One-Day Interruption of NOAC Is Associated with Low Risk of Periprocedural Adverse Events during Pulmonary Vein Isolation If Combined with Left Atrial Thrombus Exclusion with Computed Tomography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. CT Examination
2.3. Ablation Procedure
2.4. Discomfort Study
2.5. Postprocedural Anticoagulation
2.6. Follow-Up and Complications
- A periprocedural thromboembolic event was defined as any embolic event that occurred before or on the day of the ablation procedure or during the three-month period postprocedurally.
- Pericardial effusion was considered when an extra fluid buildup was observed in the pericardium after the ablation procedure with or without symptoms and did not cause heart failure or shock.
- Cardiac tamponade was defined as a compression of the heart causing heart failure and shock due to blood buildup in the pericardial space.
- Significant pulmonary vein stenosis was determined when a progressive lumen reduction of one or more pulmonary veins occurred, causing shortness of breath, cough, or hemoptysis.
- Persistent phrenic nerve palsy was diagnosed when fluoroscopy revealed paradoxical motion of the diaphragm.
- Inguinal hematoma was considered when a groin mass occurred after the removal of the sheets from the region, which was then observed and checked by ultrasound imaging to exclude more severe complications.
- Significant wound bleeding would be considered when the patient required extra hospital stay because of blood loss.
- Pseudoaneurysm was defined as a leakage of arterial blood into the surrounding tissue, with persistent communication visualized by ultrasound imaging.
2.7. Statistical Analysis
2.8. Informed Consent/Ethics Approval
3. Results
3.1. NOAC
3.2. CT
3.3. Ablation
3.4. Adverse Events
4. Discussion
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wolf, P.A.; Abbott, R.D.; Kannel, W.B. Atrial fibrillation as an independent risk factor for stroke: The Framingham Study. Stroke 1991, 22, 983–988. [Google Scholar] [CrossRef] [PubMed]
- Knecht, S.; Oelschläger, C.; Duning, T.; Lohmann, H.; Albers, J.; Stehling, C.; Heindel, W.; Breithardt, G.; Berger, K.; Ringelstein, E.B.; et al. Atrial fibrillation in stroke-free patients is associated with memory impairment and hippocampal atrophy. Eur. Heart J. 2008, 29, 2125–2132. [Google Scholar] [CrossRef] [PubMed]
- Bunch, T.J.; Weiss, J.P.; Crandall, B.G.; May, H.T.; Bair, T.L.; Osborn, J.S.; Anderson, J.L.; Muhlestein, J.B.; Horne, B.D.; Lappe, D.L.; et al. Atrial fibrillation is independently associated with senile, vascular, and Alzheimer’s dementia. Heart Rhythm 2010, 7, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Vidaillet, H.; Granada, J.F.; Chyou, P.; Maassen, K.; Ortiz, M.; Pulido, J.N.; Sharma, P.; Smith, P.N.; Hayes, J. A population-based study of mortality among patients with atrial fibrillation or flutter. Am. J. Med. 2002, 113, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association of Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef]
- Calkins, H.; Reynolds, M.R.; Spector, P.; Sondhi, M.; Xu, Y.; Martin, A.; Williams, C.J.; Sledge, I. Treatment of atrial fibrillation with antiarrhythmic drugs or radiofrequency ablation: Two systematic literature reviews and meta-analyses. Circ. Arrhythm. Electrophysiol. 2009, 2, 349–361. [Google Scholar] [CrossRef]
- Sarkadi, H.; Csőre, J.; Veres, D.S.; Szegedi, N.; Molnár, L.; Gellér, L.; Bérczi, V.; Dósa, E. Incidence of and predisposing factors for pseudoaneurysm formation in a high-volume cardiovascular center. PLoS ONE 2021, 16, e0256317. [Google Scholar] [CrossRef]
- Szegedi, N.; Széplaki, G.; Herczeg, S.; Tahin, T.; Salló, Z.; Nagy, V.K.; Osztheimer, I.; Özcan, E.E.; Merkely, B.; Gellér, L. Repeat procedure is a new independent predictor of complications of atrial fibrillation ablation. Europace 2019, 21, 732–737. [Google Scholar] [CrossRef]
- Szegedi, N.; Salló, Z.; Perge, P.; Piros, K.; Nagy, V.K.; Osztheimer, I.; Merkely, B.; Gellér, L. The role of local impedance drop in the acute lesion efficacy during pulmonary vein isolation performed with a new contact force sensing catheter-A pilot study. PLoS ONE 2021, 16, e0257050. [Google Scholar] [CrossRef]
- Kim, J.S.; She, F.; Jongnarangsin, K.; Chugh, A.; Latchamsetty, R.; Ghanbari, H.; Crawford, T.; Suwanagool, A.; Sinno, M.; Carrigan, T.; et al. Dabigatran vs warfarin for radiofrequency catheter ablation of atrial fibrillation. Heart Rhythm 2013, 10, 483–489. [Google Scholar] [CrossRef]
- Kaseno, K.; Naito, S.; Nakamura, K.; Sakamoto, T.; Sasaki, T.; Tsukada, N.; Hayano, M.; Nishiuchi, S.; Fuke, E.; Miki, Y.; et al. Efficacy and safety of periprocedural dabigatran in patients undergoing catheter ablation of atrial fibrillation. Circ. J. 2012, 76, 2337–2342. [Google Scholar] [CrossRef] [PubMed]
- Armbruster, H.L.; Lindsley, J.P.; Moranville, M.P.; Habibi, M.; Khurram, I.M.; Spragg, D.D.; Berger, R.D.; Calkins, H.; Marine, J.E. Safety of novel oral anticoagulants compared with uninterrupted warfarin for catheter ablation of atrial fibrillation. Ann. Pharmacother. 2015, 49, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Arshad, A.; Johnson, C.K.; Mittal, S.; Buch, E.; Hamam, I.; Tran, T.; Shaw, R.E.; Musat, D.; Preminger, M.; Sichrovsky, T.; et al. Comparative safety of periablation anticoagulation strategies for atrial fibrillation: Data from a large multicenter study. Pacing Clin. Electrophysiol. 2014, 37, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yang, Y.; Tang, X.; Yu, X.; Zhang, L.; Xiao, H. New oral anticoagulants compared to warfarin for perioperative anticoagulation in patients undergoing atrial fibrillation catheter ablation: A meta-analysis of continuous or interrupted new oral anticoagulants during ablation compared to interrupted or continuous warfarin. J. Interv. Card. Electrophysiol. 2017, 48, 267–282. [Google Scholar] [PubMed]
- Steffel, J.; Collins, R.; Antz, M.; Cornu, P.; Desteghe, L.; Haeusler, K.G.; Oldgren, J.; Reinecke, H.; Roldan-Schilling, V.; Rowell, N.; et al. 2021 European Heart Rhythm Association Practical Guide on the Use of Non-Vitamin K Antagonist Oral Anticoagulants in Patients with Atrial Fibrillation. EP Eur. 2021, 23, 1612–1676. [Google Scholar] [CrossRef] [PubMed]
- Romero, J.; Husain, S.A.; Kelesidis, I.; Sanz, J.; Medina, H.M.; Garcia, M.J. Detection of left atrial appendage thrombus by cardiac computed tomography in patients with atrial fibrillation: A meta-analysis. Circ. Cardiovasc. Imaging 2013, 6, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Szegedi, N.; Vecsey-Nagy, M.; Simon, J.; Szilveszter, B.; Herczeg, S.; Kolossváry, M.; Idelbi, H.; Osztheimer, I.; Klaudia Nagy, V.; Tahin, T.; et al. Orientation of the right superior pulmonary vein affects outcome after pulmonary vein isolation. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 515–523. [Google Scholar] [CrossRef]
- Simon, J.; El Mahdiui, M.; Smit, J.M.; Száraz, L.; van Rosendael, A.R.; Herczeg, S.; Zsarnóczay, E.; Nagy, A.I.; Kolossváry, M.; Szilveszter, B.; et al. Left atrial appendage size is a marker of atrial fibrillation recurrence after radiofrequency catheter ablation in patients with persistent atrial fibrillation. Clin. Cardiol. 2022, 45, 273–281. [Google Scholar] [CrossRef]
- El Mahdiui, M.; Simon, J.; Smit, J.M.; Kuneman, J.H.; van Rosendael, A.R.; Steyerberg, E.W.; van der Geest, R.J.; Száraz, L.; Herczeg, S.; Szegedi, N.; et al. Posterior Left Atrial Adipose Tissue Attenuation Assessed by Computed Tomography and Recurrence of Atrial Fibrillation after Catheter Ablation. Circ. Arrhythm. Electrophysiol. 2021, 14, e009135. [Google Scholar] [CrossRef]
- Gupta, A.; Perera, T.; Ganesan, A.; Sullivan, T.; Lau, D.H.; Roberts-Thomson, K.C.; Brooks, A.G.; Sanders, P. Complications of catheter ablation of atrial fibrillation: A systematic review. Circ. Arrhythm. Electrophysiol. 2013, 6, 1082–1088. [Google Scholar] [CrossRef]
- Benali, K.; Khairy, P.; Hammache, N.; Petzl, A.; Da Costa, A.; Verma, A.; Andrade, J.G.; Macle, L. Procedure-Related Complications of Catheter Ablation for Atrial Fibrillation. J. Am. Coll. Cardiol. 2023, 81, 2089–2099. [Google Scholar] [CrossRef] [PubMed]
- Kralik, I.; Štefanić, M.; Brkić, H.; Šarić, G.; Težak, S.; Grbac Ivanković, S.; Griotto, N.; Štimac, D.; Rubin, O.; Salha, T.; et al. Estimated collective effective dose to the population from nuclear medicine diagnostic procedures in Croatia: A comparison of 2010 and 2015. PLoS ONE 2017, 12, e0180057. [Google Scholar] [CrossRef] [PubMed]
- Hausleiter, J.; Meyer, T.; Hadamitzky, M.; Huber, E.; Zankl, M.; Martinoff, S.; Kastrati, A.; Schömig, A. Radiation dose estimates from cardiac multislice computed tomography in daily practice: Impact of different scanning protocols on effective dose estimates. Circulation 2006, 113, 1305–1310. [Google Scholar] [CrossRef]
- Saucedo, J.; Martinho, S.; Frankel, D.; Slim, A.M.; Eckart, R.E. Exclusion of left atrial appendage thrombus using single phase coronary computed tomography as compared to transesophageal echocardiography in patients undergoing pulmonary vein isolation. ISRN Cardiol. 2014, 2014, 838727. [Google Scholar] [CrossRef] [PubMed]
- Arbelo, E.; Brugada, J.; Hindricks, G.; Maggioni, A.; Tavazzi, L.; Vardas, P.; Anselme, F.; Inama, G.; Jais, P.; Kalarus, Z.; et al. ESC-EURObservational Research Programme: The Atrial Fibrillation Ablation Pilot Study, conducted by the European Heart Rhythm Association. Europace 2012, 14, 1094–1103. [Google Scholar] [CrossRef]
- Arbelo, E.; Brugada, J.; Blomström-Lundqvist, C.; Laroche, C.; Kautzner, J.; Pokushalov, E.; Raatikainen, P.; Efremidis, M.; Hindricks, G.; Barrera, A.; et al. Contemporary management of patients undergoing atrial fibrillation ablation: In-hospital and 1-year follow-up findings from the ESC-EHRA atrial fibrillation ablation long-term registry. Eur. Heart J. 2017, 38, 1303–1316. [Google Scholar] [CrossRef]
- De Greef, Y.; Ströker, E.; Schwagten, B.; Kupics, K.; De Cocker, J.; Chierchia, G.B.; de Asmundis, C.; Stockman, D.; Buysschaert, I. Complications of pulmonary vein isolation in atrial fibrillation: Predictors and comparison between four different ablation techniques: Results from the MIddelheim PVI-registry. Europace 2018, 20, 1279–1286. [Google Scholar] [CrossRef]
- Steinbeck, G.; Sinner, M.F.; Lutz, M.; Müller-Nurasyid, M.; Kääb, S.; Reinecke, H. Incidence of complications related to catheter ablation of atrial fibrillation and atrial flutter: A nationwide in-hospital analysis of administrative data for Germany in 2014. Eur. Heart J. 2018, 39, 4020–4029. [Google Scholar] [CrossRef]
- Packer, D.L.; Mark, D.; Robb, R.A.; Monahan, K.H.; Bahnson, T.D.; Poole, J.E.; Noseworthy, P.A.; Rosenberg, Y.D.; Jeffries, N.; Mitchell, L.B. Effect of Catheter Ablation vs Antiarrhythmic Drug Therapy on Mortality, Stroke, Bleeding, and Cardiac Arrest among Patients With Atrial Fibrillation: The CABANA Randomized Clinical Trial. JAMA 2019, 321, 1261–1274. [Google Scholar] [CrossRef]
- Miyamoto, K.; Murata, S.; Takegami, M.; Nakajima, K.; Kamakura, T.; Wada, M.; Ishibashi, K.; Inoue, Y.; Nagase, S.; Aiba, T.; et al. Real-world comparison of in-hospital complications after catheter ablation for atrial fibrillation between non-antivitamin K anticoagulants and warfarin: A propensity-matched analysis using nation-wide database. Int. J. Cardiol. Heart Vasc. 2023, 44, 101174. [Google Scholar] [CrossRef]
- Calkins, H.; Willems, S.; Gerstenfeld, E.P.; Verma, A.; Schilling, R.; Hohnloser, S.H.; Okumura, K.; Serota, H.; Nordaby, M.; Guiver, K.; et al. Uninterrupted Dabigatran versus Warfarin for Ablation in Atrial Fibrillation. N. Engl. J. Med. 2017, 376, 1627–1636. [Google Scholar] [CrossRef] [PubMed]
- Cappato, R.; Marchlinski, F.E.; Hohnloser, S.H.; Naccarelli, G.V.; Xiang, J.; Wilber, D.J.; Ma, C.S.; Hess, S.; Wells, D.S.; Juang, G.; et al. Uninterrupted rivaroxaban vs. uninterrupted vitamin K antagonists for catheter ablation in non-valvular atrial fibrillation. Eur. Heart J. 2015, 36, 1805–1811. [Google Scholar] [CrossRef]
- Cappato, R.; Marchlinski, F.E.; Hohnloser, S.H.; Naccarelli, G.V.; Xiang, J.; Wilber, D.J.; Ma, C.S.; Hess, S.; Wells, D.S.; Juang, G.; et al. Apixaban in patients at risk of stroke undergoing atrial fibrillation ablation. Eur. Heart J. 2018, 39, 2942–2955. [Google Scholar]
- Hohnloser, S.H.; Camm, J.; Cappato, R.; Diener, H.C.; Heidbüchel, H.; Mont, L.; Morillo, C.A.; Abozguia, K.; Grimaldi, M.; Rauer, H.; et al. Uninterrupted edoxaban vs. vitamin K antagonists for ablation of atrial fibrillation: The ELIMINATE-AF trial. Eur. Heart J. 2019, 40, 3013–3021. [Google Scholar] [CrossRef] [PubMed]
- Kupo, P.; Riesz, T.J.; Saghy, L.; Vamos, M.; Bencsik, G.; Makai, A.; Kohari, M.; Benak, A.; Miklos, M.; Pap, R. Ultrasound guidance for femoral venous access in patients undergoing pulmonary vein isolation: A quasi-randomized study. J. Cardiovasc. Electrophysiol. 2023, 34, 1177–1182. [Google Scholar] [CrossRef]
- Nagao, T.; Suzuki, H.; Matsunaga, S.; Nishikawa, Y.; Harada, K.; Mamiya, K.; Shinoda, N.; Harada, K.; Kato, M.; Marui, N.; et al. Impact of periprocedural anticoagulation therapy on the incidence of silent stroke after atrial fibrillation ablation in patients receiving direct oral anticoagulants: Uninterrupted vs. interrupted by one dose strategy. Europace 2019, 21, 590–597. [Google Scholar] [CrossRef]
- Deneke, T.; Jais, P.; Scaglione, M.; Schmitt, R.; Di Biase, L.; Christopoulos, G.; Schade, A.; Mügge, A.; Bansmann, M.; Nentwich, K.; et al. Silent cerebral events/lesions related to atrial fibrillation ablation: A clinical review. J. Cardiovasc. Electrophysiol. 2015, 26, 455–463. [Google Scholar] [CrossRef]
Baseline Characteristics (Mean ± SD) | Number of Patients (n = 187) |
---|---|
Age (years) | 62 ± 11 |
Male sex | 117 (62.6%) |
LVEF < 30% | 3 (1.6%) |
Hypertension | 133 (71.1%) |
Coronary artery disease | 35 (18.7%) |
Diabetes | 31 (16.6%) |
Peripheral artery disease | 4 (2.1%) |
Prior transient ischemic attack/stroke | 11 (5.9%) |
GFR > 30 | 187 (100%) |
Thrombocyte inhibitors | 17 (9.1%) |
NOAC Type | Number of Patients (n = 187) |
---|---|
Rivaroxaban | 78 (41.7%) |
Apixaban | 50 (26.7%) |
Dabigatran | 32 (17.1%) |
Edoxaban | 27 (14.4%) |
Type of Complication | Number of Patients (n = 187) | Action Needed |
---|---|---|
Inguinal hematoma | 5 (2.7%) | no action needed |
Wound bleeding | 1 (0.5%) | one extra day observation |
Pericardial effusion | 3 (1.6%) | one extra day observation |
Tamponade | 2 (1.1%) | pericardiocentesis |
Pseudoaneurysm | 1 (0.5%) | percutaneous thrombin injection |
Study | Bridging | NOAC | Total Complications | Embolic Events | Vascular Complications |
---|---|---|---|---|---|
Current | No | All | 6.9% | 0% | 3.8% |
ESC EURObsrvational [25] | Yes (81%) | No | 7.7% | 0.6% | 1.3% |
Contemporary management of patients undergoing atrial fibrillation ablation [26] | Yes (63.8%) | 23% | 7.8% | 0.3% | 1.8% |
Middelheim PVI- registry [27] | Yes | Yes | 10.1% | 0.1% * | 4% |
Repeat procedure is a new independent predictor of complications of atrial fibrillation [8] | 2.82% | 0.48% * | 2.25% | ||
Procedural success, safety and patients satisfaction after second ablation of atrial fibrillation [28] | 12.6% | 0.6% * | |||
CABANA [29] | 32% † | 8% † | 0.3% *,† | 3.8% † | |
Real-world comparison of in-hospital complications after catheter ablation for atrial fibrillation [30] | 50% | 2.3% ‡ | 0.5% ‡ | 0.2% ‡ | |
RE-CIRCUIT [31] | No | ≈50% | 18.6% ‡ | 0% # | 0.63% ‡ |
VENTURE-AF [32] | No | 50% | 20.6% | 0% # | 10.48% ‡ |
AXAFA-AFNET 5 [33] | No | ≈50% | 6.9% ‡ | 0.6% # | |
ELIMINATE-AF [34] | No | 66.9% | 2.7% ‡ | 0.3% # |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piros, K.; Vida, A.; Szegedi, N.; Perge, P.; Salló, Z.; Ferencz, A.B.; Nagy, V.K.; Herczeg, S.; Ábrahám, P.; Csobay-Novák, C.; et al. One-Day Interruption of NOAC Is Associated with Low Risk of Periprocedural Adverse Events during Pulmonary Vein Isolation If Combined with Left Atrial Thrombus Exclusion with Computed Tomography. Life 2024, 14, 133. https://doi.org/10.3390/life14010133
Piros K, Vida A, Szegedi N, Perge P, Salló Z, Ferencz AB, Nagy VK, Herczeg S, Ábrahám P, Csobay-Novák C, et al. One-Day Interruption of NOAC Is Associated with Low Risk of Periprocedural Adverse Events during Pulmonary Vein Isolation If Combined with Left Atrial Thrombus Exclusion with Computed Tomography. Life. 2024; 14(1):133. https://doi.org/10.3390/life14010133
Chicago/Turabian StylePiros, Katalin, Adorján Vida, Nándor Szegedi, Péter Perge, Zoltán Salló, Arnold Béla Ferencz, Vivien Klaudia Nagy, Szilvia Herczeg, Pál Ábrahám, Csaba Csobay-Novák, and et al. 2024. "One-Day Interruption of NOAC Is Associated with Low Risk of Periprocedural Adverse Events during Pulmonary Vein Isolation If Combined with Left Atrial Thrombus Exclusion with Computed Tomography" Life 14, no. 1: 133. https://doi.org/10.3390/life14010133
APA StylePiros, K., Vida, A., Szegedi, N., Perge, P., Salló, Z., Ferencz, A. B., Nagy, V. K., Herczeg, S., Ábrahám, P., Csobay-Novák, C., Drobni, Z., Tahin, T., Apponyi, G., Merkely, B., Gellér, L., & Osztheimer, I. (2024). One-Day Interruption of NOAC Is Associated with Low Risk of Periprocedural Adverse Events during Pulmonary Vein Isolation If Combined with Left Atrial Thrombus Exclusion with Computed Tomography. Life, 14(1), 133. https://doi.org/10.3390/life14010133