
- Cornara, L.; Biagi, M.; Xiao, J.; Burlando, B. Therapeutic properties of bioactive compounds from different honeybee products. Front. Pharmacol. 2017, 8, 412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suleiman, M.H.; ALaerjani, W.M.A.; Mohammed, M.E.A. Influence of altitudinal variation on the total phenolic and flavonoid content of Acacia and Ziziphus honey. Int. J. Food Prop. 2020, 23, 2077–2086. [Google Scholar] [CrossRef]
- Martinello, M.; Mutinelli, F. Antioxidant activity in bee products: A review. Antioxidants 2021, 10, 71. [Google Scholar] [CrossRef] [PubMed]
- Alotibi, I.A.; Harakeh, S.M.; Al-Mamary, M.; Mariod, A.A.; Al-Jaouni, S.K.; Al-Masaud, S.; Al- Hindi, R.R. Floral markers and biological activity of Saudi honey. Saudi J. Biol. Sci. 2018, 25, 1369–1374. [Google Scholar] [CrossRef]
- Al-Farsi, M.; Al-Amri, A.; Al-Hadhrami, A.; Al-Belushi, S. Color, flavonoids, phenolics and antioxidants of Omani honey. Heliyon 2018, 4, e00874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Othman, I.M.M.; Gad-Elkareem, M.A.M.; Radwan, H.A.; Badraoui, R.; Aouadi, K.; Kadri, A.; Snoussi, M.; Kadri, A. Synthesis, Structure-Activity Relationship and in silico Studies of Novel Pyrazolothiazole and Thiazolopyridine Derivatives as Prospective Antimicrobial and Anticancer Agents. ChemistrySelect 2021, 6, 7860–7872. [Google Scholar] [CrossRef]
- Hamrita, B.; Noumi, B.; Papetti, A.; Badraoui, R.; Bouslama, L.; Ben Tekfa, M.-I.; Hamdi, A.; Patel, M.; Elasbali, A.M.; Adnan, M.; et al. Phytochemical analysis, antioxidant, antimicrobial, and anti-swarming properties of hibiscus sabdariffa L. calyx extracts: In Vitro and In Silico modelling approaches. Evid.-Based Complement. Altern. Med. 2022, 2022, 1252672. [Google Scholar] [CrossRef] [PubMed]
- Jedli, O.; Ben-Nasr, H.; Zammel, H.; Rebai, T.; Saoudi, M.; Elkahoui, S.; Jamal, A.; Siddiqui, A.J.; Sulieman, A.E.; Alreshidi, M.M.; et al. Attenuation of ovalbumin-induced inflammation and lung oxidative injury in asthmatic rats by Zingiber officinale extract: Combined in silico and in vivo study on antioxidant potential, STAT6 and TNF-α pathways. 3 Biotech 2022, 12, 191. [Google Scholar] [CrossRef] [PubMed]
N° | Compound Name | Family | RT (mn) | MW (g/mol) | Chemical Formula | [m/z]− | [m/z]+ |
---|---|---|---|---|---|---|---|
1 | L-Gulonate | Sugar Acid | 1.08 | 196.0576 | C6 H12 O7 | 195.0503 | - |
2 | N-(1-Deoxy-1-fructosyl) leucine | Amino acid derivative | 1.238 | 293.147 | C12 H23 N O7 | - | 294.1543 |
3 | Anabasamine | Alkaloids | 1.389 | 253.1545 | C16 H19 N3 | - | 276.1435 |
4 | N-(1-Deoxy-1- fructosyl) phenylalanine | Amino acid derivative | 1.672 | 327.1307 | C15 H21 N O7 | - | 328.138 |
5 | Asp-Thr-Gly | Tripeptide | 2.082 | 291.1107 | C10 H17 N3 O7 | - | 292.1178 |
6 | Isomaltulose | Glucans | 2.503 | 342.1158 | C12 H22 O11 | - | 365.104 |
7 | Semilepidinoside B | Glycoside | 2.734 | 366.1415 | C17 H22 N2 O7 | - | 367.1491 |
8 | Miraxanthin-III | Amino acid derivative | 3.67 | 330.1215 | C17 H18 N2 O5 | - | 331.1284 |
9 | Anatalline | Alkaloid | 5.935 | 239.1418 | C15 H17 N3 | - | 240.1492 |
10 | 7-hydroxy-10E,16-heptadecadien-8-ynoic acid | Fatty acid | 20.175 | 278.1936 | C17 H26 O3 | 277.1866 | - |
11 | 14-fluoro-myristic acid | Fatty Acyl | 27.174 | 246.2024 | C14 H27 F O2 | 291.2009 |
Ziziphus Honey | (BHT) | (AA) | |
---|---|---|---|
Phytochemical Classes | |||
Total Flavonoids Content (mg QE/g) | 0.061 ± 0.001 A | - | - |
Total Tannins Content (mg TAE/g) | 2.511 ± 0.321 B | - | - |
Total Phenols Content (mg GAE/g) | 3.396 ± 0.019 C | - | - |
Antioxidant tests | |||
DPPH IC50 (mg/mL) | 3.450 ± 0.081 b | 0.023 ± 3 × 10−4a | 0.022 ± 5 × 10−4a |
ABTS IC50 (mg/mL) | 3.554 ± 0.139 a | 0.018 ± 4 × 10−4a | 0.021 ± 0.001 a |
β-carotene IC50 (mg/mL) | 5 c | 0.042 ± 3.5 × 10−3b | 0.017 ± 0.001 a |
Entry | Honey Compounds | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
Properties/Lipophilicity/Drug-likeness | |||||||||||
Molecular weight | 195.15 | 293.31 | 253.34 | 327.33 | 291.26 | 342.30 | 366.37 | 330.34 | 239.32 | 278.39 | 246.36 |
Num. heavy atoms | 13 | 20 | 19 | 23 | 20 | 23 | 26 | 24 | 18 | 20 | 17 |
Num. arom. heavy atoms | 0 | 0 | 12 | 6 | 0 | 0 | 11 | 6 | 12 | 0 | 0 |
Fraction Csp3 | 0.83 | 0.92 | 0.38 | 0.53 | 0.60 | 1.00 | 0.47 | 0.24 | 0.33 | 0.59 | 0.93 |
Num. rotatable bonds | 5 | 7 | 2 | 7 | 10 | 5 | 6 | 6 | 2 | 11 | 13 |
Num. H-bond acceptors | 7 | 8 | 3 | 8 | 8 | 11 | 8 | 6 | 3 | 3 | 3 |
Num. H-bond donors | 5 | 6 | 0 | 6 | 6 | 8 | 5 | 4 | 1 | 2 | 1 |
Molar Refractivity | 36.59 | 68.03 | 81.17 | 78.09 | 63.60 | 68.16 | 88.68 | 92.38 | 75.32 | 83.98 | 71.23 |
TPSA (Å2) | 141.28 | 139.48 | 29.02 | 139.48 | 179.05 | 189.53 | 137.29 | 119.22 | 37.81 | 57.53 | 37.30 |
Consensus Log Po/w | −2.87 | −1.92 | 2.33 | −1.52 | −2.66 | −3.49 | −0.33 | 0.75 | 1.94 | 3.70 | 4.25 |
Lipinski’s Rule | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Yes | Yes |
Bioavailability Score | 0.56 | 0.55 | 0.55 | 0.55 | 0.11 | 0.17 | 0.55 | 0.56 | 0.55 | 0.85 | 0.85 |
PAINS | 0 alert | 0 alert | 0 alert | 0 alert | 0 alert | 0 alert | 0 alert | 0 alert | 0 alert | 0 alert | 0 alert |
Pharmacokinetics | |||||||||||
GI absorption | Low | Low | High | Low | Low | Low | Low | High | High | High | High |
BBB permeant | No | No | Yes | No | No | No | No | No | Yes | Yes | Yes |
P-gp substrate | No | Yes | Yes | No | No | Yes | No | No | Yes | No | No |
CYP1A2 inhibitor | No | No | No | Yes | No | No | No | No | No | Yes | No |
CYP2C19 inhibitor | No | No | No | No | No | No | No | No | No | No | No |
CYP2C9 inhibitor | No | No | No | No | No | No | No | No | No | Yes | No |
CYP2D6 inhibitor | No | No | Yes | No | No | No | No | No | Yes | Yes | No |
CYP3A4 inhibitor | No | No | Yes | No | No | No | No | No | No | No | No |
Log Kp (cm/s) | −9.88 | −10.21 | −6.74 | −10.24 | −11.90 | −11.41 | −9.20 | −7.32 | −6.75 | −5.31 | −4.45 |
N° | Target Receptor | Binding Energy (kcal/mol) | Molecular Interactions | |||
---|---|---|---|---|---|---|
No. H-Bonds | No. Closest Interacting Residues | Closest Interacting Residue | Distance (Å) | |||
1 | 1HD2 | −5.0 | 6 | 7 | Val94 | 2.003 |
1DI8 | −5.0 | 6 | 6 | Lys33 | 1.946 | |
3TWJ | −5.7 | 8 | 8 | Lys200 | 1.751 | |
2 | 1HD2 | −5.2 | 7 | 7 | Ala42 | 1.888 |
1DI8 | −6.5 | 3 | 8 | Asn132 | 2.064 | |
3TWJ | −6.3 | 5 | 6 | Gly85 | 1.879 | |
3 | 1HD2 | −6.0 | 1 | 3 | Lys22 | 2.193 |
1DI8 | −8.4 | 2 | 9 | Gln131 | 1.881 | |
3TWJ | −7.2 | 2 | 6 | Ala234 | 2.385 | |
4 | 1HD2 | −6.6 | 7 | 6 | Val75 | 2.064 |
1DI8 | −7.9 | 6 | 8 | Asn132 | 2.001 | |
3TWJ | −7.5 | 6 | 5 | Lys200 | 1.852 | |
5 | 1HD2 | −5.5 | 6 | 6 | Val94 | 2.351 |
1DI8 | −6.3 | 6 | 4 | Asp145 | 2.155 | |
3TWJ | −6.8 | 7 | 7 | Lys200 | 1.889 | |
6 | 1HD2 | −6.0 | 6 | 8 | Gly82 | 2.081 |
1DI8 | −6.6 | 5 | 5 | Glu12 | 1.908 | |
3TWJ | −7.0 | 8 | 9 | Ala234 | 2.238 | |
7 | 1HD2 | −6.3 | 8 | 7 | Asn21 | 2.093 |
1DI8 | −8.0 | 5 | 9 | His84 | 1.994 | |
3TWJ | −7.7 | 4 | 8 | Cys220 | 2.556 | |
8 | 1HD2 | −6.2 | 5 | 6 | Arg95 | 2.095 |
1DI8 | −8.7 | 4 | 7 | Asp145 | 1.829 | |
3TWJ | −8.0 | 6 | 7 | Ala119 | 1.943 | |
9 | 1HD2 | −6.1 | 4 | 4 | Asp7 | 2.036 |
1DI8 | −8.3 | 3 | 9 | Asp145 | 2.389 | |
3TWJ | −7.7 | 3 | 5 | Glu24 | 2.019 | |
10 | 1HD2 | −5.1 | 4 | 5 | Leu96 | 2.118 |
1DI8 | −6.7 | 3 | 8 | Leu83 | 1.865 | |
3TWJ | −5.3 | 5 | 6 | Ala234 | 1.976 | |
11 | 1HD2 | −4.3 | 4 | 5 | Leu96 | 2.204 |
1DI8 | −6.0 | 1 | 9 | Lys33 | 2.151 | |
3TWJ | −5.5 | 3 | 7 | Thr219 | 2.092 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouali, N.; Hamadou, W.S.; Badraoui, R.; Lajimi, R.H.; Hamdi, A.; Alreshidi, M.; Adnan, M.; Soua, Z.; Siddiqui, A.J.; Noumi, E.; et al. Phytochemical Composition, Antioxidant, and Anticancer Activities of Sidr Honey: In Vitro and In Silico Computational Investigation. Life 2023, 13, 35. https://doi.org/10.3390/life13010035
Bouali N, Hamadou WS, Badraoui R, Lajimi RH, Hamdi A, Alreshidi M, Adnan M, Soua Z, Siddiqui AJ, Noumi E, et al. Phytochemical Composition, Antioxidant, and Anticancer Activities of Sidr Honey: In Vitro and In Silico Computational Investigation. Life. 2023; 13(1):35. https://doi.org/10.3390/life13010035
Chicago/Turabian StyleBouali, Nouha, Walid Sabri Hamadou, Riadh Badraoui, Ramzi Hadj Lajimi, Assia Hamdi, Mousa Alreshidi, Mohd Adnan, Zohra Soua, Arif Jamal Siddiqui, Emira Noumi, and et al. 2023. "Phytochemical Composition, Antioxidant, and Anticancer Activities of Sidr Honey: In Vitro and In Silico Computational Investigation" Life 13, no. 1: 35. https://doi.org/10.3390/life13010035
APA StyleBouali, N., Hamadou, W. S., Badraoui, R., Lajimi, R. H., Hamdi, A., Alreshidi, M., Adnan, M., Soua, Z., Siddiqui, A. J., Noumi, E., & Snoussi, M. (2023). Phytochemical Composition, Antioxidant, and Anticancer Activities of Sidr Honey: In Vitro and In Silico Computational Investigation. Life, 13(1), 35. https://doi.org/10.3390/life13010035