Ephedra alata Seeds Confer Kidney Protection against Early Life Exposure to Acephate by Regulating Oxidative Insult and Activating Autophagy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples: Extraction and Analysis
2.2. Animal Model
2.3. Experimental Design
2.4. Biological Sample Collection
2.5. Analysis of DNA Fragmentation
2.6. Determination of Lipid Peroxidation
2.7. Evaluation of Enzymatic and Non Enzymatic Antioxidants
2.8. Histopathological Examination
2.9. Immunofluorescence Examination
2.10. Molecular Docking Study
2.11. Statistics
3. Results
3.1. Clinical Observation and Mortality
3.2. Assessment of Biochemical Renal Biomarkers
3.3. Evaluation of Lipid Peroxidation
3.4. Variations in the Activity of Antioxidant Enzymes (SOD and CAT) and Total GSH Content
3.5. Genotoxicity Study
3.6. Autophagy Analysis
3.7. Structural Exploration (H-E Staining)
3.8. Molecular Docking Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Kazancioğlu, R. Risk factors for chronic kidney disease: An update. Kidney Int. Suppl. 2013, 3, 368–371. [Google Scholar] [CrossRef] [PubMed]
- Wan, E.-T.; Darssan, D.; Karatela, S.; Reid, S.A.; Osborne, N.J. Association of pesticides and kidney function among adults in the US population 2001–2010. Int. J. Environ. Res. Public Health 2021, 18, 10249. [Google Scholar] [CrossRef] [PubMed]
- Martins, G.K.d.M.; Pereira, N.C.; Cunha, N.V.d.; Agostinetto, L. Exposure of patients with chronic kidney disease on dialysis to pesticides. Braz. J. Nephrol. 2022, 45. [Google Scholar] [CrossRef] [PubMed]
- Aranha, M.L.G.; Garcia, M.S.; de Carvalho Cavalcante, D.N.; Silva, A.P.G.; Fontes, M.K.; Gusso-Choueri, P.K.; Choueri, R.B.; Perobelli, J.E. Biochemical and histopathological responses in peripubertal male rats exposed to agrochemicals isolated or in combination: A multivariate data analysis study. Toxicology 2021, 447, 152636. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, T.A.; Prates, K.V.; Pavanello, A.; Malta, A.; Tófolo, L.P.; Martins, I.P.; de Oliveira, J.C.; Miranda, R.A.; Gomes, R.M.; Vieira, E. Acephate exposure during a perinatal life program to type 2 diabetes. Toxicology 2016, 372, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, W.; Mufti, A.; Aldawood, N.; Alshamrani, A.; Nahdi, S.; Aldahmash, W.; Jalouli, M.; Feriani, A.; Mansour, L.; Tlili, N. Autophagy activation, histopathological damage, and altered renal epithelial sodium channel and Na+, K+-ATPase gene expression in offspring kidney after in utero exposure to allethrin. J. King Saud. Univ.-Sci. 2023, 35, 102575. [Google Scholar] [CrossRef]
- Li, B.; Zhu, Y.; Chen, H.; Gao, H.; He, H.; Zuo, N.; Pei, L.; Xie, W.; Chen, L.; Ao, Y. Decreased H3K9ac level of AT2R mediates the developmental origin of glomerulosclerosis induced by prenatal dexamethasone exposure in male offspring rats. Toxicology 2019, 411, 32–42. [Google Scholar] [CrossRef]
- Chinnappan, S.M.; George, A.; Thaggikuppe, P.; Choudhary, Y.; Choudhary, V.K.; Ramani, Y.; Dewangan, R. Nephroprotective effect of herbal extract Eurycoma longifolia on paracetamol-induced nephrotoxicity in rats. Evid.-Based Complement. Altern. Med. 2019, 2019, 4916519. [Google Scholar] [CrossRef]
- Meka Kedir, W.; Dukassa Dubiwak, A.; Tofik Ahmed, E. Nephroprotective effect of asparagus africanus lam. root extract against gentamicin-induced nephrotoxicity in swiss albino mice. J. Toxicol. 2022, 2022, 8440019. [Google Scholar] [CrossRef] [PubMed]
- Onyesife, C.O.; Chukwuma, I.F.; Okagu, I.U.; Ndefo, J.C.; Amujiri, N.A.; Ogugua, V.N. Nephroprotective effects of Piper nigrum extracts against monosodium glutamate-induced renal toxicity in rats. Sci. Afr. 2023, 19, e01453. [Google Scholar] [CrossRef]
- Liang, S.; Meng, X.; Wang, Z.; Liu, J.; Kuang, H.; Wang, Q. Polysaccharide from Ephedra sinica Stapf inhibits inflammation expression by regulating Factor-β1/Smad2 signaling. Int. J. Biol. Macromol. 2018, 106, 947–954. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Zhou, Y.; Yang, X.; Zhang, F.; Liu, X.; Yu, B. Active components in Ephedra sinica stapf disrupt the interaction between ACE2 and SARS-CoV-2 RBD: Potent COVID-19 therapeutic agents. J. Ethnopharmacol. 2021, 278, 114303. [Google Scholar] [CrossRef] [PubMed]
- Seif, M.; Deabes, M.; El-Askary, A.; El-Kott, A.F.; Albadrani, G.M.; Seif, A.; Wang, Z. Ephedra sinica mitigates hepatic oxidative stress and inflammation via suppressing the TLR4/MyD88/NF-κB pathway in fipronil-treated rats. Environ. Sci. Pollut. Res. 2021, 28, 62943–62958. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.; Zhao, M.; Wu, B.; Wang, S.; Yang, Y.; Xu, Y.; Wang, L. Preparation, characteristics, and antioxidant activities of carboxymethylated polysaccharides from blackcurrant fruits. Int. J. Biol. Macromol. 2020, 155, 1114–1122. [Google Scholar] [CrossRef] [PubMed]
- Yassir, M.; Tir, M.; Mufti, A.; Feriani, A.; Faidi, B.; Tlili, N.; Sobeh, M. Millettia ferruginea extract attenuates cisplatin-induced alterations in kidney functioning, DNA damage, oxidative stress, and renal tissue morphology. Arab. J. Chem. 2022, 15, 104037. [Google Scholar] [CrossRef]
- Buege, J. Microsomal lipid peroxidation. Methods Enzymol. 1978, 52, 302–310. [Google Scholar]
- Sedlak, J.; Lindsay, R.H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. 1968, 25, 192–205. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar]
- Marklund, S.; Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 1974, 47, 469–474. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Mufti, A.; Jalouli, M.; Nahdi, S.; Tlili, N.; Alqahtani, W.; Mansour, L.; Alwasel, S.; Harrath, A.H. Maternal Exposure to Acephate Caused Nephrotoxicity in Adult Offspring Rats Mediated by Excessive Autophagy Activation, Oxidative Stress Induction, and Altered Epithelial Sodium Channel and Na+/K+-ATPase Gene Expression. Biology 2023, 12, 162. [Google Scholar] [CrossRef] [PubMed]
- Jalouli, M.; Mofti, A.; Elnakady, Y.A.; Nahdi, S.; Feriani, A.; Alrezaki, A.; Sebei, K.; Bizzarri, M.; Alwasel, S.; Harrath, A.H. Allethrin promotes apoptosis and autophagy associated with the oxidative stress-related PI3K/AKT/mTOR signaling pathway in developing rat ovaries. Int. J. Mol. Sci. 2022, 23, 6397. [Google Scholar] [CrossRef] [PubMed]
- Madhavi Sastry, G.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput.-Aided Mol. Des. 2013, 27, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Noreng, S.; Posert, R.; Bharadwaj, A.; Houser, A.; Baconguis, I. Molecular principles of assembly, activation, and inhibition in epithelial sodium channel. Elife 2020, 9, e59038. [Google Scholar] [CrossRef]
- Aggarwal, S.; Lazrak, A.; Ahmad, I.; Yu, Z.; Bryant, A.; Mobley, J.A.; Ford, D.A.; Matalon, S. Heme impairs alveolar epithelial sodium channels post toxic gas inhalation. BioRxiv 2020. [Google Scholar] [CrossRef]
- Yue, Q.; Zhen, H.; Huang, M.; Zheng, X.; Feng, L.; Jiang, B.; Yang, M.; Wu, W.; Liu, X.; Guo, D. Proteasome inhibition contributed to the cytotoxicity of arenobufagin after its binding with Na, K-ATPase in human cervical carcinoma HeLa cells. PLoS ONE 2016, 11, e0159034. [Google Scholar] [CrossRef]
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004, 47, 1739–1749. [Google Scholar] [CrossRef]
- Engwa, G.A. Free radicals and the role of plant phytochemicals as antioxidants against oxidative stress-related diseases. In Phytochemicals: Source of Antioxidants and Role in Disease Prevention. BoD–Books on Demand; Intechopen: London, UK, 2018; pp. 49–74. [Google Scholar]
- Fang, C.-Y.; Lou, D.-Y.; Zhou, L.-Q.; Wang, J.-C.; Yang, B.; He, Q.-J.; Wang, J.-J.; Weng, Q.-J. Natural products: Potential treatments for cisplatin-induced nephrotoxicity. Acta Pharmacol. Sin. 2021, 42, 1951–1969. [Google Scholar] [CrossRef]
- Badr, A.M. Organophosphate toxicity: Updates of malathion potential toxic effects in mammals and potential treatments. Environ. Sci. Pollut. Res. 2020, 27, 26036–26057. [Google Scholar] [CrossRef]
- Sobolev, V.E.; Sokolova, M.O.; Jenkins, R.O.; Goncharov, N.V. Molecular mechanisms of acute organophosphate Nephrotoxicity. Int. J. Mol. Sci. 2022, 23, 8855. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.-L.; Lin, J.-H.; Hammes, H.-P.; Zhang, C. Flavonoids in treatment of chronic kidney disease. Molecules 2022, 27, 2365. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-Q.; Chen, H.-Y.; Tang, Q.-Q.; Li, Y.-F.; Liu, X.-S.; Lu, F.-H.; Gu, Y.-Y. Protective effect of quercetin on kidney diseases: From chemistry to herbal medicines. Front. Pharmacol. 2022, 13, 968226. [Google Scholar] [CrossRef] [PubMed]
- Ileriturk, M.; Kandemir, O.; Kandemir, F.M. Evaluation of protective effects of quercetin against cypermethrin-induced lung toxicity in rats via oxidative stress, inflammation, apoptosis, autophagy, and endoplasmic reticulum stress pathway. Environ. Toxicol. 2022, 37, 2639–2650. [Google Scholar] [CrossRef] [PubMed]
- Sule, R.O.; Condon, L.; Gomes, A.V. A common feature of pesticides: Oxidative stress—The role of oxidative stress in pesticide-induced toxicity. Oxidative Med. Cell. Longev. 2022, 2022, 5563759. [Google Scholar] [CrossRef] [PubMed]
- Jain, E.; Vashishat, N. Toxicity of acephate to liver and kidney of female wistar rats. Indian J. Entomol. 2023, 85, 322–326. [Google Scholar]
- Saidi, S.A.; Al-Shaikh, T.M.; Alghamdi, O.A.; Hamden, K. Ephedra alata subsp. alenda (Ephedraceae) leaf extracts: Phytochemical screening, anti-diabetic, anti-obesity and anti-toxic activities on diabetic-induced liver-kidney-testes toxicities and inhibition of α-amylase and lipase enzymes. Heliyon 2022, 8, e11954. [Google Scholar] [CrossRef] [PubMed]
- Belazougui, K.; Mesrouk, S.; Mohammedi, H.; Akcha, S.; Aïnouz, L.; Mecherara-Idjeri, S.F. Phytochemical analysis, mineral composition, Assessment of antioxidant properties and cytotoxic potential of Ephedra alata. subsp. Alenda secondary metabolites. Food Biosci. 2023, 53, 102657. [Google Scholar] [CrossRef]
- Hajleh, M.N.A.; Khleifat, K.M.; Alqaraleh, M.; Al-Hraishat, E.a.; Al-limoun, M.O.; Qaralleh, H.; Al-Dujaili, E.A. Antioxidant and antihyperglycemic effects of ephedra foeminea aqueous extract in streptozotocin-induced diabetic rats. Nutrients 2022, 14, 2338. [Google Scholar] [CrossRef]
- Mahajan, R.; Prasad, S.; Gaikwad, S.; Itankar, P. Antioxidant phenolic compounds from seeds of Hordeum vulgare Linn. ameliorates diabetic nephropathy in streptozotocin-induced diabetic rats. J. Tradit. Chin. Med. Sci. 2023, 10, 353–361. [Google Scholar] [CrossRef]
- Paes, A.S.; Koga, R.d.C.R.; Sales, P.F.; Santos Almeida, H.K.; Teixeira, T.A.C.C.; Carvalho, J.C.T. Phytocompounds from Amazonian Plant Species against Acute Kidney Injury: Potential Nephroprotective Effects. Molecules 2023, 28, 6411. [Google Scholar] [CrossRef] [PubMed]
- Phung, N.V.; Rong, F.; Xia, W.Y.; Fan, Y.; Li, X.Y.; Wang, S.A.; Li, F.L. Nervonic acid and its sphingolipids: Biological functions and potential food applications. Crit. Rev. Food Sci. Nutr. 2023, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, N.; Khan, A.A.; Mahmood, R. Pentachlorophenol causes redox imbalance, inhibition of brush border membrane and metabolic enzymes, DNA damage and histological alterations in rat kidney. Pestic. Biochem. Physiol. 2023, 190, 105318. [Google Scholar] [CrossRef] [PubMed]
- Rjiba-Touati, K.; Hamdi, H.; M’nassri, A.; Guedri, Y.; Mokni, M.; Abid, S. Bromuconazole caused genotoxicity and hepatic and renal damage via oxidative stress process in Wistar rats. Environ. Sci. Pollut. Res. 2022, 29, 14111–14120. [Google Scholar] [CrossRef] [PubMed]
- Abdelghffar, E.A.; Obaid, W.A.; Saleh, Z.M.M.; Ouchari, W.; Eldahshan, O.A.; Sobeh, M. Ajwa dates (Phoenix dactylifera L.) attenuate cisplatin-induced nephrotoxicity in rats via augmenting Nrf2, modulating NADPH oxidase-4 and mitigating inflammatory/apoptotic mediators. Biomed. Pharmacother. 2022, 156, 113836. [Google Scholar] [CrossRef] [PubMed]
- Chtourou, Y.; Morjen, M.; Ammar, R.; Mhiri, R.; Jemaà, M.; ELBini-Dhouib, I.; Fetoui, H.; Srairi-Abid, N.; Marrakchi, N.; Jebali, J. Investigation of the renal protective effect of combined dietary polyphenols in streptozotocin-induced diabetic aged rats. Nutrients 2022, 14, 2867. [Google Scholar] [CrossRef]
- Rahman, M.A.; Rahman, M.S.; Parvez, M.A.K.; Kim, B. The emerging role of autophagy as a target of environmental pollutants: An update on mechanisms. Toxics 2023, 11, 135. [Google Scholar] [CrossRef]
- Ileriturk, M.; Kandemir, F.M. Carvacrol protects against λ-Cyhalothrin-induced hepatotoxicity and nephrotoxicity by modulating oxidative stress, inflammation, apoptosis, endoplasmic reticulum stress, and autophagy. Environ. Toxicol. 2023, 38, 1535–1547. [Google Scholar] [CrossRef]
- Li, X.; Yao, Y.; Wang, J.; Shen, Z.; Jiang, Z.; Xu, S. Eucalyptol relieves imidacloprid-induced autophagy through the miR-451/Cab39/AMPK axis in Ctenopharyngodon idellus kidney cells. Aquat. Toxicol. 2022, 249, 106204. [Google Scholar] [CrossRef]
- Mohany, M.; Ahmed, M.M.; Al-Rejaie, S.S. Molecular mechanistic pathways targeted by natural antioxidants in the prevention and treatment of chronic kidney disease. Antioxidants 2021, 11, 15. [Google Scholar] [CrossRef] [PubMed]
- Rabelink, T.J.; Van Den Berg, B.M.; Garsen, M.; Wang, G.; Elkin, M.; Van Der Vlag, J. Heparanase: Roles in cell survival, extracellular matrix remodelling and the development of kidney disease. Nat. Rev. Nephrol. 2017, 13, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Mufti, A.; Tir, M.; Zarei, A.; Contreras, M.M.; Gómez-Cruz, I.; Feriani, A.; Ghazouani, L.; Saadaoui, E.; Allagui, M.S.; Harrath, A.H. Phytochemical Profiling of Ephedra alata subsp. alenda Seeds by High-Performance Liquid Chromatography—Electrospray Ionization—Quadrupole-Time-of-Flight-Mass Spectrometry (HPLC-ESI-QTOF-MS), Molecular Docking, and Antioxidant, Anti-diabetic, and Acetylcholinesterase Inhibition. Anal. Lett. 2022, 55, 2450–2466. [Google Scholar]
ENaC | Na, K-ATPase | NHE3 | ||
---|---|---|---|---|
Hexadecasphinganine | XP Dscore | −6.05 | −5.00 | −4.3 |
Glide emodel | −41.05 | −48.3 | −40.5 | |
D Score | −6.01 | −4.96 | −2.7 | |
Glide evdw | −30.6 | −21.0 | −25.2 | |
Acephate | XP Dscore | −3.5 | −3.08 | −3.3 |
Glide emodel | −35 | −29.9 | −30.5 | |
D Score | −3.45 | −3.08 | −3.3 | |
Glide evdw | −33.6 | −27.0 | −26.9 |
Index | Residue | AA | Distance H-A | Distance D-A | Donor Angle | Donor Atom | Acceptor Atom | |
---|---|---|---|---|---|---|---|---|
Na, K-ATPase _ Hexadecasphinganine | 1 | 117A | GLU | 1.98 | 2.92 | 165.26 | 15,524 [O3] | 1520 [O3] |
2 | 117A | GLU | 1.85 | 2.86 | 176.25 | 15,526 [N3] | 1520 [O3] | |
3 | 121A | ASP | 1.68 | 2.65 | 164.9 | 15,525 [O3] | 1580 [O-] | |
4 | 797A | THR | 2.42 | 3.34 | 150.65 | 11,886 [Nam] | 15,525 [O3] | |
Na, K-ATPase _ Acephate | 1 | 122A | ASN | 1.9 | 2.89 | 165.87 | 15,529 [Nam] | 1591 [O2] |
2 | 122A | ASN | 1.85 | 2.82 | 159.03 | 1592 [Nam] | 15,526 [O3] | |
NHE3_ Hexadecasphinganine | 1 | 397A | ARG | 3.38 | 3.71 | 101.24 | 5613 [Ng+] | 11,726 [O3] |
2 | 397A | ARG | 3.43 | 3.93 | 113.39 | 5614 [Ng+] | 11,726 [O3] | |
3 | 398A | MET | 2.6 | 3.52 | 152.03 | 5628 [Nam] | 11,727 [O3] | |
4 | 497A | GLN | 1.91 | 2.83 | 158.05 | 11,727 [O3] | 7105 [O2] | |
5 | 498A | ILE | 2.06 | 3 | 165.58 | 11,726 [O3] | 7122 [O2] | |
6 | 498A | ILE | 2.06 | 3.05 | 164.29 | 11,728 [N3] | 7122 [O2] | |
NHE3_ Acephate | 1 | 142A | THR | 2.7 | 3.1 | 105.92 | 1614 [O3] | 11,730 [O2] |
2 | 396A | TYR | 2.04 | 3.01 | 159.35 | 11,731 [Nam] | 5586 [O2] | |
3 | 397A | ARG | 3.33 | 3.81 | 111.1 | 5613 [Ng+] | 11,729 [O2] |
Index | Residue | AA | Distance | Ligand Atom | Protein Atom | |
---|---|---|---|---|---|---|
Na, K-ATPase _ Hexadecasphinganine | 1 | 111A | GLN | 3.64 | 15,541 | 1437 |
2 | 116A | GLU | 3.98 | 15,542 | 1503 | |
3 | 311A | LEU | 3.63 | 15,541 | 4475 | |
4 | 312A | GLU | 3.91 | 15,536 | 4492 | |
5 | 315A | ILE | 3.93 | 15,536 | 4534 | |
6 | 315A | ILE | 3.8 | 15,539 | 4533 | |
7 | 793A | LEU | 3.84 | 15,532 | 11834 | |
Na, K-ATPase _ Acephate | - | - | - | - | - | |
NHE3_ Hexadecasphinganine | 1 | 144A | LEU | 3.62 | 11,744 | 1646 |
2 | 145A | LEU | 3.34 | 11,740 | 1667 | |
3 | 396A | TYR | 3.78 | 11,729 | 5587 | |
4 | 396A | TYR | 3.41 | 11,733 | 5590 | |
NHE3_ Acephate | 1 | 393A | LEU | 3.77 | 11,733 | 5533 |
2 | 396A | TYR | 3.71 | 11,733 | 5587 | |
3 | 397A | ARG | 3.93 | 11,733 | 5609 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mufti, A.; Feriani, A.; Contreras, M.d.M.; Nehdi, S.; Hfaeidh, N.; Tlili, N.; Harrath, A.H. Ephedra alata Seeds Confer Kidney Protection against Early Life Exposure to Acephate by Regulating Oxidative Insult and Activating Autophagy. Life 2023, 13, 2254. https://doi.org/10.3390/life13122254
Mufti A, Feriani A, Contreras MdM, Nehdi S, Hfaeidh N, Tlili N, Harrath AH. Ephedra alata Seeds Confer Kidney Protection against Early Life Exposure to Acephate by Regulating Oxidative Insult and Activating Autophagy. Life. 2023; 13(12):2254. https://doi.org/10.3390/life13122254
Chicago/Turabian StyleMufti, Afoua, Anouar Feriani, María del Mar Contreras, Saber Nehdi, Najla Hfaeidh, Nizar Tlili, and Abdel Halim Harrath. 2023. "Ephedra alata Seeds Confer Kidney Protection against Early Life Exposure to Acephate by Regulating Oxidative Insult and Activating Autophagy" Life 13, no. 12: 2254. https://doi.org/10.3390/life13122254
APA StyleMufti, A., Feriani, A., Contreras, M. d. M., Nehdi, S., Hfaeidh, N., Tlili, N., & Harrath, A. H. (2023). Ephedra alata Seeds Confer Kidney Protection against Early Life Exposure to Acephate by Regulating Oxidative Insult and Activating Autophagy. Life, 13(12), 2254. https://doi.org/10.3390/life13122254