Bilateral Carotid Artery Molecular Calcification Assessed by [18F] Fluoride PET/CT: Correlation with Cardiovascular and Thromboembolic Risk Factors
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Patient Evaluation
2.3. Cardiac PET/CT Acquisition Protocol
2.4. Carotid PET/CT Data Analysis
2.5. Statistical Analysis
3. Results
3.1. Clinical Characteristics of the Study Population
3.2. Association between Cardiovascular Risk Factors and Arterial Molecular Calcification
3.3. Correlation between Cardiovascular Risk and Arterial Molecular Calcification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vaduganathan, M.; Mensah, G.A.; Turco, J.V.; Fuster, V.; Roth, G.A. The Global Burden of Cardiovascular Diseases and Risk: A Compass for Future Health. J. Am. Coll. Cardiol. 2022, 80, 2361–2371. [Google Scholar] [CrossRef]
- Osborn, E.A.; Jaffer, F.A. Imaging Atherosclerosis and Risk of Plaque Rupture. Curr. Atheroscler. Rep. 2013, 15, 359. [Google Scholar] [CrossRef]
- Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Available online: https://www.ahajournals.org/doi/epub/10.1161/CIRCRESAHA.115.306301 (accessed on 3 September 2023).
- Borja, A.J.; Hancin, E.C.; Zhang, V.; Revheim, M.-E.; Alavi, A. Potential of PET/CT in Assessing Dementias with Emphasis on Cerebrovascular Disorders. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 2493–2498. [Google Scholar] [CrossRef] [PubMed]
- Arad, Y.; Goodman, K.J.; Roth, M.; Newstein, D.; Guerci, A.D. Coronary Calcification, Coronary Disease Risk Factors, C-Reactive Protein, and Atherosclerotic Cardiovascular Disease Events: The St. Francis Heart Study. J. Am. Coll. Cardiol. 2005, 46, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhang, Y.; Yu, C.-M.; Ji, Q.-W.; Cai, M.; Zhao, Y.-X.; Zhou, Y.-J. Current Understanding of Coronary Artery Calcification. J. Geriatr. Cardiol. 2015, 12, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Auerbach, J.D.; Witschey, W.R.T.; Balderston, R.A.; Reddy, R.; Borthakur, A. Advances in Magnetic Resonance Imaging for the Assessment of Degenerative Disc Disease of the Lumbar Spine. Semin. Spine Surg. 2007, 19, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Steinl, D.C.; Kaufmann, B.A. Ultrasound Imaging for Risk Assessment in Atherosclerosis. Int. J. Mol. Sci. 2015, 16, 9749–9769. [Google Scholar] [CrossRef]
- Bassir, A.; Raynor, W.Y.; Park, P.S.U.; Werner, T.J.; Alavi, A.; Revheim, M.-E. Molecular Imaging in Atherosclerosis. Clin. Transl. Imaging 2022, 10, 259–272. [Google Scholar] [CrossRef]
- Liu, H.; Wingert, A.; Wang, J.; Zhang, J.; Wang, X.; Sun, J.; Chen, F.; Khalid, S.G.; Jiang, J.; Zheng, D. Extraction of Coronary Atherosclerotic Plaques from Computed Tomography Imaging: A Review of Recent Methods. Front. Cardiovasc. Med. 2021, 8, 597568. [Google Scholar] [CrossRef]
- Blomberg, B.A.; Thomassen, A.; Takx, R.A.P.; Hildebrandt, M.G.; Simonsen, J.A.; Buch-Olsen, K.M.; Diederichsen, A.C.P.; Mickley, H.; Alavi, A.; Høilund-Carlsen, P.F. Delayed 18F-Fluorodeoxyglucose PET/CT Imaging Improves Quantitation of Atherosclerotic Plaque Inflammation: Results from the CAMONA Study. J. Nucl. Cardiol. 2014, 21, 588–597. [Google Scholar] [CrossRef]
- Singh, S.B.; Ng, S.J.; Lau, H.C.; Khanal, K.; Bhattarai, S.; Paudyal, P.; Shrestha, B.B.; Naseer, R.; Sandhu, S.; Gokhale, S.; et al. Emerging PET Tracers in Cardiac Molecular Imaging. Cardiol. Ther. 2023, 12, 85–99. [Google Scholar] [CrossRef]
- Heart Disease and Stroke Statistics—2016 Update|Circulation. Available online: https://www.ahajournals.org/doi/10.1161/CIR.0000000000000350?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed (accessed on 3 September 2023).
- Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R.; et al. Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. Circulation 2018, 137, e67–e492. [Google Scholar] [CrossRef] [PubMed]
- Toth, G.G.; Johnson, N.P.; Wijns, W.; Toth, B.; Achim, A.; Fournier, S.; Barbato, E. Revascularization Decisions in Patients with Chronic Coronary Syndromes: Results of the Second International Survey on Interventional Strategy (ISIS-2). Int. J. Cardiol. 2021, 336, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Alie, N.; Eldib, M.; Fayad, Z.A.; Mani, V. Inflammation, Atherosclerosis, and Coronary Artery Disease: PET/CT for the Evaluation of Atherosclerosis and Inflammation. Clin. Med. Insights Cardiol. 2014, 8, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, D.; Millon, A.; Fayad, Z.A. Molecular Imaging in Atherosclerosis: FDG PET. Curr. Atheroscler. Rep. 2012, 14, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Høilund-Carlsen, P.F.; Piri, R.; Gerke, O.; Sturek, M.; Werner, T.J.; Revheim, M.-E.; Alavi, A. NaF-PET Imaging of Atherosclerosis Burden. J. Imaging 2023, 9, 31. [Google Scholar] [CrossRef]
- Toutouzas, K.; Koutagiar, I.; Benetos, G.; Aggeli, C.; Georgakopoulos, A.; Athanasiadis, E.; Pianou, N.; Trachanellis, S.; Patelis, N.; Agrogiannis, G.; et al. Inflamed Human Carotid Plaques Evaluated by PET/CT Exhibit Increased Temperature: Insights from an in Vivo Study. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 1236–1244. [Google Scholar] [CrossRef]
- McKenney-Drake, M.L.; Moghbel, M.C.; Paydary, K.; Alloosh, M.; Houshmand, S.; Moe, S.; Salavati, A.; Sturek, J.M.; Territo, P.R.; Weaver, C.; et al. 18F-NaF and 18F-FDG as Molecular Probes in the Evaluation of Atherosclerosis. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 2190–2200. [Google Scholar] [CrossRef]
- Blomberg, B.A.; Thomassen, A.; de Jong, P.A.; Simonsen, J.A.; Lam, M.G.E.H.; Nielsen, A.L.; Mickley, H.; Mali, W.P.T.M.; Alavi, A.; Høilund-Carlsen, P.F. Impact of Personal Characteristics and Technical Factors on Quantification of Sodium 18F-Fluoride Uptake in Human Arteries: Prospective Evaluation of Healthy Subjects. J. Nucl. Med. 2015, 56, 1534–1540. [Google Scholar] [CrossRef]
- Teichner, E.M.; Subtirelu, R.C.; Ashok, A.B.; Su, Y.; Anderson, V.A.; Writer, M.; Al-Daoud, O.; Ismoilov, M.; Raynor, W.Y.; Werner, T.J.; et al. The Emerging Role of NaF-PET/CT in Detecting Vascular Microcalcification in the Pathogenesis of Neurological Dysfunction. J. Vasc. Dis. 2023, 2, 310–316. [Google Scholar] [CrossRef]
- Christopoulos, G.; Jouni, H.; Acharya, G.A.; Blauwet, L.A.; Kapa, S.; Bois, J.; Chareonthaitawee, P.; Rodriguez-Porcel, M.G. Suppressing Physiologic 18-Fluorodeoxyglucose Uptake in Patients Undergoing Positron Emission Tomography for Cardiac Sarcoidosis: The Effect of a Structured Patient Preparation Protocol. J. Nucl. Cardiol. 2021, 28, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Osborne, M.T.; Hulten, E.A.; Murthy, V.L.; Skali, H.; Taqueti, V.R.; Dorbala, S.; DiCarli, M.F.; Blankstein, R. Patient Preparation for Cardiac Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography Imaging of Inflammation. J. Nucl. Cardiol. 2017, 24, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Dweck, M.R.; Chow, M.W.L.; Joshi, N.V.; Williams, M.C.; Jones, C.; Fletcher, A.M.; Richardson, H.; White, A.; McKillop, G.; van Beek, E.J.R.; et al. Coronary Arterial 18F-Sodium Fluoride Uptake: A Novel Marker of Plaque Biology. J. Am. Coll. Cardiol. 2012, 59, 1539–1548. [Google Scholar] [CrossRef] [PubMed]
- Fiz, F.; Morbelli, S.; Piccardo, A.; Bauckneht, M.; Ferrarazzo, G.; Pestarino, E.; Cabria, M.; Democrito, A.; Riondato, M.; Villavecchia, G.; et al. 18F-NaF Uptake by Atherosclerotic Plaque on PET/CT Imaging: Inverse Correlation Between Calcification Density and Mineral Metabolic Activity. J. Nucl. Med. 2015, 56, 1019–1023. [Google Scholar] [CrossRef] [PubMed]
- Blomberg, B.A.; de Jong, P.A.; Thomassen, A.; Lam, M.G.E.; Vach, W.; Olsen, M.H.; Mali, W.P.T.M.; Narula, J.; Alavi, A.; Høilund-Carlsen, P.F. Thoracic Aorta Calcification but Not Inflammation Is Associated with Increased Cardiovascular Disease Risk: Results of the CAMONA Study. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 249–258. [Google Scholar] [CrossRef]
- Derlin, T.; Wisotzki, C.; Richter, U.; Apostolova, I.; Bannas, P.; Weber, C.; Mester, J.; Klutmann, S. In Vivo Imaging of Mineral Deposition in Carotid Plaque Using 18F-Sodium Fluoride PET/CT: Correlation with Atherogenic Risk Factors. J. Nucl. Med. 2011, 52, 362–368. [Google Scholar] [CrossRef]
- De Azevedo, D.; Geers, J.; Gheysens, O.; Dweck, M.; Vancraeynest, D. 18F-Sodium Fluoride PET/CT in Assessing Valvular Heart and Atherosclerotic Diseases. Semin. Nucl. Med. 2023, 53, 241–257. [Google Scholar] [CrossRef]
- Wilson, P.W.; D’Agostino, R.B.; Levy, D.; Belanger, A.M.; Silbershatz, H.; Kannel, W.B. Prediction of Coronary Heart Disease Using Risk Factor Categories. Circulation 1998, 97, 1837–1847. [Google Scholar] [CrossRef]
- Conroy, R.M.; Pyörälä, K.; Fitzgerald, A.P.; Sans, S.; Menotti, A.; De Backer, G.; De Bacquer, D.; Ducimetière, P.; Jousilahti, P.; Keil, U.; et al. Estimation of Ten-Year Risk of Fatal Cardiovascular Disease in Europe: The SCORE Project. Eur. Heart J. 2003, 24, 987–1003. [Google Scholar] [CrossRef]
- Sofogianni, A.; Stalikas, N.; Antza, C.; Tziomalos, K. Cardiovascular Risk Prediction Models and Scores in the Era of Personalized Medicine. J. Pers. Med. 2022, 12, 1180. [Google Scholar] [CrossRef]
- Graham, I.M.; Di, A.E.; Visseren, F.; De, B.D.; Ference, B.A.; Timmis, A.; Halle, M.; Vardas, P.; Huculeci, R.; Cooney, M.-T.; et al. Systematic Coronary Risk Evaluation (SCORE). J. Am. Coll. Cardiol. 2021, 77, 3046–3057. [Google Scholar] [CrossRef] [PubMed]
- Budoff, M.J.; Shaw, L.J.; Liu, S.T.; Weinstein, S.R.; Mosler, T.P.; Tseng, P.H.; Flores, F.R.; Callister, T.Q.; Raggi, P.; Berman, D.S. Long-Term Prognosis Associated with Coronary Calcification: Observations from a Registry of 25,253 Patients. J. Am. Coll. Cardiol. 2007, 49, 1860–1870. [Google Scholar] [CrossRef] [PubMed]
- Ehara, S.; Kobayashi, Y.; Yoshiyama, M.; Shimada, K.; Shimada, Y.; Fukuda, D.; Nakamura, Y.; Yamashita, H.; Yamagishi, H.; Takeuchi, K.; et al. Spotty Calcification Typifies the Culprit Plaque in Patients with Acute Myocardial Infarction: An Intravascular Ultrasound Study. Circulation 2004, 110, 3424–3429. [Google Scholar] [CrossRef]
- Joshi, N.V.; Vesey, A.T.; Williams, M.C.; Shah, A.S.V.; Calvert, P.A.; Craighead, F.H.M.; Yeoh, S.E.; Wallace, W.; Salter, D.; Fletcher, A.M.; et al. 18F-Fluoride Positron Emission Tomography for Identification of Ruptured and High-Risk Coronary Atherosclerotic Plaques: A Prospective Clinical Trial. Lancet 2014, 383, 705–713. [Google Scholar] [CrossRef]
- Henzler, T.; Porubsky, S.; Kayed, H.; Harder, N.; Krissak, U.R.; Meyer, M.; Sueselbeck, T.; Marx, A.; Michaely, H.; Schoepf, U.J.; et al. Attenuation-Based Characterization of Coronary Atherosclerotic Plaque: Comparison of Dual Source and Dual Energy CT with Single-Source CT and Histopathology. Eur. J. Radiol. 2011, 80, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Saremi, F.; Achenbach, S. Coronary Plaque Characterization Using CT. Am. J. Roentgenol. 2015, 204, W249–W260. [Google Scholar] [CrossRef]
- Fleischmann, D.; Boas, F.E. Computed Tomography—Old Ideas and New Technology. Eur. Radiol. 2011, 21, 510–517. [Google Scholar] [CrossRef]
- Flohr, T.G.; McCollough, C.H.; Bruder, H.; Petersilka, M.; Gruber, K.; Süss, C.; Grasruck, M.; Stierstorfer, K.; Krauss, B.; Raupach, R.; et al. First Performance Evaluation of a Dual-Source CT (DSCT) System. Eur. Radiol. 2006, 16, 256–268. [Google Scholar] [CrossRef]
- Irkle, A.; Vesey, A.T.; Lewis, D.Y.; Skepper, J.N.; Bird, J.L.E.; Dweck, M.R.; Joshi, F.R.; Gallagher, F.A.; Warburton, E.A.; Bennett, M.R.; et al. Identifying Active Vascular Microcalcification by (18)F-Sodium Fluoride Positron Emission Tomography. Nat. Commun. 2015, 6, 7495. [Google Scholar] [CrossRef]
- Emamzadehfard, S.; Castro, S.; Werner, T.; Hoilund-Carlsen, P.F.; Alavi, A. Does FDG PET/CT Precisely Detect Carotid Artery Inflammation? J. Nucl. Med. 2018, 59, 1550. [Google Scholar]
- Raynor, W.Y.; Park, P.S.U.; Borja, A.J.; Sun, Y.; Werner, T.J.; Ng, S.J.; Lau, H.C.; Høilund-Carlsen, P.F.; Alavi, A.; Revheim, M.-E. PET-Based Imaging with 18F-FDG and 18F-NaF to Assess Inflammation and Microcalcification in Atherosclerosis and Other Vascular and Thrombotic Disorders. Diagnostics 2021, 11, 2234. [Google Scholar] [CrossRef] [PubMed]
- Morbelli, S.; Fiz, F.; Piccardo, A.; Picori, L.; Massollo, M.; Pestarino, E.; Marini, C.; Cabria, M.; Democrito, A.; Cittadini, G.; et al. Divergent Determinants of 18F-NaF Uptake and Visible Calcium Deposition in Large Arteries: Relationship with Framingham Risk Score. Int. J. Cardiovasc. Imaging 2014, 30, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Quirce, R.; Martínez-Rodríguez, I.; Banzo, I.; Jiménez-Bonilla, J.; Martínez-Amador, N.; Ibáñez-Bravo, S.; López-Defilló, J.; Jiménez-Alonso, M.; Revilla, M.A.; Carril, J.M. New Insight of Functional Molecular Imaging into the Atheroma Biology: 18F-NaF and 18F-FDG in Symptomatic and Asymptomatic Carotid Plaques after Recent CVA. Preliminary Results. Clin. Physiol. Funct. Imaging 2016, 36, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Castro, S.A.; Muser, D.; Lee, H.; Hancin, E.C.; Borja, A.J.; Acosta, O.; Werner, T.J.; Thomassen, A.; Constantinescu, C.; Høilund-Carlsen, P.F.; et al. Carotid Artery Molecular Calcification Assessed by [18F] Fluoride PET/CT: Correlation with Cardiovascular and Thromboembolic Risk Factors. Eur. Radiol. 2021, 31, 8050–8059. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Yang, Y.; Cao, T.; Li, Z. Differences in Left and Right Carotid Intima-Media Thickness and the Associated Risk Factors. Clin. Radiol. 2011, 66, 393–398. [Google Scholar] [CrossRef]
- Achim, A.; Lackó, D.; Hüttl, A.; Csobay-Novák, C.; Csavajda, Á.; Sótonyi, P.; Merkely, B.; Nemes, B.; Ruzsa, Z. Impact of Diabetes Mellitus on Early Clinical Outcome and Stent Restenosis after Carotid Artery Stenting. J. Diabetes Res. 2022, 2022, e4196195. [Google Scholar] [CrossRef]
- Lee, J.Y.; Antoniazzi, M.C.C.; Perozini, C.; Ruivo, G.F.; Pallos, D. Prevalence of Carotid Artery Calcification in Patients with Chronic Renal Disease Identified by Panoramic Radiography. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2014, 118, 612–618. [Google Scholar] [CrossRef]
- Johnsrud, K.; Seierstad, T.; Russell, D.; Revheim, M.-E. Inter-Reader Agreement of 18F-FDG PET/CT for the Quantification of Carotid Artery Plaque Inflammation. JRSM Cardiovasc. Dis. 2020, 9, 2048004020980941. [Google Scholar] [CrossRef]
- Martino, F.; Bassareo, P.P.; Martino, E.; Romeo, F.; Calcaterra, G.; Perrone Filardi, P.; Indolfi, C.; Nodari, S.; Montemurro, V.; Guccione, P.; et al. Cardiovascular Prevention in Childhood: A Consensus Document of the Italian Society of Cardiology Working Group on Congenital Heart Disease and Cardiovascular Prevention in Paediatric Age. J. Cardiovasc. Med. 2023, 24, 492–505. [Google Scholar] [CrossRef]
Demographics | |
---|---|
Age, years | 48.2 ± 14.1 |
Male gender, n (%) | 52 (51) |
Body mass index, kg/m2 | 26.5 ± 4.0 |
Comorbidities | |
Active smoking, n (%) | 12 (12) |
Family history of coronary artery disease, n (%) | 25 (24) |
Arterial hypertension, n (%) | 45 (44) |
Hypercholesterolemia, n (%) | 18 (17) |
Diabetes mellitus type II, n (%) | 0 (0) |
Coronary artery disease, n (%) | N/A |
Peripheral artery disease, n (%) | 4 (4) |
Chronic kidney disease, n (%) | N/A |
History of previous stroke/transient ischemic attack, n (%) | 2 (2) |
Laboratory tests | |
Total cholesterol, mmol/L | 5.1 ± 0.9 |
HDL cholesterol, mmol/L | 1.4 ± 0.4 |
LDL cholesterol, mmol/L | 3.2 ± 0.8 |
Triglycerides, mmol/L | 1.1 ± 0.7 |
HbA1c, mmol/mol | 35.2 ± 4.9 |
C-reactive protein, mg/L | 2.5 ± 3.5 |
White blood cell count, 109 cells/L | 6.1 ± 2.1 |
Fibrinogen, μmol/L | 10.1 ± 7.4 |
Creatinine, μmol/L | 79.9 ± 16.8 |
Estimated glomerular filtration rate, mL/min/1.73 m2 | 81.0 ± 14.8 |
Medications | |
Aspirin, n (%) | 9 (8) |
Beta blockers, n (%) | 9 (8) |
Angiotensin-converting enzyme blockers/angiotensin receptor blockers, n (%) | 13 (12) |
Lipid-lowering medication, n (%) | 14 (13) |
Risk profile | |
10-year Framingham risk, % (25–75th percentile) | 8 (2–10) |
Univariable | Multivariable | |||
---|---|---|---|---|
Predictor | β (95% CI) | p | β (95% CI) | p |
Age | 0.006 (0.003–0.01) | <0.01 | 0.005 (0.003–0.008) | <0.01 |
Male gender | –0.08 (−0.18–0.01) | 0.11 | –0.08 (−0.17 to −0.002) | 0.04 |
Smoking (former or current) | 0.01 (−0.14–0.17) | 0.81 | ||
Total cholesterol | 0.002 (−0.05–0.06) | 0.79 | ||
HDL cholesterol | 0.06 (−0.05–0.17) | 0.29 | 0.07 (−0.01–0.16) | 0.16 |
LDL cholesterol | –0.005 (−0.06–0.05) | 0.85 | ||
Triglycerides | –0.05 (−0.12–0.01) | 0.09 | ||
HbA1c | –0.001 (−0.01–0.009) | 0.79 | ||
CRP | –0.01 (−0.02–0.0006) | 0.06 | –0.01 (−0.02–0.001) | 0.07 |
Fibrinogen | 0.007 (0.0009–0.01) | 0.02 | 0.006 (0.0009–0.01) | 0.02 |
WBC count | –0.01 (−0.04–0.006) | 0.14 | ||
eGFR | 0.001 (−0.002–0.004) | 0.40 | ||
BMI | 0.02 (0.01–0.03) | <0.01 | 0.02 (0.01–0.03) | <0.01 |
Arterial hypertension | –0.08 (−0.19–0.03) | 0.45 |
Univariable | Multivariable | |||
---|---|---|---|---|
Predictor | β (95% CI) | p | β (95% CI) | p |
Age | 0.007 (0.004–0.01) | <0.01 | 0.006 (0.004–0.009) | <0.01 |
Male gender | –0.14 (−0.23 to −0.04) | <0.01 | –0.13 (−0.21 to −0.06) | <0.01 |
Smoking (former or current) | –0.05 (−0.20–0.10) | 0.55 | ||
Total cholesterol | 0.005 (−0.04–0.06) | 0.74 | ||
HDL cholesterol | 0.11 (0.01–0.22) | 0.03 | 0.13 (0.04–0.21) | <0.01 |
LDL cholesterol | –0.01 (−0.07–0.04) | 0.55 | ||
Triglycerides | –0.05 (−0.12–0.01) | 0.10 | ||
HbA1c | –0.002 (−0.01–0.007) | 0.61 | ||
CRP | –0.01 (−0.03–0.003) | 0.01 | –0.01 (−0.02–0.001) | 0.03 |
Fibrinogen | 0.007 (0.0006–0.01) | 0.03 | 0.005 (0.001–0.01) | 0.01 |
WBC count | –0.01 (−0.03–0.01) | 0.40 | ||
eGFR | 0.001 (−0.001–0.004) | 0.40 | ||
BMI | 0.01 (0.007–0.02) | <0.01 | 0.02 (0.01–0.03) | <0.01 |
Arterial hypertension | –0.04 (−0.15–0.06) | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patil, S.; Teichner, E.M.; Subtirelu, R.C.; Parikh, C.; Al-Daoud, O.; Ismoilov, M.; Werner, T.; Høilund-Carlsen, P.F.; Alavi, A. Bilateral Carotid Artery Molecular Calcification Assessed by [18F] Fluoride PET/CT: Correlation with Cardiovascular and Thromboembolic Risk Factors. Life 2023, 13, 2070. https://doi.org/10.3390/life13102070
Patil S, Teichner EM, Subtirelu RC, Parikh C, Al-Daoud O, Ismoilov M, Werner T, Høilund-Carlsen PF, Alavi A. Bilateral Carotid Artery Molecular Calcification Assessed by [18F] Fluoride PET/CT: Correlation with Cardiovascular and Thromboembolic Risk Factors. Life. 2023; 13(10):2070. https://doi.org/10.3390/life13102070
Chicago/Turabian StylePatil, Shiv, Eric M. Teichner, Robert C. Subtirelu, Chitra Parikh, Omar Al-Daoud, Miraziz Ismoilov, Thomas Werner, Poul Flemming Høilund-Carlsen, and Abass Alavi. 2023. "Bilateral Carotid Artery Molecular Calcification Assessed by [18F] Fluoride PET/CT: Correlation with Cardiovascular and Thromboembolic Risk Factors" Life 13, no. 10: 2070. https://doi.org/10.3390/life13102070
APA StylePatil, S., Teichner, E. M., Subtirelu, R. C., Parikh, C., Al-Daoud, O., Ismoilov, M., Werner, T., Høilund-Carlsen, P. F., & Alavi, A. (2023). Bilateral Carotid Artery Molecular Calcification Assessed by [18F] Fluoride PET/CT: Correlation with Cardiovascular and Thromboembolic Risk Factors. Life, 13(10), 2070. https://doi.org/10.3390/life13102070