Mineral Indicators of Geologically Recent Past Habitability on Mars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Water–Rock Geochemical Modeling
2.1.1. Code and Database
2.1.2. Geophysical Considerations
2.1.3. Input Conditions in Modeling: Solids
2.1.4. Input Conditions in Modeling: Fluids
2.2. Statistical Analysis of Modeled Results
2.3. Bioenergetic Computations
3. Results
3.1. Bulk-System Geochemistry
3.1.1. Key Mineral Products: Martian Meteorite-Based Models
3.1.2. Key Mineral Products: Jezero Crater Protolith Models
3.2. Statistical Analysis of Simulation Results
3.3. Bioenergetics
4. Discussion
4.1. Indicator Minerals of Past Serpentinization (ALH, Chassigny, Nakhla, Séítah)
- For ALH77005 models, trace saponite-Na was produced in NaClO4 and Rosy Red models.
- Chassigny models produced “Fe” and magnetite for Ca(ClO4)2, Mg(ClO4)2, MgNa2(ClO4)2, CaNa2(ClO4)2, and CaMg(ClO4)2 waters, and produced “Fe” and phlogopite in NaClO4 and Rosy Red solutions.
- Nakhla models yielded “tremolite” in all reactions except the Rosy Red, which uniquely produced only minnesotaite; additionally, saponite-Ca was produced in the Mg(ClO4)2 model, saponite-Na was produced in the NaClO4 model, and minnesotaite with prehnite accompanied tremolite in the Ca(ClO4)2 model.
- In Séítah models, the minerals produced in the NaClO4 model were natrolite and phlogopite; the Rosy Red solution uniquely produced saponite-Na.
4.2. Indicator Minerals for Mafic Unit Alteration (Máaz)
4.3. Bioenergetic Implications
4.4. Precedents from Similar Terrestrial Microbial Ecosystems
4.5. Modeled Results in the Context of Planetary Science Missions
4.6. Modeled Results in the Context of Geologically Recent Habitable Niches
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vance, S.D.; Harnmeijer, J.; Kimura, J.; Hussmann, H.; de Martin, B.; Brown, J.M. Hydrothermal Systems in Small Ocean Planets. Astrobiology 2007, 7, 987–1005. [Google Scholar] [CrossRef]
- Farkas-Takács, A.; Kiss, C.; Góbi, S.; Kereszturi, Á. Serpentinization in the thermal evolution of icy Kuiper belt objects in the early Solar system. Planet. Sci. J. 2022, 3, 54. [Google Scholar] [CrossRef]
- Neveu, M.; Desch, S.J. Geochemistry, thermal evolution, and cryovolcanism on Ceres with a muddy ice mantle. Geophys. Res. Lett. 2015, 42, 10197–10206. [Google Scholar] [CrossRef]
- Neveu, M.; Desch, S.J.; Castillo-Rogez, J.C. Aqueous geochemistry in icy world interiors: Equilibrium fluid, rock, and gas compositions, and fate of antifreezes and radionuclides. Geochim. Cosmochim. Acta 2017, 212, 324–371. [Google Scholar] [CrossRef]
- Glein, C.R.; Baross, J.A.; Waite, J.H. The pH of Enceladus’ ocean. Geochim. Cosmochim. Acta 2015, 162, 202–219. [Google Scholar] [CrossRef]
- Daswani, M.M.; Vance, S.D.; Mayne, M.J.; Glein, C.R. A Metamorphic Origin for Europa’s Ocean. Geophys. Res. Lett. 2021, 48, e2021GL094143. [Google Scholar] [CrossRef] [PubMed]
- McCollom, T.M.; Klein, F.; Ramba, M. Hydrogen generation from serpentinization of iron-rich olivine on Mars, icy moons, and other planetary bodies. Icarus 2022, 372, 114754. [Google Scholar] [CrossRef]
- Nathues, A.; Hoffmann, M.; Cloutis, E.A.; Schäfer, M.; Reddy, V.; Christensen, U.; Sierks, H.; Thangjam, G.S.; Le Corre, L.; Mengel, K.; et al. Detection of serpentine in exogenic carbonaceous chondrite material on Vesta from Dawn FC data. Icarus 2014, 239, 222–237. [Google Scholar] [CrossRef]
- Zega, T.J.; Garvie, L.A.J.; Dódony, I.; Friedrich, H.; Stroud, R.M.; Buseck, P.R. Polyhedral serpentine grains in CM chondrites. Meteorit. Planet. Sci. 2006, 41, 681–688. [Google Scholar] [CrossRef]
- Thayer, T.P. Serpentinization considered as a constant-volume metasomatic process. Am. Mineral. J. Earth Planet. Mater. 1966, 51, 685–710. [Google Scholar]
- Neubeck, A.; Duc, N.T.; Bastviken, D.; Crill, P.; Holm, N.G. Formation of H2 and CH4 by weathering of olivine at temperatures between 30 and 70 °C. Geochem. Trans. 2011, 12, 1–10. [Google Scholar] [CrossRef]
- McCollom, T.M.; Donaldson, C. Generation of hydrogen and methane during experimental low-temperature reaction of ultramafic rocks with water. Astrobiology 2016, 16, 389–406. [Google Scholar] [CrossRef]
- Leong, J.A.M.; Shock, E.L. Thermodynamic constraints on the geochemistry of low-temperature, continental, serpentinization-generated fluids. Am. J. Sci. 2020, 320, 185–235. [Google Scholar] [CrossRef]
- Storch, H.H. The Fischer-Tropsch and Related Syntheses, Including a Summary of Theoretical and Applied Contact Catalysis; Storch, H.H., Golumbic, N., Anderson, R.B., Eds.; Wiley: Hoboken, NJ, USA, 1951. [Google Scholar]
- McCollom, T.M.; Seewald, J.S. A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine. Geochim. Cosmochim. Acta 2001, 65, 3769–3778. [Google Scholar] [CrossRef]
- McCollom, T.M.; Seewald, J.S. Serpentinites, Hydrogen, and Life. Elements 2013, 9, 129–134. [Google Scholar] [CrossRef]
- McCollom, T.M.; Seewald, J.S.; German, C.R. Investigation of extractable organic compounds in deep-sea hydrothermal vent fluids along the Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 2015, 156, 122–144. [Google Scholar] [CrossRef]
- Alexander, C.M.O.; Fogel, M.; Yabuta, H.; Cody, G.D. The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter. Geochim. Cosmochim. Acta 2007, 71, 4380–4403. [Google Scholar] [CrossRef]
- Pearce, B.K.D.; Pudritz, R.E. Seeding the pregenetic Earth: Meteoritic abundances of nucleobases and potential reaction pathways. Astrophys. J. 2015, 807, 85. [Google Scholar] [CrossRef]
- Oze, C.; Sharma, M. Have olivine, will gas: Serpentinization and the abiogenic production of methane on Mars. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Lodders, K. A survey of shergottite, nakhlite and chassigny meteorites whole-rock compositions. Meteorit. Planet. Sci. 1998, 33, A183–A190. [Google Scholar] [CrossRef]
- Zolensky, M.; Barrett, R.; Browning, L. Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites. Geochim. Cosmochim. Acta 1993, 57, 3123–3148. [Google Scholar] [CrossRef]
- Brearley, A.J. The action of water. Meteor. Early Sol. Syst. II 2006, 943, 587–624. [Google Scholar]
- Velbel, M.A.; Palmer, E.E. Fine-grained serpentine in CM2 carbonaceous chondrites and its implications for the extent of aqueous alteration on the parent body: A review. Clays Clay Miner. 2011, 59, 416–432. [Google Scholar] [CrossRef]
- Velbel, M.A.; Tonui, E.K.; Zolensky, M.E. Replacement of olivine by serpentine in the carbonaceous chondrite Nogoya (CM2). Geochim. Cosmochim. Acta 2012, 87, 117–135. [Google Scholar] [CrossRef]
- Gyollai, I.; Chatzitheodoridis, E.; Kereszturi, Á.; Szabó, M. Multiple generation magmatic and hydrothermal processes in a Martian subvolcanic environment based on the analysis of Yamato-000593 nakhlite meteorite. Meteorit. Planet. Sci. 2023, 58, 218–240. [Google Scholar] [CrossRef]
- Farley, K.A.; Stack, K.M.; Shuster, D.L.; Horgan, B.H.N.; Hurowitz, J.A.; Tarnas, J.D.; Simon, J.I.; Sun, V.Z.; Scheller, E.L.; Moore, K.R.; et al. Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars. Science 2022, 377, eabo2196. [Google Scholar] [CrossRef]
- Liu, Y.; Tice, M.M.; Schmidt, M.E.; Treiman, A.H.; Kizovski, T.V.; Hurowitz, J.A.; Allwood, A.C.; Henneke, J.; Pedersen, D.A.K.; VanBommel, S.J.; et al. An olivine cumulate outcrop on the floor of Jezero crater, Mars. Science 2022, 377, 1513–1519. [Google Scholar] [CrossRef]
- Wiens, R.C.; Udry, A.; Beyssac, O.; Quantin-Nataf, C.; Mangold, N.; Cousin, A.; Mandon, L.; Bosak, T.; Forni, O.; McLennan, S.M.; et al. Compositionally and density stratified igneous terrain in Jezero crater, Mars. Sci. Adv. 2022, 8, eabo3399. [Google Scholar] [CrossRef]
- Clark, B.C.; Van Hart, D.C. The salts of Mars. Icarus 1981, 45, 370–378. [Google Scholar] [CrossRef]
- Hoffert, M.I.; Callegari, A.J.; Hsieh, C.T.; Ziegler, W. Liquid water on Mars: An energy balance climate model for CO2/H2O atmospheres. Icarus 1981, 47, 112–129. [Google Scholar] [CrossRef]
- Brakenridge, G.R.; Newsom, H.E.; Baker, V.R. Ancient hot springs on Mars: Origins and paleoenvironmental significance of small Martian valleys. Geology 1985, 13, 859–862. [Google Scholar] [CrossRef]
- Lucchitta, B.K. Valles Marineris, Mars: Wet debris flows and ground ice. Icarus 1987, 72, 411–429. [Google Scholar] [CrossRef]
- Malin, M.C.; Edgett, K.S. Evidence for recent groundwater seepage and surface runoff on Mars. Science 2000, 288, 2330–2335. [Google Scholar] [CrossRef]
- Knauth, L.P.; Burt, D.M. Eutectic brines on Mars: Origin and possible relation to young seepage features. Icarus 2002, 158, 267–271. [Google Scholar] [CrossRef]
- Hecht, M.H.; Kounaves, S.P.; Quinn, R.C.; West, S.J.; Young, S.M.M.; Ming, D.W.; Catling, D.C.; Clark, B.C.; Boynton, W.V.; Hoffman, J.; et al. Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix lander site. Science 2009, 325, 64–67. [Google Scholar] [CrossRef]
- Möhlmann, D.; Thomsen, K. Properties of cryobrines on Mars. Icarus 2011, 212, 123–130. [Google Scholar] [CrossRef]
- Chevrier, V.F.; Rivera-Valentin, E.G. Formation of recurring slope lineae by liquid brines on present-day Mars. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Michalski, J.R.; Cuadros, J.; Niles, P.B.; Parnell, J.; Rogers, A.D.; Wright, S.P. Groundwater activity on Mars and implications for a deep biosphere. Nat. Geosci. 2013, 6, 133–138. [Google Scholar] [CrossRef]
- Rampe, E.; Ming, D.; Blake, D.; Bristow, T.; Chipera, S.; Grotzinger, J.; Morris, R.; Morrison, S.; Vaniman, D.; Yen, A.; et al. Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater, Mars. Earth Planet. Sci. Lett. 2017, 471, 172–185. [Google Scholar] [CrossRef]
- Salese, F.; Pondrelli, M.; Neeseman, A.; Schmidt, G.; Ori, G.G. Geological evidence of planet-wide groundwater system on mars. J. Geophys. Res. Planets 2019, 124, 374–395. [Google Scholar] [CrossRef]
- Chevrier, V.F.; Rivera-Valentín, E.G.; Soto, A.; Altheide, T.S. Global temporal and geographic stability of brines on present-day Mars. Planet. Sci. J. 2020, 1, 64. [Google Scholar] [CrossRef]
- Chevrier, V.F.; Fitting, A.B.; Rivera-Valentín, E.G. Limited stability of multicomponent brines on the surface of Mars. Planet. Sci. J. 2022, 3, 125. [Google Scholar] [CrossRef]
- Mangold, N.; Poulet, F.; Mustard, J.F.; Bibring, J.; Gondet, B.; Langevin, Y.; Ansan, V.; Masson, P.; Fassett, C.; Head, J.W.; et al. Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 2. Aqueous alteration of the crust. J. Geophys. Res. Planets 2007, 112, E08S04. [Google Scholar] [CrossRef]
- Bishop, J.L.; McKeown, N.K.; Noe Dobrea, E.Z.; Ehlmann, B.L.; Michalski, J.R.; Milliken, R.E.; Poulet, F.; Mustard, J.F.; Swayze, G.; Murchie, S.L. Phyllosilicate diversity observed by CRISM in Mawrth Vallis: Identification of nontronite, mont-morillonite, kaolinite, and hydrated silica. In Proceedings of the 39th Annual Lunar and Planetary Science Conference, League City, TX, USA, 10–14 March 2008; p. 2124. [Google Scholar]
- Ehlmann, B.L.; Mustard, J.F.; Murchie, S.L. Geologic setting of serpentine deposits on Mars. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Milliken, R.E.; Grotzinger, J.P.; Thomson, B.J. Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Wiseman, S.M.; Arvidson, R.E.; Morris, R.V.; Poulet, F.; Andrews-Hanna, J.C.; Bishop, J.L.; Murchie, S.L.; Seelos, F.P.; Marais, D.D.; Griffes, J.L. Spectral and stratigraphic mapping of hydrated sulfate and phyllosilicate-bearing deposits in northern Sinus Meridiani, Mars. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Bultel, B.; Quantin-Nataf, C.; Andréani, M.; Clénet, H.; Lozac’h, L. Deep alteration between Hellas and Isidis basins. Icarus 2015, 260, 141–160. [Google Scholar] [CrossRef]
- Amador, E.S.; Bandfield, J.L.; Thomas, N.H. A search for minerals associated with serpentinization across Mars using CRISM spectral data. Icarus 2018, 311, 113–134. [Google Scholar] [CrossRef]
- Tarnas, J.D.; Mustard, J.F.; Lin, H.; Goudge, T.A.; Amador, E.S.; Bramble, M.S.; Kremer, C.H.; Zhang, X.; Itoh, Y.; Parente, M. Orbital identification of hydrated silica in Jezero crater, Mars. Geophys. Res. Lett. 2019, 46, 12771–12782. [Google Scholar] [CrossRef]
- Horgan, B.H.; Anderson, R.B.; Dromart, G.; Amador, E.S.; Rice, M.S. The mineral diversity of Jezero crater: Evidence for possible lacustrine carbonates on Mars. Icarus 2020, 339, 113526. [Google Scholar] [CrossRef]
- Lin, H.; Tarnas, J.; Mustard, J.; Zhang, X.; Wei, Y.; Wan, W.; Klein, F.; Kellner, J. Dynamic aperture factor analysis/target transformation (DAFA/TT) for Mg-serpentine and Mg-carbonate mapping on Mars with CRISM near-infrared data. Icarus 2021, 355, 114168. [Google Scholar] [CrossRef]
- Schulte, M.; Blake, D.; Hoehler, T.M.; McCollom, T.M.; Donaldson, C.; Saladino, R.; Botta, G.; Bizzarri, B.M.; Di Mauro, E.; Ruiz, J.M.G.; et al. Serpentinization and Its Implications for Life on the Early Earth and Mars. Astrobiology 2006, 6, 364–376. [Google Scholar] [CrossRef]
- Atreya, S.K.; Mahaffy, P.R.; Wong, A.-S. Methane and related trace species on Mars: Origin, loss, implications for life, and habitability. Planet. Space Sci. 2007, 55, 358–369. [Google Scholar] [CrossRef]
- Sherwood Lollar, B.; Voglesonger, K.; Lin, L.; Lacrampe-Couloume, G.; Telling, J.; Abrajano, T.A.; Onstott, T.C.; Pratt, L.M. Hydrogeologic controls on episodic H2 release from Precambrian fractured rocks—Energy for deep subsurface life on Earth and Mars. Astrobiology 2007, 7, 971–986. [Google Scholar] [CrossRef]
- Stamenkovic, V.; Lynch, K.; Boston, P.; Tarnas, J.; Edwards, C.D.; Sherwood-Lollar, B.; Atreya, S.; Templeton, A.; Freeman, A.; Fischer, W.; et al. Deep Trek: Science of Subsurface Habitability & Life on Mars. Bull. AAS 2021, 53, 250. [Google Scholar] [CrossRef]
- Hoefen, T.M.; Clark, R.N.; Bandfield, J.L.; Smith, M.D.; Pearl, J.C.; Christensen, P.R. Discovery of Olivine in the Nili Fossae Region of Mars. Science 2003, 302, 627–630. [Google Scholar] [CrossRef] [PubMed]
- Christensen, P.R.; Bandfield, J.L.; Hamilton, V.E.; Ruff, S.W.; Kieffer, H.H.; Titus, T.N.; Malin, M.C.; Morris, R.V.; Lane, M.D.; Clark, R.L.; et al. Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results. J. Geophys. Res. Planets 2001, 106, 23823–23871. [Google Scholar] [CrossRef]
- Mustard, J.F.; Poulet, F.; Gendrin, A.; Bibring, J.-P.; Langevin, Y.; Gondet, B.; Mangold, N.; Bellucci, G.; Altieri, F. Olivine and Pyroxene Diversity in the Crust of Mars. Science 2005, 307, 1594–1597. [Google Scholar] [CrossRef]
- Mustard, J.F.; Poulet, F.; Head, J.W.; Mangold, N.; Bibring, J.; Pelkey, S.M.; Fassett, C.I.; Langevin, Y.; Neukum, G. Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 1. Ancient impact melt in the Isidis Basin and implications for the transition from the Noachian to Hesperian. J. Geophys. Res. Planets 2007, 112. [Google Scholar] [CrossRef]
- Bibring, J.-P.; Langevin, Y.; Gendrin, A.; Gondet, B.; Poulet, F.; Berthé, M.; Soufflot, A.; Arvidson, R.; Mangold, N.; Mustard, J.; et al. Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations. Science 2005, 307, 1576–1581. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.J.; Hook, S.J.; Baldridge, A.M.; Crowley, J.K.; Bridges, N.T.; Thomson, B.J.; Marion, G.M.; de Souza Filho, C.R.; Bishop, J.L. Hydrothermal formation of Clay-Carbonate alteration assemblages in the Nili Fossae region of Mars. Earth Planet. Sci. Lett. 2010, 297, 174–182. [Google Scholar] [CrossRef]
- Viviano, C.E.; Moersch, J.E.; McSween, H.Y. Implications for early hydrothermal environments on Mars through the spectral evidence for carbonation and chloritization reactions in the Nili Fossae region. J. Geophys. Res. Planets 2013, 118, 1858–1872. [Google Scholar] [CrossRef]
- Tutolo, B.M.; Tosca, N.J. Observational constraints on the process and products of Martian serpentinization. Sci. Adv. 2023, 9, eadd8472. [Google Scholar] [CrossRef]
- Chevrier, V.F.; Morisson, M. Carbonate-Phyllosilicate Parageneses and Environments of Aqueous Alteration in Nili Fossae and Mars. J. Geophys. Res. Planets 2021, 126, e2020JE006698. [Google Scholar] [CrossRef]
- Williford, K.H.; Farley, K.A.; Stack, K.M.; Allwood, A.C.; Beaty, D.; Beegle, L.W.; Bhartia, R.; Brown, A.J.; de la Torre Juarez, M.; Wiens, R.C.; et al. The NASA Mars 2020 rover mission and the search for extraterrestrial life. In From Habitability to Life on Mars; Elsevier: Amsterdam, The Netherlands, 2018; pp. 275–308. [Google Scholar]
- Farley, K.A.; Williford, K.H.; Stack, K.M.; Bhartia, R.; Chen, A.; de la Torre, M.; Hand, K.; Goreva, Y.; Herd, C.D.K.; Hueso, R.; et al. Mars 2020 mission overview. Space Sci. Rev. 2020, 216, 1–41. [Google Scholar] [CrossRef]
- Hyodo, R.; Usui, T. Searching for life on Mars and its moons. Science 2021, 373, 742. [Google Scholar] [CrossRef]
- Bell, J.F., III; Maki, J.N.; Alwmark, S.; Ehlmann, B.L.; Fagents, S.A.; Grotzinger, J.P.; Gupta, S.; Hayes, A.; Herkenhoff, K.E.; Horgan, B.H.N.; et al. Geological, multispectral, and meteorological imaging results from the Mars 2020 Perseverance rover in Jezero crater. Sci. Adv. 2022, 8, eabo4856. [Google Scholar] [CrossRef]
- Bishop, J.L.; Murad, E.; Lane, M.D.; Mancinelli, R.L. Multiple techniques for mineral identification on Mars: A study of hydrothermal rocks as potential analogues for astrobiology sites on Mars. Icarus 2004, 169, 311–323. [Google Scholar] [CrossRef]
- Dartnell, L.R.; Desorgher, L.; Ward, J.M.; Coates, A.J. Modelling the surface and subsurface Martian radiation environment: Implications for astrobiology. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Levin, G.V.; Straat, P.A. The Case for Extant Life on Mars and Its Possible Detection by the Viking Labeled Release Experiment. Astrobiology 2016, 16, 798–810. [Google Scholar] [CrossRef]
- Beaty, D.W.; Grady, M.M.; McSween, H.Y.; Sefton-Nash, E.; Carrier, B.L.; Altieri, F.; Amelin, Y.; Ammannito, E.; Anand, M.; Benning, L.G.; et al. The potential science and engineering value of samples delivered to Earth by Mars sample return: International MSR Objectives and Samples Team (iMOST). Meteorit. Planet. Sci. 2019, 54, S3–S152. [Google Scholar] [CrossRef]
- Onstott, T.; Ehlmann, B.; Sapers, H.; Coleman, M.; Ivarsson, M.; Marlow, J.; Neubeck, A.; Niles, P. Paleo-rock-hosted life on Earth and the search on Mars: A review and strategy for exploration. Astrobiology 2019, 19, 1230–1262. [Google Scholar] [CrossRef] [PubMed]
- Tarnas, J.; Mustard, J.; Lollar, B.S.; Stamenković, V.; Cannon, K.; Lorand, J.-P.; Onstott, T.; Michalski, J.; Warr, O.; Palumbo, A.; et al. Earth-like Habitable Environments in the Subsurface of Mars. Astrobiology 2021, 21, 741–756. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.J.; Kah, L.; Mandon, L.; Wiens, R.; Pinet, P.; Clavé, E.; Mouélic, S.L.; Udry, A.; Gasda, P.J.; Royer, C.; et al. Properties of the Nili Fossae Olivine-clay-carbonate lithology: Orbital and in situ at Séítah. arXiv 2022. [Google Scholar] [CrossRef]
- Mustard, J.F.; Ehlmann, B.L.; Murchie, S.L.; Poulet, F.; Mangold, N.; Head, J.W.; Bibring, J.; Roach, L.H. Composition, Morphology, and Stratigraphy of Noachian Crust around the Isidis basin. J. Geophys. Res. Planets 2009, 114. [Google Scholar] [CrossRef]
- Ehlmann, B.L.; Mustard, J.F.; Murchie, S.L.; Poulet, F.; Bishop, J.L.; Brown, A.J.; Calvin, W.M.; Clark, R.N.; Marais, D.J.D.; Milliken, R.E.; et al. Orbital Identification of Carbonate-Bearing Rocks on Mars. Science 2008, 322, 1828–1832. [Google Scholar] [CrossRef] [PubMed]
- Fassett, C.I.; Head, J.W. Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology. Icarus 2008, 198, 37–56. [Google Scholar] [CrossRef]
- Goudge, T.A.; Mustard, J.F.; Head, J.W.; Fassett, C.I.; Wiseman, S.M. Assessing the mineralogy of the watershed and fan deposits of the Jezero crater paleolake system, Mars. J. Geophys. Res. Planets 2015, 120, 775–808. [Google Scholar] [CrossRef]
- Mangold, N. Intermittent warmth on young Mars. Nat. Geosci. 2021, 14, 112–113. [Google Scholar] [CrossRef]
- Bethke, C.M. Geochemical and Biogeochemical Reaction Modeling, 3rd ed.; Cambridge University Press (CUP): Cambridge, UK, 2021; ISBN 9780511619670. [Google Scholar]
- Helgeson, H.C. Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions—I. Thermodynamic relations. Geochim. Cosmochim. Acta 1968, 32, 853–877. [Google Scholar] [CrossRef]
- Helgeson, H.C.; Garrels, R.M.; MacKenzie, F.T. Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions—II. Applications. Geochim. Cosmochim. Acta 1969, 33, 455–481. [Google Scholar] [CrossRef]
- Griffith, L.L.; Shock, E.L. A geochemical model for the formation of hydrothermal carbonates on Mars. Nature 1995, 377, 406–408. [Google Scholar] [CrossRef]
- Griffith, L.L.; Shock, E.L. Hydrothermal hydration of Martian crust: Illustration via geochemical model calculations. J. Geophys. Res. Planets 1997, 102, 9135–9143. [Google Scholar] [CrossRef]
- Jones, C.L.; Brearley, A.J. Experimental aqueous alteration of the Allende meteorite under oxidizing conditions: Constraints on asteroidal alteration. Geochim. Cosmochim. Acta 2006, 70, 1040–1058. [Google Scholar] [CrossRef]
- McAdam, A.C.; Zolotov, M.Y.; Mironenko, M.V.; Sharp, T.G. Formation of silica by low-temperature acid alteration of Martian rocks: Physical-chemical constraints. J. Geophys. Res. Planets 2008, 113. [Google Scholar] [CrossRef]
- Bouquet, A.; Glein, C.R.; Wyrick, D.; Waite, J.H. Alternative Energy: Production of H 2 by Radiolysis of Water in the Rocky Cores of Icy Bodies. Astrophys. J. 2017, 840, L8. [Google Scholar] [CrossRef]
- Castillo-Rogez, J.; Neveu, M.; McSween, H.Y.; Fu, R.R.; Toplis, M.J.; Prettyman, T. Insights into Ceres’s evolution from surface composition. Meteorit. Planet. Sci. 2018, 53, 1820–1843. [Google Scholar] [CrossRef]
- Glein, C.R.; Waite, J.R. The Carbonate Geochemistry of Enceladus’ Ocean. Geophys. Res. Lett. 2020, 47, e2019GL085885. [Google Scholar] [CrossRef]
- Bouquet, A.; Miller, K.E.; Glein, C.R.; Mousis, O. Limits on the contribution of early endogenous radiolysis to oxidation in carbonaceous chondrites’ parent bodies. Astron. Astrophys. 2021, 653, A59. [Google Scholar] [CrossRef]
- Ray, C.; Glein, C.R.; Waite, J.H.; Teolis, B.; Hoehler, T.; Huber, J.A.; Lunine, J.; Postberg, F. Oxidation processes diversify the metabolic menu on Enceladus. Icarus 2021, 364, 114248. [Google Scholar] [CrossRef]
- Oelkers, E.H.; Bénézeth, P.; Pokrovski, G.S. Thermodynamic databases for water-rock interaction. Rev. Miner. Geochem. 2009, 70, 1–46. [Google Scholar] [CrossRef]
- Osinski, G.R.; Tornabene, L.L.; Banerjee, N.R.; Cockell, C.S.; Flemming, R.; Izawa, M.R.; McCutcheon, J.; Parnell, J.; Preston, L.J.; Pickersgill, A.E. Im-pact-generated hydrothermal systems on Earth and Mars. Icarus 2013, 224, 347–363. [Google Scholar] [CrossRef]
- Rapin, W.; Meslin, P.-Y.; Maurice, S.; Vaniman, D.; Nachon, M.; Mangold, N.; Schröder, S.; Gasnault, O.; Forni, O.; Wiens, R.; et al. Hydration state of calcium sulfates in Gale crater, Mars: Identification of bassanite veins. Earth Planet. Sci. Lett. 2016, 452, 197–205. [Google Scholar] [CrossRef]
- Yen, A.; Ming, D.; Vaniman, D.; Gellert, R.; Blake, D.; Morris, R.; Morrison, S.; Bristow, T.; Chipera, S.; Edgett, K.; et al. Multiple stages of aqueous alteration along fractures in mudstone and sandstone strata in Gale Crater, Mars. Earth Planet. Sci. Lett. 2017, 471, 186–198. [Google Scholar] [CrossRef]
- Nachon, M.; Mangold, N.; Forni, O.; Kah, L.; Cousin, A.; Wiens, R.; Anderson, R.; Blaney, D.; Blank, J.; Calef, F.; et al. Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, Gale crater, Mars. Icarus 2017, 281, 121–136. [Google Scholar] [CrossRef]
- L’Haridon, J.; Mangold, N.; Meslin, P.-Y.; Johnson, J.; Rapin, W.; Forni, O.; Cousin, A.; Payré, V.; Dehouck, E.; Nachon, M.; et al. Chemical variability in mineralized veins observed by ChemCam on the lower slopes of Mount Sharp in Gale crater, Mars. Icarus 2018, 311, 69–86. [Google Scholar] [CrossRef]
- Tosca, N.J.; McLennan, S.M.; Dyar, M.D.; Sklute, E.C.; Michel, F.M. Fe oxidation processes at Meridiani Planum and implications for secondary Fe mineralogy on Mars. J. Geophys. Res. Planets 2008, 113. [Google Scholar] [CrossRef]
- Sheppard, R.Y.; Thorpe, M.T.; Fraeman, A.A.; Fox, V.K.; Milliken, R.E. Merging perspectives on secondary minerals on mars: A review of ancient water-rock interactions in gale crater inferred from orbital and in-situ observations. Minerals 2021, 11, 986. [Google Scholar] [CrossRef]
- Toner, J.; Catling, D.; Light, B. The formation of supercooled brines, viscous liquids, and low-temperature perchlorate glasses in aqueous solutions relevant to Mars. Icarus 2014, 233, 36–47. [Google Scholar] [CrossRef]
- Toner, J.; Catling, D.; Light, B. Soluble salts at the Phoenix Lander site, Mars: A reanalysis of the Wet Chemistry Laboratory data. Geochim. Cosmochim. Acta 2014, 136, 142–168. [Google Scholar] [CrossRef]
- Toner, J.D.; Catling, D.C.; Light, B. Modeling salt precipitation from brines on Mars: Evaporation versus freezing origin for soil salts. Icarus 2015, 250, 451–461. [Google Scholar] [CrossRef]
- McEwen, A.S.; Ojha, L.; Dundas, C.M.; Mattson, S.S.; Byrne, S.; Wray, J.J.; Cull, S.C.; Murchie, S.L.; Thomas, N.; Gulick, V.C. Seasonal Flows on Warm Martian Slopes. Science 2011, 333, 740–743. [Google Scholar] [CrossRef]
- Hassler, D.M.; Zeitlin, C.; Wimmer-Schweingruber, R.F.; Ehresmann, B.; Rafkin, S.; Eigenbrode, J.L.; Brinza, D.E.; Weigle, G.; Böttcher, S.; Böhm, E.; et al. Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity rover. Science 2014, 343, 1244797. [Google Scholar] [CrossRef]
- Guo, J.; Zeitlin, C.; Wimmer-Schweingruber, R.F.; Hassler, D.M.; Posner, A.; Heber, B.; Köhler, J.; Rafkin, S.; Ehresmann, B.; Appel, J.K.; et al. Variations of dose rate observed by MSL/RAD in transit to Mars. Astron. Astrophys. 2015, 577, A58. [Google Scholar] [CrossRef]
- Hamilton, V.E.; Christensen, P.R. Evidence for extensive, olivine-rich bedrock on Mars. Geology 2005, 33, 433. [Google Scholar] [CrossRef]
- Koeppen, W.C.; Hamilton, V.E. Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data. J. Geophys. Res. Planets 2008, 113. [Google Scholar] [CrossRef]
- Ody, A.; Poulet, F.; Bibring, J.; Loizeau, D.; Carter, J.; Gondet, B.; Langevin, Y. Global investigation of olivine on Mars: Insights into crust and mantle compositions. J. Geophys. Res. Planets 2013, 118, 234–262. [Google Scholar] [CrossRef]
- Kremer, C.H.; Mustard, J.F.; Bramble, M.S. A widespread olivine-rich ash deposit on Mars. Geology 2019, 47, 677–681. [Google Scholar] [CrossRef]
- Brown, A.J.; Viviano, C.E.; Goudge, T.A. Olivine-Carbonate Mineralogy of the Jezero Crater Region. J. Geophys. Res. Planets 2020, 125, e2019JE006011. [Google Scholar] [CrossRef]
- Ruff, S.W.; Hamilton, V.E.; Rogers, A.D.; Edwards, C.S.; Horgan, B.H. Olivine and carbonate-rich bedrock in Gusev crater and the Nili Fossae region of Mars may be altered ignimbrite deposits. Icarus 2022, 380, 114974. [Google Scholar] [CrossRef]
- Poulet, F.; Mangold, N.; Platevoet, B.; Bardintzeff, J.-M.; Sautter, V.; Mustard, J.; Bibring, J.-P.; Pinet, P.; Langevin, Y.; Gondet, B.; et al. Quantitative compositional analysis of Martian mafic regions using the MEx/OMEGA reflectance data: 2. Petrological impli-cations. Icarus 2009, 201, 84–101. [Google Scholar] [CrossRef]
- Mandon, L.; Quantin-Nataf, C.; Thollot, P.; Mangold, N.; Lozac’H, L.; Dromart, G.; Beck, P.; Dehouck, E.; Breton, S.; Millot, C.; et al. Refining the age, emplacement and alteration scenarios of the olivine-rich unit in the Nili Fossae region, Mars. Icarus 2020, 336, 113436. [Google Scholar] [CrossRef]
- Borg, L.E.; Nyquist, L.E.; Wiesmann, H.; Reese, Y. Constraints on the petrogenesis of Martian meteorites from the Rb-Sr and Sm-Nd isotopic systematics of the lherzolitic shergottites ALH77005 and LEW88516. Geochim. Cosmochim. Acta 2002, 66, 2037–2053. [Google Scholar] [CrossRef]
- Mangold, N.; Dromart, G.; Ansan, V.; Salese, F.; Kleinhans, M.G.; Massé, M.; Quantin-Nataf, C.; Stack, K.M. Fluvial Regimes, Morphometry, and Age of Jezero Crater Paleolake Inlet Valleys and Their Exobiological Significance for the 2020 Rover Mission Landing Site. Astrobiology 2020, 20, 994–1013. [Google Scholar] [CrossRef] [PubMed]
- Borg, L.E.; Nyquist, L.E.; Wiesmann, H.; Shih, C.-Y.; Reese, Y. The age of Dar al Gani 476 and the differentiation history of the martian meteorites inferred from their radiogenic isotopic systematics. Geochim. Cosmochim. Acta 2003, 67, 3519–3536. [Google Scholar] [CrossRef]
- Nyquist, L.; Bogard, D.; Shih, C.-Y.; Park, J.; Reese, Y.; Irving, A. Concordant Rb–Sr, Sm–Nd, and Ar–Ar ages for Northwest Africa 1460: A 346Ma old basaltic shergottite related to “lherzolitic” shergottites. Geochim. Cosmochim. Acta 2009, 73, 4288–4309. [Google Scholar] [CrossRef]
- Brennecka, G.A.; Borg, L.E.; Wadhwa, M. Insights into the Martian mantle: The age and isotopics of the meteorite fall Tissint. Meteorit. Planet. Sci. 2014, 49, 412–418. [Google Scholar] [CrossRef]
- Cohen, B.E.; Mark, D.F.; Cassata, W.S.; Lee, M.R.; Tomkinson, T.; Smith, C.L. Taking the pulse of Mars via dating of a plume-fed volcano. Nat. Commun. 2017, 8, 640–649. [Google Scholar] [CrossRef]
- Herd, C.D.; Walton, E.L.; Agee, C.B.; Muttik, N.; Ziegler, K.; Shearer, C.K.; Bell, A.S.; Santos, A.R.; Burger, P.V.; Simon, J.I.; et al. The Northwest Africa 8159 martian meteorite: Expanding the martian sample suite to the early Amazonian. Geochim. Cosmochim. Acta 2017, 218, 1–26. [Google Scholar] [CrossRef]
- Lapen, T.J.; Righter, M.; Andreasen, R.; Irving, A.J.; Satkoski, A.M.; Beard, B.L.; Nishiizumi, K.; Jull, A.J.T.; Caffee, M.W. Two billion years of magmatism recorded from a single Mars meteorite ejection site. Sci. Adv. 2017, 3, e1600922. [Google Scholar] [CrossRef]
- Udry, A.; Howarth, G.H.; Herd, C.D.K.; Day, J.M.D.; Lapen, T.J.; Filiberto, J. What Martian Meteorites Reveal about the Interior and Surface of Mars; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2020. [Google Scholar] [CrossRef]
- Varnes, E.S.; Jakosky, B.M.; McCollom, T.M. Biological potential of Martian hydrothermal systems. Astrobiology 2003, 3, 407–414. [Google Scholar] [CrossRef]
- Tosca, N.; McLennan, S.; Clark, B.; Grotzinger, J.; Hurowitz, J.; Knoll, A.; Schröder, C.; Squyres, S. Geochemical modeling of evaporation processes on Mars: Insight from the sedimentary record at Meridiani Planum. Earth Planet. Sci. Lett. 2005, 240, 122–148. [Google Scholar] [CrossRef]
- Bridges, J.; Schwenzer, S. The nakhlite hydrothermal brine on Mars. Earth Planet. Sci. Lett. 2012, 359–360, 117–123. [Google Scholar] [CrossRef]
- Ramkissoon, N.K.; Turner, S.M.R.; Macey, M.C.; Schwenzer, S.P.; Reed, M.H.; Pearson, V.K.; Olsson-Francis, K. Exploring the environments of Martian impact-generated hydrothermal systems and their potential to support life. Meteorit. Planet. Sci. 2021, 56, 1350–1368. [Google Scholar] [CrossRef]
- Chevrier, V.F.; Hanley, J.; Altheide, T.S. Stability of perchlorate hydrates and their liquid solutions at the Phoenix landing site, Mars. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Primm, K.; Gough, R.; Chevrier, V.; Tolbert, M. Freezing of perchlorate and chloride brines under Mars-relevant conditions. Geochim. Cosmochim. Acta 2017, 212, 211–220. [Google Scholar] [CrossRef]
- Boynton, W.V.; Ming, D.W.; Kounaves, S.P.; Young, S.M.M.; Arvidson, R.E.; Hecht, M.H.; Hoffman, J.; Niles, P.B.; Hamara, D.K.; Quinn, R.C.; et al. Evidence for calcium carbonate at the Mars Phoenix landing site. Science 2009, 325, 61–64. [Google Scholar] [CrossRef]
- Cull, S.C.; Arvidson, R.E.; Catalano, J.G.; Ming, D.W.; Morris, R.V.; Mellon, M.T.; Lemmon, M. Concentrated perchlorate at the Mars Phoenix landing site: Evidence for thin film liquid water on Mars. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Orosei, R.; Lauro, S.E.; Pettinelli, E.; Cicchetti, A.; Coradini, M.; Cosciotti, B.; Di Paolo, F.; Flamini, E.; Mattei, E.; Pajola, M.; et al. Radar evidence of subglacial liquid water on Mars. Science 2018, 361, 490–493. [Google Scholar] [CrossRef]
- Rivera-Valentín, E.G.; Chevrier, V.F.; Soto, A.; Martínez, G. Distribution and habitability of (meta)stable brines on present-day Mars. Nat. Astron. 2020, 4, 756–761. [Google Scholar] [CrossRef]
- Cone, K.A.; Palin, R.M.; Singha, K. Unsupervised machine learning with petrological database ApolloBasaltDB reveals complexity in lunar basalt major element oxide and mineral distribution patterns. Icarus 2020, 346, 113787. [Google Scholar] [CrossRef]
- Hallsworth, J.E. Salt deliquescence can support extraterrestrial life. Nat. Astron. 2020, 4, 739–740. [Google Scholar] [CrossRef]
- Coates, J.D.; Achenbach, L.A. Microbial perchlorate reduction: Rocket-fuelled metabolism. Nat. Rev. Microbiol. 2004, 2, 569–580. [Google Scholar] [CrossRef]
- Góbi, S.; Kereszturi, Á. Analyzing the role of interfacial water on sulfate formation on present Mars. Icarus 2019, 322, 135–143. [Google Scholar] [CrossRef]
- Marion, G.; Catling, D.; Zahnle, K.; Claire, M. Modeling aqueous perchlorate chemistries with applications to Mars. Icarus 2010, 207, 675–685. [Google Scholar] [CrossRef]
- De Pater, I.; Lissauer, J.J. Planetary Sciences; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Scealy, J.L.; de Caritat, P.; Grunsky, E.C.; Tsagris, M.T.; Welsh, A.H. Robust Principal Component Analysis for Power Transformed Compositional Data. J. Am. Stat. Assoc. 2015, 110, 136–148. [Google Scholar] [CrossRef]
- Nazarpour, A.; Omran, N.R.; Paydar, G.R.; Sadeghi, B.; Matroud, F.; Nejad, A.M. Application of classical statistics, logratio transformation and multifractal approaches to delineate geochemical anomalies in the Zarshuran gold district, NW Iran. Geochemistry 2015, 75, 117–132. [Google Scholar] [CrossRef]
- Chen, D.; Wei, J.; Wang, W.; Shi, W.; Li, H.; Zhan, X. Comparison of Methods for Determining the Thresholds of Geochemical Anomalies and the Prospecting Direction—A Case of Gold Deposits in the Gouli Exploration Area, Qinghai Province. Minerals 2019, 9, 368. [Google Scholar] [CrossRef]
- Jansson, N.F.; Allen, R.L.; Skogsmo, G.; Tavakoli, S. Principal component analysis and K-means clustering as tools during exploration for Zn skarn deposits and industrial carbonates, Sala area, Sweden. J. Geochem. Explor. 2022, 233, 106909. [Google Scholar] [CrossRef]
- Soares, M.F.; Timm, L.C.; Siqueira, T.M.; dos Santos, R.C.V.; Reichardt, K. Assessing the spatial variability of saturated soil hydraulic conductivity at the watershed scale using the sequential Gaussian co-simulation method. CATENA 2023, 221, 106756. [Google Scholar] [CrossRef]
- McKillup, S.; Dyar, M.D. Geostatistics Explained; Cambridge University Press (CUP): Cambridge, UK, 2010; ISBN 9780511807558. [Google Scholar]
- Amend, J.P.; Shock, E.L. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol. Rev. 2001, 25, 175–243. [Google Scholar] [CrossRef]
- Cardace, D.; Meyer-Dombard, D.R.; Woycheese, K.M.; Arcilla, C.A. Feasible metabolisms in high pH springs of the Philippines. Front. Microbiol. 2015, 6, 10. [Google Scholar] [CrossRef]
- McCollom, T.M.; Donaldson, C.; Reveillaud, J.; Reddington, E.; McDermott, J.; Algar, C.; Meyer, J.L.; Sylva, S.; German, C.R.; Huber, J.A.; et al. Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems. Astrobiology 2007, 7, 933–950. [Google Scholar] [CrossRef] [PubMed]
- Canovas, P.A., III; Hoehler, T.; Shock, E.L. Geochemical bioenergetics during low-temperature serpentinization: An example from the Samail ophiolite, Sultanate of Oman. J. Geophys. Res. Biogeosci. 2017, 122, 1821–1847. [Google Scholar] [CrossRef]
- Crespo-Medina, M.; Twing, K.I.; Sánchez-Murillo, R.; Brazelton, W.J.; McCollom, T.M.; Schrenk, M. Methane Dynamics in a Tropical Serpentinizing Environment: The Santa Elena Ophiolite, Costa Rica. Front. Microbiol. 2017, 8, 916. [Google Scholar] [CrossRef] [PubMed]
- Cook, M.C.; Blank, J.G.; Suzuki, S.; Nealson, K.H.; Morrill, P.L. Assessing geochemical bioenergetics and microbial metabolisms at three terrestrial sites of serpentinization: The Tablelands (NL, CAN), The Cedars (CA, USA), and Aqua de Ney (CA, USA). J. Geophys. Res. Biogeosci. 2021, 126, e2019JG005542. [Google Scholar] [CrossRef]
- Sabuda, M.C.; Putman, L.I.; Hoehler, T.M.; Kubo, M.D.; Brazelton, W.J.; Cardace, D.; Schrenk, M.O. Biogeochemical Gradients in a Serpentinization-Influenced Aquifer: Implications for Gas Exchange between the Subsurface and Atmosphere. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG006209. [Google Scholar] [CrossRef]
- Hazen, R.M.; Downs, R.T.; Morrison, S.M.; Tutolo, B.M.; Blake, D.F.; Bristow, T.F.; Chipera, S.J.; McSween, H.Y.; Ming, D.; Morris, R.V.; et al. On the diversity and formation modes of martian minerals. J. Geophys. Res. Planets 2023, 128, e2023JE007865. [Google Scholar] [CrossRef]
- Oehler, D.Z.; Etiope, G. Methane Seepage on Mars: Where to Look and Why. Astrobiology 2017, 17, 1233–1264. [Google Scholar] [CrossRef]
- Zolotov, M.Y.; Mironenko, M.V. Formation and fate of phyllosilicates on the surface of Mars: Geochemical modeling of aqueous weathering. In Proceedings of the Seventh International Conference on Mars, Pasadena, CA, USA, 9–13 July 2007; Volume 1353, p. 3365. [Google Scholar]
- Webster, C.R.; Mahaffy, P.R.; Atreya, S.K.; Moores, J.E.; Flesch, G.J.; Malespin, C.; McKay, C.P.; Martinez, G.; Smith, C.L.; Martin-Torres, J.; et al. Background levels of methane in Mars’ atmosphere show strong seasonal variations. Science 2018, 360, 1093–1096. [Google Scholar] [CrossRef]
- Mumma, M.J.; Villanueva, G.L.; Novak, R.E.; Hewagama, T.; Bonev, B.P.; DiSanti, M.A.; Mandell, A.M.; Smith, M.D. Strong release of methane on Mars in northern summer 2003. Science 2009, 323, 1041–1045. [Google Scholar] [CrossRef]
- Krasnopolsky, V.A.; Maillard, J.P.; Owen, T.C. Detection of methane in the martian atmosphere: Evidence for life? Icarus 2004, 172, 537–547. [Google Scholar] [CrossRef]
- Amador, E.S.; Bandfield, J.L.; Brazelton, W.J.; Kelley, D.; Marshall, C.P.; Marshall, A.O.; Aitken, J.B.; Lai, B.; Vogt, S.; Breuer, P.; et al. The Lost City Hydrothermal Field: A Spectroscopic and Astrobiological Analogue for Nili Fossae, Mars. Astrobiology 2017, 17, 1138–1160. [Google Scholar] [CrossRef]
- Thomas, N.H.; Bandfield, J.L. Identification and refinement of martian surface mineralogy using factor analysis and target transformation of near-infrared spectroscopic data. Icarus 2017, 291, 124–135. [Google Scholar] [CrossRef]
- Hurowitz, J.A.; McLennan, S.M.; Tosca, N.J.; Arvidson, R.E.; Michalski, J.R.; Ming, D.W.; Schröder, C.; Squyres, S.W. In situ and experimental evidence for acidic weathering of rocks and soils on Mars. J. Geophys. Res. Planets 2006, 111. [Google Scholar] [CrossRef]
- Schwenzer, S.P.; Kring, D.A. Impact-generated hydrothermal systems capable of forming phyllosilicates on Noachian Mars. Geology 2009, 37, 1091–1094. [Google Scholar] [CrossRef]
- Tosca, N.J.; McLennan, S.M. Experimental constraints on the evaporation of partially oxidized acid-sulfate waters at the martian surface. Geochim. Cosmochim. Acta 2009, 73, 1205–1222. [Google Scholar] [CrossRef]
- Marion, G.; Catling, D.; Crowley, J.; Kargel, J. Modeling hot spring chemistries with applications to martian silica formation. Icarus 2011, 212, 629–642. [Google Scholar] [CrossRef]
- Filiberto, J.; Schwenzer, S.P. Alteration mineralogy of Home Plate and Columbia Hills—Formation conditions in context to impact, volcanism, and fluvial activity. Meteorit. Planet. Sci. 2013, 48, 1937–1957. [Google Scholar] [CrossRef]
- Schwenzer, S.P.; Kring, D.A. Alteration minerals in impact-generated hydrothermal systems—Exploring host rock variability. Icarus 2013, 226, 487–496. [Google Scholar] [CrossRef]
- Zolotov, M.Y.; Mironenko, M.V. Chemical models for martian weathering profiles: Insights into formation of layered phyllosilicate and sulfate deposits. Icarus 2016, 275, 203–220. [Google Scholar] [CrossRef]
- Costello, L.J.; Filiberto, J.; Crandall, J.R.; Potter-McIntyre, S.L.; Schwenzer, S.P.; Miller, M.A.; Hummer, D.R.; Olsson-Francis, K.; Perl, S. Habitability of hydrothermal systems at Jezero and Gusev craters as constrained by hydrothermal alteration of a terrestrial mafic dike. Geochemistry 2020, 80, 125613. [Google Scholar] [CrossRef] [PubMed]
- Macey, M.C.; Ramkissoon, N.K.; Cogliati, S.; Toubes-Rodrigo, M.; Stephens, B.P.; Kucukkilic-Stephens, E.; Schwenzer, S.P.; Pearson, V.K.; Preston, L.J.; Olsson-Francis, K. Habitability and Biosignature Formation in Simulated Martian Aqueous Environments. Astrobiology 2023, 23, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Bridges, J.; Catling, D.; Saxton, J.; Swindle, T.; Lyon, I.; Grady, M. Alteration assemblages in Martian meteorites: Implications for near-surface processes. Space Sci. Rev. 2001, 96, 365–392. [Google Scholar] [CrossRef]
- Berger, G.; Meunier, A.; Beaufort, D. Clay mineral formation on Mars: Chemical constraints and possible contribution of basalt out-gassing. Planet. Space Sci. 2014, 95, 25–32. [Google Scholar] [CrossRef]
- Catalano, J.G. Thermodynamic and mass balance constraints on iron-bearing phyllosilicate formation and alteration pathways on early Mars. J. Geophys. Res. Planets 2013, 118, 2124–2136. [Google Scholar] [CrossRef]
- Ehlmann, B.L.; Mustard, J.F.; Swayze, G.A.; Clark, R.N.; Bishop, J.L.; Poulet, F.; Des Marais, L.H.; Roach, R.E.; Milliken, J.J.; Wray, O.; et al. Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous altera-tion. J. Geophys. Res. Planets 2009, 114. [Google Scholar] [CrossRef]
- Ehlmann, B.L.; Mustard, J.F. An in-situ record of major environmental transitions on early Mars at Northeast Syrtis Major. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Carter, J.; Poulet, F.; Bibring, J.; Mangold, N.; Murchie, S. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global view. J. Geophys. Res. Planets 2013, 118, 831–858. [Google Scholar] [CrossRef]
- Murchie, S.L.; Mustard, J.F.; Ehlmann, B.L.; Milliken, R.E.; Bishop, J.L.; McKeown, N.K.; Dobrea, E.Z.N.; Seelos, F.P.; Buczkowski, D.L.; Wiseman, S.M.; et al. A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. J. Geophys. Res. Planets 2009, 114. [Google Scholar] [CrossRef]
- Ehlmann, B.L.; Mustard, J.F.; Clark, R.N.; Swayze, G.A.; Murchie, S.L. Evidence for low-grade metamorphism, hydrothermal alteration, and diagenesis on Mars from phyllosilicate mineral assemblages. Clays Clay Miner. 2011, 59, 359–377. [Google Scholar] [CrossRef]
- Flahaut, J.; Quantin, C.; Clenet, H.; Allemand, P.; Mustard, J.F.; Thomas, P. Pristine Noachian crust and key geologic transitions in the lower walls of Valles Marineris: Insights into early igneous processes on Mars. Icarus 2012, 221, 420–435. [Google Scholar] [CrossRef]
- Ehlmann, B.L.; Mustard, J.F.; Murchie, S.L.; Bibring, J.-P.; Meunier, A.; Fraeman, A.A.; Langevin, Y. Subsurface water and clay mineral formation during the early history of Mars. Nature 2011, 479, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.B.; Sonzogni, Y.; Treiman, A.H. Amphibole in the Tissint Martian meteorite: Composition and implication for volatile content of parental magma. In Proceedings of the 45th Annual Lunar and Planetary Science Conference, Woodlands, TX, USA, 17–21 March 2014; p. 1435. [Google Scholar]
- Vaniman, D.T.; Bish, D.L.; Ming, D.W.; Bristow, T.F.; Morris, R.V.; Blake, D.F.; Chipera, S.J.; Morrison, S.M.; Treiman, A.H.; Rampe, E.B.; et al. Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars. Science 2014, 343, 1243480. [Google Scholar] [CrossRef] [PubMed]
- Morris, R.V.; Klingelhöfer, G.; Schröder, C.; Fleischer, I.; Ming, D.W.; Yen, A.S.; Gellert, R.; Arvidson, R.E.; Rodionov, D.S.; Crumpler, L.S.; et al. Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration Rover. J. Geophys. Res. Planets 2008, 113. [Google Scholar] [CrossRef]
- Christensen, P.R.; Bandfield, J.L.; Clark, R.N.; Edgett, K.S.; Hamilton, V.E.; Hoefen, T.; Kieffer, H.H.; Kuzmin, R.O.; Lane, M.D.; Malin, M.C.; et al. Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evidence for near-surface water. J. Geophys. Res. Planets 2000, 105, 9623–9642. [Google Scholar] [CrossRef]
- Clark, B.; Morris, R.; McLennan, S.; Gellert, R.; Jolliff, B.; Knoll, A.; Squyres, S.; Lowenstein, T.; Ming, D.; Tosca, N.; et al. Chemistry and mineralogy of outcrops at Meridiani Planum. Earth Planet. Sci. Lett. 2005, 240, 73–94. [Google Scholar] [CrossRef]
- Glotch, T.D.; Christensen, P.R.; Sharp, T.G. Fresnel modeling of hematite crystal surfaces and application to martian hematite spherules. Icarus 2006, 181, 408–418. [Google Scholar] [CrossRef]
- Morris, R.V.; Klingelhoefer, G.; Schröder, C.; Rodionov, D.S.; Yen, A.; Ming, D.W.; de Souza, P.A., Jr.; Fleischer, I.; Wdowiak, T.; Gellert, R. Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit’s journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills. J. Geophys. Res. Planets 2006, 111. [Google Scholar] [CrossRef]
- McSween, H.Y., Jr.; Murchie, S.L.; Crisp, J.A.; Bridges, N.T.; Anderson, R.C.; Bell, J.F., III; Britt, D.T.; Brückner, J.; Dreibus, G.; Economou, T. Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site. J. Geophys. Res. Planets 1999, 104, 8679–8715. [Google Scholar] [CrossRef]
- Squyres, S.W.; Arvidson, R.E.; Bell, J.F., III; Bruckner, J.; Cabrol, N.A.; Calvin, W.; Carr, M.H.; Christensen, P.R.; Clark, B.C.; Crumpler, L. The opportunity rover’s Athena science investigation at Meridiani Planum, Mars. Science 2004, 306, 1698–1703. [Google Scholar] [CrossRef]
- Squyres, S.W.; Grotzinger, J.P.; Arvidson, R.E.; Bell, J.F., III; Calvin, W.; Christensen, P.R.; Clark, B.C.; Crisp, J.A.; Farrand, W.H.; Herkenhoff, K.E. In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science 2004, 306, 1709–1714. [Google Scholar] [CrossRef]
- Grotzinger, J.P.; Gupta, S.; Malin, M.C.; Rubin, D.M.; Schieber, J.; Siebach, K.; Sumner, D.Y.; Stack, K.M.; Vasavada, A.R.; Arvidson, R.E.; et al. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science 2015, 350, aac7575. [Google Scholar] [CrossRef] [PubMed]
- Arvidson, R.E.; Anderson, R.C.; Haldemann, A.; Landis, G.A.; Li, R.; Lindemann, R.A.; Matijevic, J.R.; Morris, R.V.; Richter, L.; Squyres, S.W. Physical properties and localization investigations associated with the 2003 Mars Exploration rovers. J. Geophys. Res. Planets 2003, 108. [Google Scholar] [CrossRef]
- Christensen, P.R.; Wyatt, M.B.; Glotch, T.D.; Rogers, A.D.; Anwar, S.; Arvidson, R.E.; Bandfield, J.L.; Blaney, D.L.; Budney, C.; Calvin, W.M. Mineralogy at Meridiani Planum from the Mini-TES experiment on the Opportunity Rover. Science 2004, 306, 1733–1739. [Google Scholar] [CrossRef] [PubMed]
- Greeley, R.; Foing, B.H.; McSween Jr, H.Y.; Neukum, G.; Pinet, P.; van Kan, M.; Werner, S.C.; Williams, D.A.; Zegers, T.E. Fluid lava flows in Gusev crater, Mars. J. Geophys. Res. Planets 2005, 110. [Google Scholar] [CrossRef]
- McSween, H.Y.; Ruff, S.W.; Morris, R.V.; Bell, J.F.; Herkenhoff, K.; Gellert, R.; Stockstill, K.R.; Tornabene, L.L.; Squyres, S.W.; Crisp, J.A.; et al. Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars. J. Geophys. Res. Planets 2006, 111. [Google Scholar] [CrossRef]
- McSween, H.Y.; Wyatt, M.B.; Gellert, R.; Bell, J.F., III; Morris, R.V.; Herkenhoff, K.E.; Crumpler, L.S.; Milam, K.A.; Stockstill, K.R.; Tornabene, L.L. Characterization and petrologic interpretation of olivine-rich basalts at Gusev Crater, Mars. J. Geophys. Res. Planets 2006, 111. [Google Scholar] [CrossRef]
- Ming, D.W.; Gellert, R.; Morris, R.V.; Arvidson, R.E.; Brueckner, J.; Clark, B.C.; Cohen, B.A.; d’Uston, C.; Economou, T.; Fleischer, I. Geochemical properties of rocks and soils in Gusev crater, Mars: Results of the Alpha Particle X-ray Spec-trometer from Cumberland Ridge to Home Plate. J. Geophys. Res. Planets 2008, 113. [Google Scholar] [CrossRef]
- Usui, T.; McSween, H.Y., Jr.; Clark, B.C., III. Petrogenesis of high-phosphorous Wishstone Class rocks in Gusev Crater, Mars. J. Geophys. Res. Planets 2008, 113. [Google Scholar] [CrossRef]
- Anderson, R.; Bell, J.F., III. Geologic Mapping and Characterization of Gale Crater and Implications for its Potential as a Mars Science Laboratory Landing Site. Mars J. 2010, 5, 76–128. [Google Scholar] [CrossRef]
- Schwenzer, S.; Abramov, O.; Allen, C.; Clifford, S.; Cockell, C.; Filiberto, J.; Kring, D.; Lasue, J.; McGovern, P.; Newsom, H.; et al. Puncturing Mars: How impact craters interact with the Martian cryosphere. Earth Planet. Sci. Lett. 2012, 335, 9–17. [Google Scholar] [CrossRef]
- Wray, J.J.; Hansen, S.T.; Dufek, J.; Swayze, G.A.; Murchie, S.L.; Seelos, F.P.; Skok, J.R.; Irwin, R.P., III; Ghiorso, M.S. Prolonged magmatic activity on Mars inferred from the detection of felsic rocks. Nat. Geosci. 2013, 6, 1013–1017. [Google Scholar] [CrossRef]
- Farley, K.A.; Malespin, C.; Mahaffy, P.; Grotzinger, J.P.; Vasconcelos, P.M.; Milliken, R.E.; Malin, M.; Edgett, K.S.; Pavlov, A.A.; Hurowitz, J.A.; et al. In situ radiometric and exposure age dating of the Martian surface. Science 2014, 343, 1247166. [Google Scholar] [CrossRef]
- Filiberto, J. Geochemistry of Martian basalts with constraints on magma genesis. Chem. Geol. 2017, 466, 1–14. [Google Scholar] [CrossRef]
- Treiman, A.H. The nakhlite meteorites: Augite-rich igneous rocks from Mars. Geochemistry 2005, 65, 203–270. [Google Scholar] [CrossRef]
- Liu, Y.; Baziotis, I.P.; Asimow, P.D.; Bodnar, R.J.; Taylor, L.A. Mineral chemistry of the Tissint meteorite: Indications of two-stage crystallization in a closed system. Meteorit. Planet. Sci. 2016, 51, 2293–2315. [Google Scholar] [CrossRef]
- Bandfield, J.L.; Rogers, A.D. Olivine dissolution by acidic fluids in Argyre Planitia, Mars: Evidence for a widespread process. Geology 2008, 36, 579. [Google Scholar] [CrossRef]
- Bandfield, J.L.; Rogers, A.D.; Edwards, C.S. The role of aqueous alteration in the formation of martian soils. Icarus 2011, 211, 157–171. [Google Scholar] [CrossRef]
- Salvatore, M.; Mustard, J.; Head, J.; Cooper, R.; Marchant, D.; Wyatt, M. Development of alteration rinds by oxidative weathering processes in Beacon Valley, Antarctica, and implications for Mars. Geochim. Cosmochim. Acta 2013, 115, 137–161. [Google Scholar] [CrossRef]
- Arvidson, R.E.; Squyres, S.W.; Anderson, R.C.; Bell, J.F., III; Blaney, D.; Brueckner, J.; Cabrol, N.A.; Calvin, W.M.; Carr, M.H.; Christensen, P.R. Overview of the spirit Mars exploration rover mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills. J. Geophys. Res. Planets 2006, 111. [Google Scholar] [CrossRef]
- Langevin, Y.; Poulet, F.; Bibring, J.-P.; Gondet, B. Sulfates in the North Polar Region of Mars Detected by OMEGA/Mars Express. Science 2005, 307, 1584–1586. [Google Scholar] [CrossRef] [PubMed]
- Fishbaugh, K.E.; Poulet, F.; Chevrier, V.; Langevin, Y.; Bibring, J. On the origin of gypsum in the Mars north polar region. J. Geophys. Res. Planets 2007, 112. [Google Scholar] [CrossRef]
- Horgan, B.H.; Bell, J.F., III; Noe Dobrea, E.Z.; Cloutis, E.A.; Bailey, D.T.; Craig, M.A.; Roach, L.H.; Mustard, J.F. Distribution of hydrated minerals in the north polar region of Mars. J. Geophys. Res. Planets 2009, 114. [Google Scholar] [CrossRef]
- Ruff, S.W.; Farmer, J.D.; Calvin, W.M.; Herkenhoff, K.E.; Johnson, J.R.; Morris, R.V.; Rice, M.S.; Arvidson, R.E.; Bell, J.F., III; Christensen, P.R. Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rover in Gusev crater, Mars. J. Geophys. Res. Planets 2011, 116. [Google Scholar] [CrossRef]
- Poulet, F.; Omega The Omega Team; Bibring, J.-P.; Mustard, J.F.; Gendrin, A.; Mangold, N.; Langevin, Y.; Arvidson, R.E.; Gondet, B.; Gomez, C. Phyllosilicates on Mars and implications for early Martian climate. Nature 2005, 438, 623–627. [Google Scholar] [CrossRef]
- Bishop, J.L.; Gates, W.P.; Makarewicz, H.D.; McKeown, N.K.; Hiroi, T. Reflectance spectroscopy of beidellites and their importance for Mars. Clays Clay Miner. 2011, 59, 378–399. [Google Scholar] [CrossRef]
- Loizeau, D.; Mangold, N.; Poulet, F.; Ansan, V.; Hauber, E.; Bibring, J.-P.; Gondet, B.; Langevin, Y.; Masson, P.; Neukum, G. Stratigraphy in the Mawrth Vallis region through OMEGA, HRSC color imagery and DTM. Icarus 2010, 205, 396–418. [Google Scholar] [CrossRef]
- Winter, J.D. Principles of Igneous and Metamorphic Petrology; Pearson Education: Harlow, UK, 2014. [Google Scholar]
- Rosenbauer, R.J.; Bischoff, J.L.; Zierenberg, R.A. The laboratory albitization of mid-ocean ridge basalt. J. Geol. 1988, 96, 237–244. [Google Scholar] [CrossRef]
- Humphris, S.E.; Thompson, G. Hydrothermal alteration of oceanic basalts by seawater. Geochim. Cosmochim. Acta 1978, 42, 107–125. [Google Scholar] [CrossRef]
- Alt, J.C.; Honnorez, J.; Laverne, C.; Emmermann, R. Hydrothermal alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504B: Mineralogy, chemistry and evolution of seawater-basalt interactions. J. Geophys. Res. Solid Earth 1986, 91, 10309–10335. [Google Scholar] [CrossRef]
- Neuhoff, P.S.; Fridriksson, T.; Bird, D.K. Zeolite parageneses in the north Atlantic igneous province: Implications for geotectonics and groundwater quality of basaltic crust. Int. Geol. Rev. 2000, 42, 15–44. [Google Scholar] [CrossRef]
- Neuhoff, P.S.; Rogers, K.L.; Stannius, L.S.; Bird, D.K.; Pedersen, A.K. Regional very low-grade metamorphism of basaltic lavas, Disko–Nuussuaq region, West Greenland. Lithos 2006, 92, 33–54. [Google Scholar] [CrossRef]
- Weisenberger, T.; Selbekk, R.S. Multi-stage zeolite facies mineralization in the Hvalfjördur area, Iceland. Int. J. Earth Sci. 2009, 98, 985–999. [Google Scholar] [CrossRef]
- Robert, C.; Goffé, B. Zeolitization of basalts in subaqueous freshwater settings: Field observations and experimental study. Geochim. Cosmochim. Acta 1993, 57, 3597–3612. [Google Scholar] [CrossRef]
- Frost, B.R.; Beard, J.S. On silica activity and serpentinization. J. Pet. 2007, 48, 1351–1368. [Google Scholar] [CrossRef]
- O’Hanley, D.S. Serpentinites: Records of Tectonic and Petrological History; Oxford University Press: Oxford, UK, 1966. [Google Scholar]
- Frost, B.R.; Beard, J.S.; McCaig, A.; Condliffe, E. The formation of micro-rodingites from IODP Hole U1309D: Key to understanding the process of serpentinization. J. Pet. 2008, 49, 1579–1588. [Google Scholar] [CrossRef]
- Li, X.-P.; Rahn, M.; Bucher, K. Metamorphic processes in rodingites of the Zermatt-Saas ophiolites. Int. Geol. Rev. 2004, 46, 28–51. [Google Scholar] [CrossRef]
- Li, X.; Duan, W.; Zhao, L.; Schertl, H.; Kong, F.; Shi, T.; Zhang, X. Rodingites from the Xigaze ophiolite, southern Tibet–new insights into the processes of rodingitization. Eur. J. Mineral. 2017, 29, 821–837. [Google Scholar] [CrossRef]
- Duan, W.-Y.; Li, X.-P.; Wang, Z.-L.; Chen, S.; Sun, G.-M.; Zhao, L.-Q. Thermodynamic modeling and elemental migration for the early stage of rodingitization: An example from the Xialu massif of the Xigaze ophiolite, southern Tibet. Geosci. Front. 2021, 12, 101125. [Google Scholar] [CrossRef]
- Sleep, N.H.; Meibom, A.; Fridriksson, T.; Coleman, R.G.; Bird, D.K. H2 -rich fluids from serpentinization: Geochemical and biotic implications. Proc. Natl. Acad. Sci. USA 2004, 101, 12818–12823. [Google Scholar] [CrossRef] [PubMed]
- Sleep, N.H.; Bird, D.K.; Pope, E.C. Serpentinite and the dawn of life. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 2857–2869. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.J.; Hall, A.J.; Martin, W. Serpentinization as a source of energy at the origin of life. Geobiology 2010, 8, 355–371. [Google Scholar] [CrossRef]
- Marlow, J.J.; LaRowe, D.; Ehlmann, B.L.; Amend, J.; Orphan, V.J. Bioenergetic and Geobiological Possibilities of Methanotrophy on Mars. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 15–19 December 2014. [Google Scholar]
- Seto, M.; Noguchi, K.; Van Cappellen, P. Potential for aerobic methanotrophic metabolism on mars. Astrobiology 2019, 19, 1187–1195. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.J.; Ponce, A. Six ‘Must-Have’ Minerals for Life’s Emergence: Olivine, Pyrrhotite, Bridgmanite, Serpentine, Fougerite and Mackinawite. Life 2020, 10, 291. [Google Scholar] [CrossRef] [PubMed]
- Link, L.S.; Jakosky, B.M.; Thyne, G.D. Biological potential of low-temperature aqueous environments on Mars. Int. J. Astrobiol. 2005, 4, 155–164. [Google Scholar] [CrossRef]
- Türke, A.; Nakamura, K.; Bach, W.; Grosch, E.G.; Hazen, R.M.; Konhauser, K.O.; Robbins, L.J.; Pecoits, E.; Peacock, C.; Kappler, A.; et al. Palagonitization of basalt glass in the flanks of mid-ocean ridges: Implications for the bioenergetics of oceanic intracrustal ecosystems. Astrobiology 2015, 15, 793–803. [Google Scholar] [CrossRef]
- Bach, W. Some compositional and kinetic controls on the bioenergetic landscapes in oceanic basement. Front. Microbiol. 2016, 7, 107. [Google Scholar] [CrossRef]
- Semprich, J.; Schwenzer, S.P.; Treiman, A.H.; Filiberto, J. Phase equilibria modeling of low-grade metamorphic Martian rocks. J. Geophys. Res. Planets 2019, 124, 681–702. [Google Scholar] [CrossRef]
- Velde, B.; Vasseur, G. Estimation of the diagenetic smectite to illite transformation in time-temperature space. Am. Mineral. 1992, 77, 967–976. [Google Scholar]
- Berger, G.; Velde, B.; Aigouy, T. Potassium sources and illitization in Texas Gulf Coast shale diagenesis. J. Sediment. Res. 1999, 69, 151–157. [Google Scholar] [CrossRef]
- Lanson, B.; Beaufort, D.; Berger, G.; Bauer, A.; Cassagnabère, A.; Meunier, A. Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: A review. Clay Miner. 2002, 37, 1–22. [Google Scholar] [CrossRef]
- Rasmussen, M.G.; Evans, B.W.; Kuehner, S.M. Low-temperature fayalite, greenalite, and minnesotaite from the Overlook gold deposit, Washington; phase relations in the system FeO-SiO2-H2O. Can. Mineral. 1998, 36, 147–162. [Google Scholar]
- Krot, A.N.; Brearley, A.J.; Petaev, M.I.; Kallemeyn, G.W.; Sears, D.W.; Benoit, P.H.; Hutcheon, I.D.; Zolensky, M.E.; Keil, K. Evidence for low-temperature growth of fayalite and hedenbergite in MacAlpine Hills 88107, an ungrouped carbonaceous chondrite related to the CM-CO clan. Meteorit. Planet. Sci. 2000, 35, 1365–1386. [Google Scholar] [CrossRef]
- Daae, F.L.; Økland, I.; Dahle, H.; Jørgensen, S.L.; Thorseth, I.H.; Pedersen, R.B. Microbial life associated with low-temperature alteration of ultramafic rocks in the L eka ophiolite complex. Geobiology 2013, 11, 318–339. [Google Scholar] [CrossRef] [PubMed]
- Miller, H.M.; Matter, J.M.; Kelemen, P.; Ellison, E.T.; Conrad, M.E.; Fierer, N.; Ruchala, T.; Tominaga, M.; Templeton, A.S. Modern water/rock reactions in Oman hyperalkaline peridotite aquifers and implications for microbial habitability. Geochim. Cosmochim. Acta 2016, 179, 217–241. [Google Scholar] [CrossRef]
- Crespo-Medina, M.; Twing, K.I.; Kubo, M.D.Y.; Hoehler, T.M.; Cardace, D.; McCollom, T.; Schrenk, M.O. Insights into environmental controls on microbial communities in a continental serpentinite aquifer using a microcosm-based approach. Front. Microbiol. 2014, 5, 604. [Google Scholar] [CrossRef]
- Rempfert, K.R.; Miller, H.M.; Bompard, N.; Nothaft, D.; Matter, J.M.; Kelemen, P.; Fierer, N.; Templeton, A.S. Ge-ological and geochemical controls on subsurface microbial life in the Samail Ophiolite, Oman. Front. Microbiol. 2017, 8, 56. [Google Scholar] [CrossRef]
- Twing, K.I.; Brazelton, W.J.; Kubo, M.D.Y.; Hyer, A.J.; Cardace, D.; Hoehler, T.M.; McCollom, T.M.; Schrenk, M.O. Serpentinization-Influenced Groundwater Harbors Extremely Low Diversity Microbial Communities Adapted to High pH. Front. Microbiol. 2017, 8, 308. [Google Scholar] [CrossRef]
- Newman, S.A.; Lincoln, S.A.; O’Reilly, S.; Liu, X.; Shock, E.L.; Kelemen, P.B.; Summons, R.E. Lipid Biomarker Record of the Serpentinite-Hosted Ecosystem of the Samail Ophiolite, Oman and Implications for the Search for Biosignatures on Mars. Astrobiology 2020, 20, 830–845. [Google Scholar] [CrossRef]
- Seyler, L.M.; Brazelton, W.J.; McLean, C.; Putman, L.I.; Hyer, A.; Kubo, M.D.Y.; Hoehler, T.; Cardace, D.; Schrenk, M.O. Carbon Assimilation Strategies in Ultrabasic Groundwater: Clues from the Integrated Study of a Serpentinization-Influenced Aquifer. mSystems 2020, 5. [Google Scholar] [CrossRef] [PubMed]
- Barnes, I.; LaMarche Jr, V.C.; Himmelberg, G. Geochemical evidence of present-day serpentinization. Science 1967, 156, 830–832. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, E.; Tominaga, M.; Cardace, D.; Schrenk, M.O.; Hoehler, T.M.; Kubo, M.D.; Rucker, D.F. Geophysical Characterization of Serpentinite Hosted Hydrogeology at the McLaughlin Natural Reserve, Coast Range Ophiolite. Geochem. Geophys. Geosyst. 2018, 19, 114–131. [Google Scholar] [CrossRef]
- Paukert, A.N.; Matter, J.M.; Kelemen, P.B.; Shock, E.L.; Havig, J.R. Reaction path modeling of enhanced in situ CO2 mineralization for carbon sequestration in the peridotite of the Samail Ophiolite, Sultanate of Oman. Chem. Geol. 2012, 330–331, 86–100. [Google Scholar] [CrossRef]
- Boulart, C.; Chavagnac, V.; Monnin, C.; Delacour, A.; Ceuleneer, G.; Hoareau, G. Differences in gas venting from ultramafic-hosted warm springs: The example of Oman and Voltri ophiolites. Ofioliti 2013, 38, 143–156. [Google Scholar]
- Chavagnac, V.; Ceuleneer, G.; Monnin, C.; Lansac, B.; Hoareau, G.; Boulart, C. Mineralogical assemblages forming at hyperalkaline warm springs hosted on ultramafic rocks: A case study of Oman and Ligurian ophiolites. Geochem. Geophys. Geosyst. 2013, 14, 2474–2495. [Google Scholar] [CrossRef]
- Brazelton, W.J.; Morrill, P.L.; Szponar, N.; Schrenk, M.O. Bacterial communities associated with subsurface geo-chemical processes in continental serpentinite springs. Appl. Environ. Microbiol. 2013, 79, 3906–3916. [Google Scholar] [CrossRef]
- Szponar, N.; Brazelton, W.J.; Schrenk, M.O.; Bower, D.M.; Steele, A.; Morrill, P.L. Geochemistry of a continental site of serpentinization, the Tablelands Ophiolite, Gros Morne National Park: A Mars analogue. Icarus 2013, 224, 286–296. [Google Scholar] [CrossRef]
- Sánchez-Murillo, R.; Gazel, E.; Schwarzenbach, E.M.; Crespo-Medina, M.; Schrenk, M.O.; Boll, J.; Gill, B.C. Geochemical evidence for active tropical serpentinization in the Santa Elena Ophiolite, Costa Rica: An analog of a humid early Earth. Geochem. Geophys. Geosyst. 2014, 15, 1783–1800. [Google Scholar] [CrossRef]
- Fernández-Remolar, D.C.; Prieto-Ballesteros, O.; Rodríguez, N.; Gómez, F.; Amils, R.; Gómez-Elvira, J.; Stoker, C.R. Underground habitats in the Río Tinto basin: A model for subsurface life habitats on Mars. Astrobiology 2008, 8, 1023–1047. [Google Scholar] [CrossRef]
- Etiope, G.; Vance, S.; Christensen, L.E.; Marques, J.M.; da Costa, I.R. Methane in serpentinized ultramafic rocks in mainland Portugal. Mar. Pet. Geol. 2013, 45, 12–16. [Google Scholar] [CrossRef]
- Etiope, G.; Vadillo, I.; Whiticar, M.; Marques, J.; Carreira, P.; Tiago, I.; Benavente, J.; Jiménez, P.; Urresti, B. Abiotic methane seepage in the Ronda peridotite massif, southern Spain. Appl. Geochem. 2016, 66, 101–113. [Google Scholar] [CrossRef]
- Purkamo, L.; Bomberg, M.; Nyyssönen, M.; Kukkonen, I.; Ahonen, L.; Itävaara, M. Heterotrophic communities sup-plied by ancient organic carbon predominate in deep Fennoscandian bedrock fluids. Microb. Ecol. 2015, 69, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Parkes, R.J.; Cragg, B.A.; Bale, S.J.; Getlifff, J.M.; Goodman, K.; Rochelle, P.A.; Fry, J.C.; Weightman, A.J.; Harvey, S.M. Deep bacterial biosphere in Pacific Ocean sediments. Nature 1994, 371, 410–413. [Google Scholar] [CrossRef]
- D’Hondt, S.; Rutherford, S.; Spivack, A.J. Metabolic activity of subsurface life in deep-sea sediments. Science 2002, 295, 2067–2070. [Google Scholar] [CrossRef]
- Van Dover, C.L.; Fry, B. Microorganisms as food resources at deep-sea hydrothermal vents. Limnol. Oceanogr. 1994, 39, 51–57. [Google Scholar] [CrossRef]
- Proskurowski, G.; Lilley, M.D.; Seewald, J.S.; Früh-Green, G.L.; Olson, E.J.; Lupton, J.E.; Sylva, S.P.; Kelley, D.S. Abiogenic hydrocarbon production at Lost City hydrothermal field. Science 2008, 319, 604–607. [Google Scholar] [CrossRef]
- Stevens, T.O.; McKinley, J.P. Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 1995, 270, 450–455. [Google Scholar] [CrossRef]
- Lang, S.Q.; Früh-Green, G.L.; Kelley, D.S.; Lilley, M.D.; Proskurowski, G.; Reeves, E.P. H2/CH4 ratios cannot reliably distinguish abiotic vs. biotic methane in natural hydrothermal systems. Proc. Natl. Acad. Sci. USA 2012, 109, E3210. [Google Scholar] [CrossRef]
- Schrenk, M.O.; Brazelton, W.J.; Lang, S.Q. Serpentinization, carbon, and deep life. Rev. Miner. Geochem. 2013, 75, 575–606. [Google Scholar] [CrossRef]
- Dick, G.J.; Anantharaman, K.; Baker, B.J.; Li, M.; Reed, D.C.; Sheik, C.S. The microbiology of deep-sea hydrothermal vent plumes: Ecological and biogeographic linkages to seafloor and water column habitats. Front. Microbiol. 2013, 4, 124. [Google Scholar] [CrossRef] [PubMed]
- Brazelton, W.J.; Schrenk, M.O.; Kelley, D.S.; Baross, J.A. Methane- and Sulfur-Metabolizing Microbial Communities Dominate the Lost City Hydrothermal Field Ecosystem. Appl. Environ. Microbiol. 2006, 72, 6257–6270. [Google Scholar] [CrossRef] [PubMed]
- Brazelton, W.J.; Mehta, M.P.; Kelley, D.S.; Handelsman, J. Physiological differentiation within a single-species biofilm fueled by serpentinization. mBio 2011, 2, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Coskun, K.; Vuillemin, A.; Schubotz, F.; Klein, F.; Sichel, S.E.; Eisenreich, W.; Orsi, W.D. Quantifying the effects of hydrogen on carbon assimilation in a seafloor microbial community associated with ultramafic rocks. ISME J. 2021, 16, 257–271. [Google Scholar] [CrossRef] [PubMed]
- Altshuler, I.; Goordial, J.; Whyte, L.G. Microbial life in permafrost. Psychrophiles Biodivers. Biotechnol. 2017, 153–179. [Google Scholar]
- Tuorto, S.J.; Darias, P.; McGuinness, L.R.; Panikov, N.; Zhang, T.; Häggblom, M.M.; Kerkhof, L.J. Bacterial genome replication at subzero temperatures in permafrost. ISME J. 2014, 8, 139–149. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Wooller, M.J.; Pohlman, J.W.; Quensen, J.; Tiedje, J.M.; Leigh, M.B. Shifts in identity and activity of metha-notrophs in arctic lake sediments in response to temperature changes. Appl. Environ. Microbiol. 2012, 78, 4715–4723. [Google Scholar] [CrossRef]
- Froelich, P.; Klinkhammer, G.P.; Bender, M.L.; Luedtke, N.A.; Heath, G.R.; Cullen, D.; Dauphin, P.; Hammond, D.; Hartman, B.; Maynard, V. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. Geochim. Cosmochim. Acta 1979, 43, 1075–1090. [Google Scholar] [CrossRef]
- Coleman, D.C.; Reid, C.; Cole, C.V. Biological strategies of nutrient cycling in soil systems. In Advances in Ecological Research; Elsevier: Amsterdam, The Netherlands, 1983; pp. 1–55. [Google Scholar]
- Friedmann, E.I. Endolithic microorganisms in the Antarctic cold desert. Science 1982, 215, 1045–1053. [Google Scholar] [CrossRef]
- Balkwill, D.L.; Ghiorse, W.C. Characterization of subsurface bacteria associated with two shallow aquifers in Oklahoma. Appl. Environ. Microbiol. 1985, 50, 580–588. [Google Scholar] [CrossRef]
- Federle, T.W.; Dobbins, D.C.; Thornton-Manning, J.R.; Jones, D.D. Microbial biomass, activity, and community structure in subsurface soils. Groundwater 1986, 24, 365–374. [Google Scholar] [CrossRef]
- Wong, F.K.Y.; Lau, M.C.Y.; Lacap, D.C.; Aitchison, J.C.; Cowan, D.A.; Pointing, S.B. Endolithic microbial colonization of limestone in a high-altitude arid environment. Microb. Ecol. 2010, 59, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.; Greening, C.; Vanwonterghem, I.; Carere, C.R.; Bay, S.K.; Steen, J.A.; Montgomery, K.; Lines, T.; Beardall, J.; van Dorst, J.; et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature 2017, 552, 400–403. [Google Scholar] [CrossRef] [PubMed]
- Lau, M.C.Y.; Stackhouse, B.T.; Layton, A.C.; Chauhan, A.; Vishnivetskaya, T.A.; Chourey, K.; Ronholm, J.; Mykytczuk, N.C.S.; Bennett, P.C.; Lamarche-Gagnon, G.; et al. An active atmospheric methane sink in high Arctic mineral cryosols. ISME J. 2015, 9, 1880–1891. [Google Scholar] [CrossRef] [PubMed]
- van Lingen, H.J.; Edwards, J.E.; Vaidya, J.D.; van Gastelen, S.; Saccenti, E.; Bogert, B.v.D.; Bannink, A.; Smidt, H.; Plugge, C.M.; Dijkstra, J. Diurnal dynamics of gaseous and dissolved metabolites and microbiota composition in the bovine rumen. Front. Microbiol. 2017, 8, 425. [Google Scholar] [CrossRef] [PubMed]
- Kelley, D.S.; Karson, J.A.; Früh-Green, G.L.; Yoerger, D.R.; Shank, T.M.; Butterfield, D.A.; Hayes, J.M.; Schrenk, M.O.; Olson, E.J.; Proskurowski, G.; et al. A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field. Science 2005, 307, 1428–1434. [Google Scholar] [CrossRef]
- Roussel, E.G.; Konn, C.; Charlou, J.-L.; Donval, J.-P.; Fouquet, Y.; Querellou, J.; Prieur, D.; Bonavita, M.-A.C. Comparison of microbial communities associated with three Atlantic ultramafic hydrothermal systems. FEMS Microbiol. Ecol. 2011, 77, 647–665. [Google Scholar] [CrossRef] [PubMed]
- Woycheese, K.M.; Meyer-Dombard, D.R.; Cardace, D.; Argayosa, A.M.; Arcilla, C.A. Out of the dark: Transitional subsurface-to-surface microbial diversity in a terrestrial serpentinizing seep (Manleluag, Pangasinan, the Philippines). Front. Microbiol. 2015, 6, 44. [Google Scholar] [CrossRef]
- Blank, J.; Green, S.; Blake, D.; Valley, J.; Kita, N.; Treiman, A.; Dobson, P. An alkaline spring system within the Del Puerto Ophiolite (California, USA): A Mars analog site. Planet. Space Sci. 2009, 57, 533–540. [Google Scholar] [CrossRef]
- Mottl, M.J.; Komor, S.C.; Fryer, P.; Moyer, C.L. Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: Ocean Drilling Program Leg 195. Geochem. Geophys. Geosyst. 2003, 4. [Google Scholar] [CrossRef]
- Grimm, R.E.; Harrison, K.P.; Stillman, D.E.; Kirchoff, M.R. On the secular retention of ground water and ice on Mars. J. Geophys. Res. Planets 2017, 122, 94–109. [Google Scholar] [CrossRef]
- Manga, M.; Wright, V. No Cryosphere-Confined Aquifer Below InSight on Mars. Geophys. Res. Lett. 2021, 48, e2021GL093127. [Google Scholar] [CrossRef]
- Michalski, J.R.; Goudge, T.A.; Crowe, S.A.; Cuadros, J.; Mustard, J.F.; Johnson, S.S. Geological diversity and microbiological potential of lakes on Mars. Nat. Astron. 2022, 6, 1133–1141. [Google Scholar] [CrossRef]
- Stillman, D.E.; Michaels, T.I.; Grimm, R.E. Characteristics of the numerous and widespread recurring slope lineae (RSL) in Valles Marineris, Mars. Icarus 2017, 285, 195–210. [Google Scholar] [CrossRef]
- Mitchell, J.L.; Christensen, P.R. Recurring slope lineae and chlorides on the surface of Mars. J. Geophys. Res. Planets 2016, 121, 1411–1428. [Google Scholar] [CrossRef]
- Colman, D.R.; Kraus, E.A.; Thieringer, P.H.; Rempfert, K.; Templeton, A.S.; Spear, J.R.; Boyd, E.S. Deep-branching acetogens in serpentinized subsurface fluids of Oman. Proc. Natl. Acad. Sci. USA 2022, 119, e2206845119. [Google Scholar] [CrossRef]
- Suzuki, S.; Nealson, K.H.; Ishii, S. Genomic and in-situ transcriptomic characterization of the candidate phylum NPL-UPL2 from highly alkaline highly reducing serpentinized groundwater. Front. Microbiol. 2018, 9, 3141. [Google Scholar] [CrossRef]
- Merino, N.; Kawai, M.; Boyd, E.S.; Colman, D.R.; McGlynn, S.E.; Nealson, K.H.; Kurokawa, K.; Hongoh, Y. Single-cell genomics of novel actinobacteria with the Wood–Ljungdahl pathway discovered in a serpentinizing system. Front. Microbiol. 2020, 11, 1031. [Google Scholar] [CrossRef]
- Barber, D.J.; Scott, E.R.D. Shock and thermal history of Martian meteorite Allan Hills 84001 from transmission electron microscopy. Meteorit. Planet. Sci. 2006, 41, 643–662. [Google Scholar] [CrossRef]
- Lorand, J.-P.; Hewins, R.; Humayun, M.; Remusat, L.; Zanda, B.; La, C.; Pont, S. Chalcophile-siderophile element systematics of hydrothermal pyrite from martian regolith breccia NWA 7533. Geochim. Cosmochim. Acta 2018, 241, 134–149. [Google Scholar] [CrossRef]
- Pascuzzo, A.C.; Mustard, J.F.; Kremer, C.H.; Ebinger, E. The formation of irregular polygonal ridge networks, Nili Fossae, Mars: Implications for extensive subsurface channelized fluid flow in the Noachian. Icarus 2019, 319, 852–868. [Google Scholar] [CrossRef]
- Bridges, J.C.; Schwenzer, S.P.; Leveille, R.; Westall, F.; Wiens, R.C.; Mangold, N.; Bristow, T.; Edwards, P.; Berger, G. Diagenesis and clay mineral formation at Gale Crater, Mars. J. Geophys. Res. Planets 2015, 120, 1–19. [Google Scholar] [CrossRef] [PubMed]
- McSween, H.Y., Jr.; Labotka, T.C.; Viviano-Beck, C.E. Metamorphism in the Martian crust. Meteorit. Planet. Sci. 2015, 50, 590–603. [Google Scholar] [CrossRef]
- Scheller, E.L.; Hollis, J.R.; Cardarelli, E.L.; Steele, A.; Beegle, L.W.; Bhartia, R.; Conrad, P.; Uckert, K.; Sharma, S.; Ehlmann, B.L.; et al. Aqueous alteration processes in Jezero crater, Mars—Implications for organic geochemistry. Science 2022, 378, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- Steele, A.; Benning, L.G.; Wirth, R.; Schreiber, A.; Araki, T.; McCubbin, F.M.; Fries, M.D.; Nittler, L.R.; Wang, J.; Hallis, L.J.; et al. Organic synthesis associated with serpentinization and carbonation on early Mars. Science 2022, 375, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Wright, I.P.; Grady, M.M.; Pillinger, C.T. Organic materials in a martian meteorite. Nature 1989, 340, 220–222. [Google Scholar] [CrossRef]
- McKay, D.S.; Gibson Jr, E.K.; Thomas-Keprta, K.L.; Vali, H.; Romanek, C.S.; Clemett, S.J.; Chillier, X.D.; Maechling, C.R.; Zare, R.N. Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001. Science 1996, 273, 924–930. [Google Scholar] [CrossRef]
- Bada, J.L.; Glavin, D.P.; McDonald, G.D.; Becker, L. A search for endogenous amino acids in Martian meteorite ALH84001. Science 1998, 279, 362–365. [Google Scholar] [CrossRef]
- Becker, L.; Popp, B.; Rust, T.; Bada, J.L. The origin of organic matter in the Martian meteorite ALH84001. Adv. Space Res. 1999, 24, 477–488. [Google Scholar] [CrossRef]
- Zolotov, M.; Shock, E. Abiotic synthesis of polycyclic aromatic hydrocarbons on Mars. J. Geophys. Res. Atmos. 1999, 104, 14033–14049. [Google Scholar] [CrossRef]
- Zolotov, M.Y.; Shock, E.L. An abiotic origin for hydrocarbons in the Allan Hills 84001 martian meteorite through cooling of magmatic and impact-generated gases. Meteorit. Planet. Sci. 2000, 35, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Gibson Jr, E.K.; McKay, D.S.; Thomas-Keprta, K.L.; Wentworth, S.J.; Westall, F.; Steele, A.; Romanek, C.S.; Bell, M.S.; Toporski, J. Life on Mars: Evaluation of the evidence within Martian meteorites ALH84001, Nakhla, and Shergotty. Precambrian Res. 2001, 106, 15–34. [Google Scholar] [CrossRef]
- Carr, M.H.; Head, J.W. Geologic history of Mars. Earth Planet. Sci. Lett. 2010, 294, 185–203. [Google Scholar] [CrossRef]
- Hauber, E.; Brož, P.; Jagert, F.; Jodłowski, P.; Platz, T. Very recent and wide-spread basaltic volcanism on Mars. Geophys. Res. Lett. 2011, 38, L10201. [Google Scholar] [CrossRef]
- Krishnan, V.; Kumar, P.S. Long-Lived and Continual Volcanic Eruptions, Tectonic Activity, Pit Chains Formation, and Boulder Avalanches in Northern Tharsis Region: Implications for Late Amazonian Geodynamics and Seismo-Tectonic Processes on Mars. J. Geophys. Res. Planets 2023, 128, e2022JE007511. [Google Scholar] [CrossRef]
- Ahmad, A.; Patel, R.; Deka, B.; Nagori, R.; Arya, A.; Nair, A.M. Occurrence of secondary minerals at Tharsis Montes of Mars: A critical assessment. Icarus 2022, 378, 114953. [Google Scholar] [CrossRef]
- Melosh, H.J.; Vickery, A.M. Impact erosion of the primordial atmosphere of Mars. Nature 1989, 338, 487–489. [Google Scholar] [CrossRef]
- Abramov, O.; Kring, D.A. Impact-induced hydrothermal activity on early Mars. J. Geophys. Res. Planets 2005, 110. [Google Scholar] [CrossRef]
- Joeleht, A.; Kirsimäe, K.; Plado, J.; Versh, E.; Ivanov, B. Cooling of the Kärdla impact crater: II. Impact and geo-thermal modeling. Meteorit. Planet. Sci. 2005, 40, 21–33. [Google Scholar] [CrossRef]
- Ames, D.E.; Watkinson, D.H.; Parrish, R.R. Dating of a regional hydrothermal system induced by the 1850 Ma Sudbury impact event. Geology 1998, 26, 447–450. [Google Scholar] [CrossRef]
- Abramov, O.; Kring, D.A. Numerical modeling of impact-induced hydrothermal activity at the Chicxulub crater. Meteorit. Planet. Sci. 2007, 42, 93–112. [Google Scholar] [CrossRef]
- Grant, J.A.; Irwin, R.P., III; Grotzinger, J.P.; Milliken, R.E.; Tornabene, L.L.; McEwen, A.S.; Weitz, C.M.; Squyres, S.W.; Glotch, T.S.; Thomson, B.J. HiRISE imaging of impact megabreccia and sub-meter aqueous strata in Holden Crater, Mars. Geology 2008, 36, 195–198. [Google Scholar] [CrossRef]
- Marzo, G.A.; Davila, A.F.; Tornabene, L.L.; Dohm, J.M.; Fairén, A.G.; Gross, C.; Kneissl, T.; Bishop, J.L.; Roush, T.L.; McKay, C.P. Evidence for Hesperian impact-induced hydrothermalism on Mars. Icarus 2010, 208, 667–683. [Google Scholar] [CrossRef]
- Turner, S.M.R.; Bridges, J.C.; Grebby, S.; Ehlmann, B.L. Hydrothermal activity recorded in post Noachian-aged impact craters on Mars. J. Geophys. Res. Planets 2016, 121, 608–625. [Google Scholar] [CrossRef]
- Robbins, S.J.; Hynek, B.M. A new global database of Mars impact craters≥ 1 km: 1. Database creation, properties, and parameters. J. Geophys. Res. Planets 2012, 117. [Google Scholar] [CrossRef]
- Rathbun, J.A.; Squyres, S.W. Hydrothermal systems associated with Martian impact craters. Icarus 2002, 157, 362–372. [Google Scholar] [CrossRef]
- Cockell, C.S.; Voytek, M.A.; Gronstal, A.L.; Finster, K.; Kirshtein, J.D.; Howard, K.; Reitner, J.; Gohn, G.S.; Sanford, W.E.; Horton, J.W.; et al. Impact disruption and recovery of the deep subsurface biosphere. Astrobiology 2012, 12, 231–246. [Google Scholar] [CrossRef] [PubMed]
- Ojha, L.; Karunatillake, S.; Karimi, S.; Buffo, J. Amagmatic hydrothermal systems on Mars from radiogenic heat. Nat. Commun. 2021, 12, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Michalski, J.R.; Dobrea, E.Z.N.; Niles, P.B.; Cuadros, J. Ancient hydrothermal seafloor deposits in Eridania basin on Mars. Nat. Commun. 2017, 8, 15978. [Google Scholar] [CrossRef]
- Stephan, T.; Jessberger, E.K.; Heiss, C.H.; Rost, D. TOF-SIMS analysis of polycyclic aromatic hydrocarbons in Allan Hills 84001. Meteorit. Planet. Sci. 2003, 38, 109–116. [Google Scholar] [CrossRef]
- Eigenbrode, J.L.; Summons, R.E.; Steele, A.; Freissinet, C.; Millan, M.; Navarro-González, R.; Sutter, B.; McAdam, A.C.; Franz, H.B.; Glavin, D.P.; et al. Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars. Science 2018, 360, 1096–1101. [Google Scholar] [CrossRef] [PubMed]
- Mckay, C.P.; Stoker, C.R. Could the early environment of Mars have supported the development of life? Earth Space 1990, 2, 10–12. [Google Scholar] [PubMed]
- McKay, C.P. An origin of life on Mars. Cold Spring Harb. Perspect. Biol. 2010, 2, a003509. [Google Scholar] [CrossRef] [PubMed]
- McKay, C.P.; Stoker, C.R.; Glass, B.J.; Davé, A.I.; Davila, A.F.; Heldmann, J.L.; Marinova, M.M.; Fairen, A.G.; Quinn, R.C.; Zacny, K.A.; et al. The Icebreaker Life Mission to Mars: A search for biomolecular evidence for life. Astrobiology 2013, 13, 334–353. [Google Scholar] [CrossRef] [PubMed]
- McKay, C.P. Past, present, and future life on Mars. Gravit. Space Biol. Bull. Publ. Am. Soc. Gravit. Space Biol. 1998, 11, 41–50. [Google Scholar]
- Ingersoll, A.P. Mars: Occurrence of Liquid Water. Science 1970, 168, 972–973. [Google Scholar] [CrossRef]
- McKay, C.P.; Davis, W.L. Duration of liquid water habitats on early Mars. Icarus 1991, 90, 214–221. [Google Scholar] [CrossRef]
- Haberle, R.M.; McKay, C.P.; Schaeffer, J.; Cabrol, N.A.; Grin, E.A.; Zent, A.P.; Quinn, R. On the possibility of liquid water on present-day Mars. J. Geophys. Res. Planets 2001, 106, 23317–23326. [Google Scholar] [CrossRef]
- Hecht, M. Metastability of Liquid Water on Mars. Icarus 2002, 156, 373–386. [Google Scholar] [CrossRef]
- Wray, J.J. Contemporary liquid water on Mars? Annu. Rev. Earth Planet. Sci. 2021, 49, 141–171. [Google Scholar] [CrossRef]
- Mitchell, K.L.; Wilson, L. Mars: A geologically active planet. Astron. Geophys. 2003, 44, 4.16–4.20. [Google Scholar] [CrossRef]
- Viviano-Beck, C.; Murchie, S.; Beck, A.; Dohm, J. Compositional and structural constraints on the geologic history of eastern Tharsis Rise, Mars. Icarus 2017, 284, 43–58. [Google Scholar] [CrossRef]
Protolith | Water | Indicator Minerals Present at Equilibrium |
---|---|---|
ALH77005 | NaClO4 | Saponite-Na |
Rosy Red | Saponite-Na | |
Chassigny | Ca(ClO4)2 | “Fe”, Magnetite |
CaMg(ClO4)2 | “Fe”, Magnetite | |
CaNa2(ClO4)2 | “Fe”, Magnetite | |
Mg(ClO4)2 | “Fe”, Magnetite | |
MgNa2(ClO4)2 | “Fe”, Magnetite | |
NaClO4 | “Fe”, Phlogopite | |
Rosy Red | “Fe”, Phlogopite | |
Nakhla | Ca(ClO4)2 | Minnesotaite, Prehnite, “Tremolite” |
CaMg(ClO4)2 | “Tremolite” | |
CaNa2(ClO4)2 | “Tremolite” | |
Mg(ClO4)2 | Saponite-Ca, “Tremolite” | |
MgNa2(ClO4)2 | “Tremolite” | |
NaClO4 | Saponite-Na, “Tremolite” | |
Rosy Red | Minnesotaite | |
Máaz | Ca(ClO4)2 | Minnesotaite, Quartz, Alabandite, “Hedenbergite” |
CaMg(ClO4)2 | Minnesotaite, Quartz, Nontronite-Na, Pyrite, Diaspore, Muscovite, Saponite-Mg | |
CaNa2(ClO4)2 | Minnesotaite, Quartz, Alabandite, “Hedenbergite” | |
Mg(ClO4)2 | Minnesotaite, Quartz, Alabandite, “Hedenbergite” | |
MgNa2(ClO4)2 | Albite, Minnesotaite, Quartz, Saponite-Na, Pyrite, “Tremolite” | |
NaClO4 | Albite, Minnesotaite, Analcime | |
Rosy Red | Albite, Minnesotaite, Analcime | |
Séítah | NaClO4 | Natrolite, Phlogopite |
Rosy Red | Saponite-Na |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hart, R.; Cardace, D. Mineral Indicators of Geologically Recent Past Habitability on Mars. Life 2023, 13, 2349. https://doi.org/10.3390/life13122349
Hart R, Cardace D. Mineral Indicators of Geologically Recent Past Habitability on Mars. Life. 2023; 13(12):2349. https://doi.org/10.3390/life13122349
Chicago/Turabian StyleHart, Roger, and Dawn Cardace. 2023. "Mineral Indicators of Geologically Recent Past Habitability on Mars" Life 13, no. 12: 2349. https://doi.org/10.3390/life13122349
APA StyleHart, R., & Cardace, D. (2023). Mineral Indicators of Geologically Recent Past Habitability on Mars. Life, 13(12), 2349. https://doi.org/10.3390/life13122349