Mathematical Modeling of Non-Small-Cell Lung Cancer Biology through the Experimental Data on Cell Composition and Growth of Patient-Derived Organoids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Generation of PDTOs
2.3. Flow Cytometry
2.4. Mathematical Approaches Used in This Study
3. Results
3.1. General Work Flow
3.2. Mathematical Model
3.3. Solving the System of Differential Equations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rossi, R.; De Angelis, M.L.; Xhelili, E.; Sette, G.; Eramo, A.; De Maria, R.; Cesta Incani, U.; Francescangeli, F.; Zeuner, A. Lung Cancer Organoids: The Rough Path to Personalized Medicine. Cancers 2022, 14, 3703. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gao, X.; Ni, C.; Zhao, B.; Cheng, X. The application of patient-derived organoid in the research of lung cancer. Cell. Oncol. 2023, 46, 503–519. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Shen, J.; Zou, X. Mathematical modeling and dynamical analysis of anti-tumor drug dose-response. Math. Biosci. Eng. 2022, 19, 4120–4144. [Google Scholar] [CrossRef]
- Rodriguez Messan, M.; Yogurtcu, O.N.; McGill, J.R.; Nukala, U.; Sauna, Z.E.; Yang, H. Mathematical model of a personalized neoantigen cancer vaccine and the human immune system. PLoS Comput. Biol. 2021, 17, e1009318. [Google Scholar] [CrossRef] [PubMed]
- Voit, E.O. The best models of metabolism. Wiley Interdiscip. Rev. Syst. Biol. Med. 2017, 9, e1391. [Google Scholar] [CrossRef]
- Bag, A.K.; Mandloi, S.; Jarmalavicius, S.; Mondal, S.; Kumar, K.; Mandal, C.; Walden, P.; Chakrabarti, S.; Mandal, C. Connecting signaling and metabolic pathways in EGF receptor-mediated oncogenesis of glioblastoma. PLoS Comput. Biol. 2019, 15, e1007090. [Google Scholar] [CrossRef]
- Santarpia, M.; Aguilar, A.; Chaib, I.; Cardona, A.F.; Fancelli, S.; Laguia, F.; Bracht, J.W.P.; Cao, P.; Molina-Vila, M.A.; Karachaliou, N.; et al. Non-Small-Cell Lung Cancer Signaling Pathways, Metabolism, and PD-1/PD-L1 Antibodies. Cancers 2020, 12, 1475. [Google Scholar] [CrossRef]
- Tabassum, S.; Rosli, N.B.; Binti Mazalan, M.S.A. Mathematical Modeling of Cancer Growth Process: A Review. J. Phys. Conf. Ser. 2019, 1366, 012018. [Google Scholar] [CrossRef]
- Feng, Y.; Li, X.; Wang, Y. Establishment of a mathematical model for predicting malignancy of lung cancer complicated with Talaromyces Marneffei infection and its chest imaging characteristics. Results Phys. 2021, 25, 104312. [Google Scholar] [CrossRef]
- Mumenthaler, S.M.; Foo, J.; Leder, K.; Choi, N.C.; Agus, D.B.; Pao, W.; Mallick, P.; Michor, F. Evolutionary modeling of combination treatment strategies to overcome resistance to tyrosine kinase inhibitors in non-small cell lung cancer. Mol. Pharm. 2011, 8, 2069–2079. [Google Scholar] [CrossRef]
- Vermolen, F.J.; Meijden, R.P.; Es, M.V.; Gefen, A.; Weihs, D. Towards a Mathematical Formalism for Semi-stochastic Cell-Level Computational Modeling of Tumor Initiation. Ann. Biomed. Eng. 2015, 43, 1680–1694. [Google Scholar] [CrossRef] [PubMed]
- Eftimie, R.; Barelle, C. Mathematical investigation of innate immune responses to lung cancer: The role of macrophages with mixed phenotypes. J. Theor. Biol. 2021, 524, 110739. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, E., Jr.; Rodrigues, D.S.; Antunes, M.E.; Mancera, P.F.A.; Rodrigues, G. A Simple Mathematical Model of Non-Small Cell Lung Cancer Involving Macrophages and CD8+ T Cells. J. Biol. Syst. 2023, 31, 1–25. [Google Scholar] [CrossRef]
- Molina-Peña, R.; Tudon-Martinez, J.C.; Aquines-Gutiérrez, O. A Mathematical Model of Average Dynamics in a Stem Cell Hierarchy Suggests the Combinatorial Targeting of Cancer Stem Cells and Progenitor Cells as a Potential Strategy against Tumor Growth. Cancers 2020, 12, 2590. [Google Scholar] [CrossRef] [PubMed]
- Geng, C.; Paganetti, H.; Grassberger, C. Prediction of Treatment Response for Combined Chemo- and Radiation Therapy for Non-Small Cell Lung Cancer Patients Using a Bio-Mathematical Model. Sci. Rep. 2017, 7, 13542. [Google Scholar] [CrossRef] [PubMed]
- Popper, H.H. Manipulation of the immune system by non-small cell lung cancer and possible therapeutic interference. Cancer Drug Resist. 2020, 3, 710–725. [Google Scholar] [CrossRef] [PubMed]
- Unni, P.; Seshaiyer, P. Mathematical Modeling, Analysis, and Simulation of Tumor Dynamics with Drug Interventions. Comput. Math. Methods Med. 2019, 2019, 4079298. [Google Scholar] [CrossRef]
- Dritschel, H.; Waters, S.L.; Roller, A.; Byrne, H.M. A mathematical model of cytotoxic and helper T cell interactions in a tumour microenvironment. Lett. Biomath. 2018, 5, S36–S68. [Google Scholar] [CrossRef]
- Eftimie, R.; Eftimie, G. Investigating Macrophages Plasticity following Tumour-Immune Interactions during Oncolytic Therapies. Acta Biotheor. 2019, 67, 321–359. [Google Scholar] [CrossRef]
- Qin, W.; Hu, L.; Zhang, X.; Jiang, S.; Li, J.; Zhang, Z.; Wang, X. The Diverse Function of PD-1/PD-L Pathway beyond Cancer. Front. Immunol. 2019, 10, 2298. [Google Scholar] [CrossRef]
- Hinz, B.; Celetta, G.; Tomasek, J.J.; Gabbiani, G.; Chaponnier, C. Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol. Biol. Cell 2001, 12, 2730–2741. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, P. Cancer-stromal interactions: Role in cell survival, metabolism and drug sensitivity. Cancer Biol. Ther. 2011, 11, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Sobolev, V.V.; Tchepourina, E.; Korsunskaya, I.M.; Geppe, N.A.; Chebysheva, S.N.; Soboleva, A.G.; Mezentsev, A. The Role of Transcription Factor PPAR-γ in the Pathogenesis of Psoriasis, Skin Cells, and Immune Cells. Int. J. Mol. Sci. 2022, 23, 9708. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, X.; Liu, L.; Wang, J.; Wu, J.; Sun, C. Role of macrophages in tumor progression and therapy (Review). Int. J. Oncol. 2022, 60, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Raskov, H.; Orhan, A.; Christensen, J.P.; Gögenur, I. Cytotoxic CD8(+) T cells in cancer and cancer immunotherapy. Br. J. Cancer 2021, 124, 359–367. [Google Scholar] [CrossRef]
- Guan, Y.; Kraus, S.G.; Quaney, M.J.; Daniels, M.A.; Mitchem, J.B.; Teixeiro, E. FOLFOX Chemotherapy Ameliorates CD8 T Lymphocyte Exhaustion and Enhances Checkpoint Blockade Efficacy in Colorectal Cancer. Front. Oncol. 2020, 10, 586. [Google Scholar] [CrossRef]
- Larsson, I.; Dalmo, E.; Elgendy, R.; Niklasson, M.; Doroszko, M.; Segerman, A.; Jörnsten, R.; Westermark, B.; Nelander, S. Modeling glioblastoma heterogeneity as a dynamic network of cell states. Mol. Syst. Biol. 2021, 17, e10105. [Google Scholar] [CrossRef]
- Schildhaus, H.U. Predictive value of PD-L1 diagnostics. Pathologe 2018, 39, 498–519. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, C.; Seery, S.; Yu, J.; Meng, X. Identifying optimal first-line interventions for advanced non-small cell lung carcinoma according to PD-L1 expression: A systematic review and network meta-analysis. Oncoimmunology 2020, 9, 1746112. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S.R.; Maute, R.L.; Dulken, B.W.; Hutter, G.; George, B.M.; McCracken, M.N.; Gupta, R.; Tsai, J.M.; Sinha, R.; Corey, D.; et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 2017, 545, 495–499. [Google Scholar] [CrossRef]
- Li, Y.; Chan, J.W.Y.; Lau, R.W.H.; Cheung, W.W.Y.; Wong, A.M.; Wong, A.M.; Wong, N.; Ng, C.S.H. Organoids in Lung Cancer Management. Front. Surg. 2021, 8, 753801. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Prokhorova, A.V.; Mezentsev, A.V.; Shen, N.; Trofimenko, A.V.; Filkov, G.I.; Sulimanov, R.A.; Makarov, V.A.; Durymanov, M.O. Comparison of EMT-Related and Multi-Drug Resistant Gene Expression, Extracellular Matrix Production, and Drug Sensitivity in NSCLC Spheroids Generated by Scaffold-Free and Scaffold-Based Methods. Int. J. Mol. Sci. 2022, 23, 13306. [Google Scholar] [CrossRef] [PubMed]
Type of Cells | Cell-Specific Biomarker |
---|---|
Cancer cells | PD-L1 |
Cancer-associated fibroblasts | αSMA |
M2-polarized macrophages | CD206 |
Cytotoxic lymphocytes | CD8 |
Parameter | Definition | Published Value | References | Adjusted Value |
---|---|---|---|---|
γ | Growth rate of cancer cells | 0.05–0.44 day−1 | [17,18] | 0.05 day−1 |
K | Final number of cancer cells | 109–3.3 × 109 day−1 | [19] | 106 day−1 |
q1 | Stimulation of cancer cells by M2-polarized macrophages | 0.4 day−1 | [19] | 4 × 10−5 day−1 |
q3 | Stimulation of M2 macrophages by cancer cells | 4 × 10−8 day−1 | [19] | 4 × 10−8 day−1 |
δM2 | Death rate of M2-polarized macrophages from natural causes | 0.2 day−1 | [18] | 0.2 day−1 |
k | Number of cancer cells eliminated by cytotoxic cells | 3.4 × 10−10–1 × 10−3 cell−1 day−1 | [18] | 0.001 cell−1 day−1 |
δTc | Death rate of cytotoxic cells | 2 × 10−3–1 day−1 | [18] | 0.1 day−1 |
Parameter | Description | Calculated Values, Day−1 |
---|---|---|
q2 | Stimulation of cancer cells by cancer-associated fibroblasts | 0.0001–0.005 |
q4 | Stimulation of M2-polarized macrophages by cancer-associated fibroblasts | 0.0001–0.001 |
q5 | Stimulation of cancer-associated fibroblasts by cancer cells | 0–0.00001 |
q6 | Stimulation of cancer-associated fibroblasts by M2-polarized macrophages | 0.00001–0.001 |
q7 | Stimulation of cytotoxic T cells by cancer cells | 0.0009–0.0015 |
q8 | Suppression of cytotoxic T cells by M2-polarized macrophages | 0–0.00001 |
q9 | Suppression of cytotoxic T cells by tumor-associated macrophages | 0–0.00001 |
δCAF | Death rate of cancer-associated fibroblasts | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sulimanov, R.; Koshelev, K.; Makarov, V.; Mezentsev, A.; Durymanov, M.; Ismail, L.; Zahid, K.; Rumyantsev, Y.; Laskov, I. Mathematical Modeling of Non-Small-Cell Lung Cancer Biology through the Experimental Data on Cell Composition and Growth of Patient-Derived Organoids. Life 2023, 13, 2228. https://doi.org/10.3390/life13112228
Sulimanov R, Koshelev K, Makarov V, Mezentsev A, Durymanov M, Ismail L, Zahid K, Rumyantsev Y, Laskov I. Mathematical Modeling of Non-Small-Cell Lung Cancer Biology through the Experimental Data on Cell Composition and Growth of Patient-Derived Organoids. Life. 2023; 13(11):2228. https://doi.org/10.3390/life13112228
Chicago/Turabian StyleSulimanov, Rushan, Konstantin Koshelev, Vladimir Makarov, Alexandre Mezentsev, Mikhail Durymanov, Lilian Ismail, Komal Zahid, Yegor Rumyantsev, and Ilya Laskov. 2023. "Mathematical Modeling of Non-Small-Cell Lung Cancer Biology through the Experimental Data on Cell Composition and Growth of Patient-Derived Organoids" Life 13, no. 11: 2228. https://doi.org/10.3390/life13112228
APA StyleSulimanov, R., Koshelev, K., Makarov, V., Mezentsev, A., Durymanov, M., Ismail, L., Zahid, K., Rumyantsev, Y., & Laskov, I. (2023). Mathematical Modeling of Non-Small-Cell Lung Cancer Biology through the Experimental Data on Cell Composition and Growth of Patient-Derived Organoids. Life, 13(11), 2228. https://doi.org/10.3390/life13112228