Near-Infrared Spectral Similarity between Ex Vivo Porcine and In Vivo Human Tissue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subsection
2.2. Experimental Setup and Measurements
2.3. Data Processing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schols, R.M.; ter Laan, M.; Stassen, L.P.; Bouvy, N.D.; Amelink, A.; Wieringa, F.P.; Alic, L. Differentiation between nerve and adipose tissue using wide-band (350-1,830 nm) in vivo diffuse reflectance spectroscopy. Lasers Surg. Med. 2014, 46, 538–545. [Google Scholar] [CrossRef] [PubMed]
- de Boer, E.; Harlaar, N.J.; Taruttis, A.; Nagengast, W.B.; Rosenthal, E.L.; Ntziachristos, V.; van Dam, G.M. Optical innovations in surgery. Br. J. Surg. 2015, 102, e56–e72. [Google Scholar] [CrossRef] [PubMed]
- Chiang, F.-Y.; Lu, I.-C.; Chen, H.-C.; Chen, H.-Y.; Tsai, C.-J.; Hsiao, P.-J.; Lee, K.-W.; Wu, C.-W. Anatomical variations of recurrent laryngeal nerve during thyroid surgery: How to identify and handle the variations with intraoperative neuromonitoring. Kaohsiung J. Med. Sci. 2010, 26, 575–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sturniolo, G.; D’Alia, C.; Tonante, A.; Gagliano, E.; Taranto, F.; Lo Schiavo, M.G. The recurrent laryngeal nerve related to thyroid surgery. Am. J. Surg. 1999, 177, 485–488. [Google Scholar] [CrossRef]
- Kretschmer, T.; Antoniadis, G.; Braun, V.; Rath, S.A.; Richter, H.P. Evaluation of iatrogenic lesions in 722 surgically treated cases of peripheral nerve trauma. J. Neurosurg. 2001, 94, 905–912. [Google Scholar] [CrossRef] [Green Version]
- Schols, R.M.; Bouvy, N.D.; van Dam, R.M.; Stassen, L.P. Advanced intraoperative imaging methods for laparoscopic anatomy navigation: An overview. Surg. Endosc. 2013, 27, 1851–1859. [Google Scholar] [CrossRef]
- Al-Taher, M.; Hsien, S.; Schols, R.M.; Hanegem, N.V.; Bouvy, N.D.; Dunselman, G.A.J.; Stassen, L.P.S. Intraoperative enhanced imaging for detection of endometriosis: A systematic review of the literature. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018, 224, 108–116. [Google Scholar] [CrossRef]
- Nilsson, J.H.; Reistad, N.; Brange, H.; Öberg, C.F.; Sturesson, C. Diffuse Reflectance Spectroscopy for Surface Measurement of Liver Pathology. Eur. Surg. Res. 2017, 58, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Schols, R.M.; Alic, L.; Beets, G.L.; Breukink, S.O.; Wieringa, F.P.; Stassen, L.P. Automated Spectroscopic Tissue Classification in Colorectal Surgery. Surg. Innov. 2015, 22, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Schols, R.M.; Alic, L.; Wieringa, F.P.; Bouvy, N.D.; Stassen, L.P. Towards automated spectroscopic tissue classification in thyroid and parathyroid surgery. Int. J. Med. Robot 2017, 13, e1748. [Google Scholar] [CrossRef]
- Cao, Q.; Zhegalova, N.G.; Wang, S.T.; Akers, W.J.; Berezin, M.Y. Multispectral imaging in the extended near-infrared window based on endogenous chromophores. J. Biomed. Opt. 2013, 18, 101318. [Google Scholar] [CrossRef] [Green Version]
- Nachabe, R.; Hendriks, B.H.; Desjardins, A.E.; van der Voort, M.; van der Mark, M.B.; Sterenborg, H.J. Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1600 nm. J. Biomed. Opt. 2010, 15, 037015. [Google Scholar] [CrossRef] [PubMed]
- Douglas, W.R. Of pigs and men and research. Space Life Sci. 1972, 3, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Swindle, M.M.; Makin, A.; Herron, A.J.; Clubb, F.J., Jr.; Frazier, K.S. Swine as models in biomedical research and toxicology testing. Vet. Pathol. 2012, 49, 344–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, E.O.; Samlan, R.A.; McMullen, N.T.; Cook, S.; Smiley-Jewell, S.; Barkmeier-Kraemer, J. Developmental changes in the connective tissues of the porcine recurrent laryngeal nerve. J. Anat. 2013, 222, 625–633. [Google Scholar] [CrossRef]
- Wood, J.D.; Buxton, P.J.; Whittington, F.M.; Enser, M. The chemical composition of fat tissues in the pig: Effects of castration and feeding treatment. Livest. Prod. Sci. 1986, 15, 73–82. [Google Scholar] [CrossRef]
- Woodard, H.Q.; White, D.R. The composition of body tissues. Br. J. Radiol. 1986, 59, 1209–1218. [Google Scholar] [CrossRef]
- Malmivuo, J.; Plonsey, R. Bioelectromagnetism. 2. Nerve and Muscle Cells; Oxford University Press: New York, NY, USA, 1995; pp. 63–77. [Google Scholar]
- Schols, R.M.; Dunias, P.; Wieringa, F.P.; Stassen, L.P. Multispectral characterization of tissues encountered during laparoscopic colorectal surgery. Med. Eng. Phys. 2013, 35, 1044–1050. [Google Scholar] [CrossRef]
- Akbari, H.; Kosugi, Y.; Kojima, K.; Tanaka, N. Blood vessel detection and artery-vein differentiation using hyperspectral imaging. Annu. Int. Conf. IEEE Eng. Med. Biol Soc. 2009, 2009, 1461–1464. [Google Scholar] [CrossRef]
- Bauer, J.R.; Bruins, A.A.; Hardeberg, J.Y.; Verdaasdonk, R.M. A Spectral Filter Array Camera for Clinical Monitoring and Diagnosis: Proof of Concept for Skin Oxygenation Imaging. J. Imaging 2019, 5, 66. [Google Scholar] [CrossRef]
- Sarkalkan, N.; Loeve, A.J.; van Dongen, K.W.; Tuijthof, G.J.; Zadpoor, A.A. A novel ultrasound technique for detection of osteochondral defects in the ankle joint: A parametric and feasibility study. Sensors 2014, 15, 148–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zijlstra, W.G.; Buursma, A.; Meeuwsen-van der Roest, W.P. Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin. Clin. Chem. 1991, 37, 1633–1638. [Google Scholar] [CrossRef]
- Anderson, R.R.; Farinelli, W.; Laubach, H.; Manstein, D.; Yaroslavsky, A.N.; Gubeli, J., 3rd; Jordan, K.; Neil, G.R.; Shinn, M.; Chandler, W.; et al. Selective photothermolysis of lipid-rich tissues: A free electron laser study. Lasers Surg. Med. 2006, 38, 913–919. [Google Scholar] [CrossRef]
- Roggan, A.; Friebel, M.; Do Rschel, K.; Hahn, A.; Mu Ller, G. Optical Properties of Circulating Human Blood in the Wavelength Range 400–2500 nm. J. Biomed. Opt. 1999, 4, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Singh, B. Investigating the impact of data normalization on classification performance. Appl. Soft Comput. 2020, 97, 105524. [Google Scholar] [CrossRef]
- Mourant, J.R.; Marina, O.C.; Hebert, T.M.; Kaur, G.; Smith, H.O. Hemoglobin parameters from diffuse reflectance data. J. Biomed. Opt. 2014, 19, 37004. [Google Scholar] [CrossRef] [Green Version]
- Nachabe, R.; Hendriks, B.H.; van der Voort, M.; Desjardins, A.E.; Sterenborg, H.J. Estimation of biological chromophores using diffuse optical spectroscopy: Benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm. Biomed. Opt. Express 2010, 1, 1432–1442. [Google Scholar] [CrossRef] [Green Version]
- Schols, R.M.; Laan, M.t.; Stassen, L.; Bouvy, N.D.; Wieringa, F.P.; Alic, L. Pattern recognition in hyperspectral data acquired during surgical procedures: Differentiation between nerve and adipose tissue. In Proceedings of the MLDAS, Third Machine Learning and Data Analytics Symposium, Doha, Qatar, 14–15 March 2016. [Google Scholar]
- Filippou, A.; Damianou, C. Experimental evaluation of high intensity focused ultrasound for fat reduction of ex vivo porcine adipose tissue. J. Ultrasound 2022, 25, 815–825. [Google Scholar] [CrossRef]
- Mehari, F.; Rohde, M.; Kanawade, R.; Knipfer, C.; Adler, W.; Klämpfl, F.; Stelzle, F.; Schmidt, M. Investigation of the differentiation of ex vivo nerve and fat tissues using laser-induced breakdown spectroscopy (LIBS): Prospects for tissue-specific laser surgery. J. Biophotonics 2016, 9, 1021–1032. [Google Scholar] [CrossRef]
Composition | Human [%] | Porcine [%] | |
---|---|---|---|
Adipose | Lipid (adipose) | 61–87 | 68 |
Water | 11–31 | 25 | |
Protein (collagen) | 8 | ||
Nerve | Lipid (adipose) | 20 | 1–20 |
Protein (collagen, fibroblasts) | 80 | 81–95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vries, E.d.; Alic, L.; Schols, R.M.; Emanuel, K.S.; Wieringa, F.P.; Bouvy, N.D.; Tuijthof, G.J.M. Near-Infrared Spectral Similarity between Ex Vivo Porcine and In Vivo Human Tissue. Life 2023, 13, 357. https://doi.org/10.3390/life13020357
Vries Ed, Alic L, Schols RM, Emanuel KS, Wieringa FP, Bouvy ND, Tuijthof GJM. Near-Infrared Spectral Similarity between Ex Vivo Porcine and In Vivo Human Tissue. Life. 2023; 13(2):357. https://doi.org/10.3390/life13020357
Chicago/Turabian StyleVries, Eva de, Lejla Alic, Rutger M. Schols, Kaj S. Emanuel, Fokko P. Wieringa, Nicole D. Bouvy, and Gabriëlle J. M. Tuijthof. 2023. "Near-Infrared Spectral Similarity between Ex Vivo Porcine and In Vivo Human Tissue" Life 13, no. 2: 357. https://doi.org/10.3390/life13020357
APA StyleVries, E. d., Alic, L., Schols, R. M., Emanuel, K. S., Wieringa, F. P., Bouvy, N. D., & Tuijthof, G. J. M. (2023). Near-Infrared Spectral Similarity between Ex Vivo Porcine and In Vivo Human Tissue. Life, 13(2), 357. https://doi.org/10.3390/life13020357