Higher Dietary Vitamin D Intake Influences the Lipid Profile and hs-CRP Concentrations: Cross-Sectional Assessment Based on The National Health and Nutrition Examination Survey
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De La Guía-Galipienso, F.; Martínez-Ferran, M.; Vallecillo, N.; Lavie, C.J.; Sanchis-Gomar, F.; Pareja-Galeano, H. Vitamin D and cardiovascular health. Clin. Nutr. 2021, 40, 2946–2957. [Google Scholar] [CrossRef]
- Ahmad, F.B.; Anderson, R.N. The leading causes of death in the US for 2020. JAMA 2021, 325, 1829–1830. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D: The underappreciated D-lightful hormone that is important for skeletal and cellular health. Curr. Opin. Endocrinol. Diabetes Obes. 2002, 9, 87–98. [Google Scholar] [CrossRef]
- Michos, E.D.; Melamed, M.L. Vitamin D and cardiovascular disease risk. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 7–12. [Google Scholar] [CrossRef]
- Nemerovski, C.W.; Dorsch, M.P.; Simpson, R.U.; Bone, H.G.; Aaronson, K.D.; Bleske, B.E. Vitamin D and cardiovascular disease. Pharmacotherapy 2009, 29, 691–708. [Google Scholar] [CrossRef] [Green Version]
- Surdu, A.M.; Pînzariu, O.; Ciobanu, D.M.; Negru, A.G.; Căinap, S.S.; Lazea, C.; Iacob, D.; Săraci, G.; Tirinescu, D.; Borda, I.M.; et al. Vitamin D and Its Role in the Lipid Metabolism and the Development of Atherosclerosis. Biomedicines 2021, 9, 172. [Google Scholar] [CrossRef]
- AlQuaiz, A.M.; Kazi, A.; Youssef, R.M.; Alshehri, N.; Alduraywish, S.A. Association between standardized vitamin 25(OH)D and dyslipidemia: A community-based study in Riyadh, Saudi Arabia. Environ. Health Prev. Med. 2020, 25, 4. [Google Scholar] [CrossRef]
- Han, Y.Y.; Hsu, S.H.; Su, T.C. Association between Vitamin D Deficiency and High Serum Levels of Small Dense LDL in Middle-Aged Adults. Biomedicines 2021, 9, 464. [Google Scholar] [CrossRef]
- Elmi, C.; Fan, M.M.; Le, M.; Cheng, G.; Khalighi, K. Association of serum 25-Hydroxy Vitamin D level with lipid, lipoprotein, and apolipoprotein level. J. Community Hosp. Intern. Med. Perspect. 2021, 11, 812–816. [Google Scholar] [CrossRef]
- Chiu, K.C.; Chu, A.; Go, V.L.; Saad, M.F. Hypovitaminosis D is associated with insulin resistance and beta cell dysfunction. Am. J. Clin. Nutr. 2004, 79, 820–825. [Google Scholar] [CrossRef] [Green Version]
- Dibaba, D.T. Effect of vitamin D supplementation on serum lipid profiles: A systematic review and meta-analysis. Nutr. Rev. 2019, 77, 890–902. [Google Scholar] [CrossRef]
- Holt, R.; Petersen, J.H.; Dinsdale, E.; Knop, F.K.; Juul, A.; Jørgensen, N.; Blomberg Jensen, M. Vitamin D Supplementation Improves Fasting Insulin Levels and HDL Cholesterol in Infertile Men. J. Clin. Endocrinol. Metab. 2022, 107, 98–108. [Google Scholar] [CrossRef]
- Barvencik, F.; Amling, M. Vitamin-D-Stoffwechsel des Knochens [Vitamin D metabolism of the bone]. Orthopade 2015, 44, 686–694. [Google Scholar]
- Schmid, A.; Walther, B. Natural vitamin D content in animal products. Adv. Nutr. 2013, 4, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Dominguez, L.J.; Farruggia, M.; Veronese, N.; Barbagallo, M. Vitamin D Sources, Metabolism, and Deficiency: Available Compounds and Guidelines for Its Treatment. Metabolites. 2021, 11, 255. [Google Scholar] [CrossRef]
- Wang, X.; Ouyang, Y.; Liu, J.; Zhu, M.; Zhao, G.; Bao, W.; Hu, F.B. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2014, 29, g4490. [Google Scholar]
- Nagura, J.; Iso, H.; Watanabe, Y.; Maruyama, K.; Date, C.; Toyoshima, H.; Yamamoto, A.; Kikuchi, S.; Koizumi, A.; Kondo, T.; et al. Fruit, vegetable and bean intake and mortality from cardiovascular disease among Japanese men and women: The JACC Study. Br. J. Nutr. 2009, 102, 285–292. [Google Scholar] [CrossRef] [Green Version]
- Bazzano, L.A.; Reynolds, K.; Holder, K.N.; He, J. Effect of folic acid supplementation on risk of cardiovascular diseases: A meta-analysis of randomized controlled trials. JAMA 2006, 296, 2720–2726. [Google Scholar] [CrossRef]
- Vivekananthan, D.; Penn, M.; Sapp, S.; Hsu, A.; Topol, E. Use of antioxidant vitamins for the prevention of cardiovascular disease: Meta-analysis of randomised trials. Lancet 2003, 361, 2017–2023. [Google Scholar] [CrossRef]
- Bjelakovic, G.; Nikolova, D.; Gluud, L.; Simonetti, R.; Gluud, C. Systematic review and meta-analysis supplements for primary and secondary prevention: Mortality in randomized trials of antioxidant. JAMA 2007, 297, 842–857. [Google Scholar] [CrossRef]
- Pan, A.; Lin, X.; Hemler, E.; Hu, F.B. Diet and Cardiovascular Disease: Advances and Challenges in Population-Based Studies. Cell Metab. 2018, 27, 489–496. [Google Scholar] [CrossRef] [Green Version]
- National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Questionnaire (or Examination Protocol, or Laboratory Protocol). Available online: https://www.cdc.gov/nchs/surveys.htm (accessed on 1 August 2022).
- Laboratory, A.R.A.D.; Minnesota, U.O. Laboratory Procedure Manual for HDL-Cholesterol. 2017–2018. Available online: https://www.cdc.gov/nchs/data/nhanes/nhanes_05_06/hdl_d_met_cholesterol_hdl_h717.pdf (accessed on 1 August 2022).
- Laboratory, A.R.A.D.; Minnesota, U.O. Laboratory Procedure Manual for total Cholesterol (Frozen). 2017–2018. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/2017-2018/labmethods/TCHOL-J-MET-508.pdf (accessed on 1 August 2022).
- Laboratory, A.R.A.D.; Minnesota, U.O. Laboratory Procedure Manual for Triglyceride. 2017–2018. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/2017-2018/labmethods/TRIGLY-J-MET-508.pdf (accessed on 1 August 2022).
- Survey, N.H.A.N.E. Cholesterol—Low-Density Lipoproteins (LDL) & Triglycerides (TRIGLY_J). 2017–2018. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_TRIGLY.htm (accessed on 1 August 2022).
- Lee, Y.; Siddiqui, W.J. Cholesterol Levels; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Akram, M.; Munir, N.; Daniyal, M.; Egbuna, C.; Gaman, M.A.; Onyekere, P.F.; Olatunde, A. Vitamins and Minerals: Types, Sources and their Functions. In Functional Foods and Nutraceuticals; Egbuna, C., Dable Tupas, G., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Jäpelt, R.B.; Jakobsen, J. Vitamin D in plants: A review of occurrence, analysis, and biosynthesis. Front. Plant Sci. 2013, 13, 136. [Google Scholar] [CrossRef] [Green Version]
- Borel, P.; Caillaud, D.; Cano, N.J. Vitamin D bioavailability: State of the art. Crit Rev Food Sci Nutr. 2015, 55, 1193–1205. [Google Scholar] [CrossRef]
- Newton, A.L.; Hanks, L.J.; Ashraf, A.P.; Williams, E.; Davis, M.; Casazza, K. Macronutrient intake influences the effect of 25-hydroxy-vitamin d status on metabolic syndrome outcomes in African American girls. Cholesterol 2012, 2012, 581432. [Google Scholar] [CrossRef] [Green Version]
- Adams, S.; Sello, C.T.; Qin, G.-X.; Che, D.; Han, R. Does Dietary Fiber Affect the Levels of Nutritional Components after Feed Formulation? Fibers 2018, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- Lamberg-Allardt, C. Vitamin D in foods and as supplements. Prog. Biophys. Mol. Biol. 2006, 92, 33–38. [Google Scholar] [CrossRef]
- Lanham-New, S.; Lee, P.; Wong, M.; Sui, C.; Starkey, S.; Lovell, D.; Berry, J.; Griffin, B. Association between dietary vitamin D intake and serum lipid profiles in Asian and Caucasian UK women: Preliminary results from the Vitamin D, Food Intake, Nutrition and Exposure to Sunlight in Southern England (D-FINES) Study. Proc. Nutr. Soc. 2008, 67, E320. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Si, S.; Liu, J.; Wang, Z.; Jia, H.; Feng, K.; Sun, L.; Song, S.J. The Associations of Serum Lipids with Vitamin D Status. PLoS ONE 2016, 11, e0165157. [Google Scholar] [CrossRef]
- Vaskonen, T.; Mervaala, E.; Sumuvuori, V.; Seppänen-Laakso, T.; Karppanen, H. Effects of calcium and plant sterols on serum lipids in obese Zucker rats on a low-fat diet. Br. J. Nutr. 2002, 87, 239–245. [Google Scholar] [CrossRef] [Green Version]
- Vogt, S.; Baumert, J.; Peters, A.; Thorand, B.; Scragg, R. Effect of waist circumference on the association between serum 25-hydroxyvitamin D and serum lipids: Results from the National Health and Nutrition Examination Survey 2001–2006. Public Health Nutr. 2017, 20, 1797–1806. [Google Scholar] [CrossRef] [Green Version]
- Jeenduang, N.; Sangkaew, B. The association between serum 25-hydroxyvitamin D concentrations and serum lipids in the Southern Thai population. Arch. Med. Sci. 2020, 18, 11–17. [Google Scholar] [CrossRef]
- Ford, E.S.; Ajani, U.A.; McGuire, L.C.; Liu, S. Concentrations of serum vitamin D and the metabolic syndrome among U.S. adults. Diabetes Care. 2005, 28, 1228–1230. [Google Scholar] [CrossRef] [Green Version]
- Saedisomeolia, A.; Taheri, E.; Djalali, M.; Moghadam, A.M.; Qorbani, M. Association between serum level of vitamin D and lipid profiles in type 2 diabetic patients in Iran. J. Diabetes Metab. Disord. 2014, 13, 7. [Google Scholar] [CrossRef] [Green Version]
- Jorde, R.; Figenschau, Y.; Hutchinson, M.; Emaus, N.; Grimnes, G. High serum 25-hydroxyvitamin D concentrations are associated with a favorable serum lipid profile. Eur. J. Clin. Nutr. 2010, 64, 1457–1464. [Google Scholar] [CrossRef]
- Jorde, R.; Grimnes, G. Vitamin D and metabolic health with special reference to the effect of vitamin D on serum lipids. Prog. Lipid Res. 2011, 50, 303–312. [Google Scholar] [CrossRef]
- Wang, J.H.; Keisala, T.; Solakivi, T.; Minasyan, A.; Kalueff, A.V.; Tuohimaa, P. Serum cholesterol and expression of ApoAI, LXRbeta and SREBP2 in vitamin D receptor knock-out mice. J. Steroid. Biochem. Mol. Biol. 2009, 113, 222–226. [Google Scholar] [CrossRef]
- Challoumas, D. Vitamin D supplementation and lipid profile: What does the best available evidence show? Atherosclerosis 2014, 235, 130–139. [Google Scholar] [CrossRef]
- Ponda, M.P.; Huang, X.; Odeh, M.A.; Breslow, J.L.; Kaufman, H.W. Vitamin D may not improve lipid levels: A serial clinical laboratory data study. Circulation. 2012, 126, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Jorde, R.; Schirmer, H.; Wilsgaard, T.; Joakimsen, R.M.; Mathiesen, E.B.; Njølstad, I.; Løchen, M.L.; Figenschau, Y.; Berg, J.P.; Svartberg, J.; et al. Polymorphisms related to the serum 25-hydroxyvitamin D level and risk of myocardial infarction, diabetes, cancer and mortality. The Tromsø Study. PLoS ONE 2012, 7, e37295. [Google Scholar] [CrossRef] [Green Version]
- Fogacci, F.; Cicero, A.F.; D’addato, S.; Giovannini, M.; Borghi, C.; Rosticci, M.; Morbini, M.; Grandi, E.; Bertagnin, E.; Iamino, I.R. Effect of spontaneous changes in dietary components and lipoprotein (a) levels: Data from the Brisighella Heart Study. Atherosclerosis 2017, 262, 202–204. [Google Scholar] [CrossRef]
- Zhang, W.; Yi, J.; Liu, D.; Wang, Y.; Jamilian, P.; Gaman, M.A.; Prabahar, K.; Fan, J. The effect of vitamin D on the lipid profile as a risk factor for coronary heart disease in postmenopausal women: A meta-analysis and systematic review of randomized controlled trials. Exp. Gerontol. 2022, 161, 111709. [Google Scholar]
- Zarrati, M.; Sohouli, M.H.; Aleayyub, S.; Keshavarz, N.; Razmpoosh, E.; Găman, M.A.; Fatahi, S.; Heydari, H. The Effect of Vitamin D Supplementation on Treatment-Induced Pain in Cancer Patients: A Systematic Review. Pain Manag. Nurs. 2022, 23, 458–466. [Google Scholar] [CrossRef]
Vitamin D (D2 + D3) Intake Tertiles | |||||
---|---|---|---|---|---|
1st (n = 80) | 2nd (n = 236) | 3rd (n = 384) | p-Value 1 | ||
Vitamin D (D2 + D3) intake (mcg) | <0.10 | 0.10–1.00 | >1.00 | ||
Age | 43.14 ± 15.50 | 37.87 ± 14.26 | 38.80 ± 14.76 | 0.021 | |
Sex (M/F) (%) | 51.2/48.8 | 46.6/53.4 | 57.3/42.7 | 0.033 | |
Race/Ethnicity (%) | ˂0.001 | ||||
Mexican American | 17.5 | 12.7 | 20.3 | ||
Other Hispanic | 3.8 | 6.8 | 9.9 | ||
Non-Hispanic White | 25.0 | 23.7 | 31.3 | ||
Non-Hispanic Black | 37.5 | 41.9 | 23.2 | ||
Other Races—Including Multiracial Americans | 16.3 | 14.8 | 15.4 | ||
Body weight (kg) | 81.88 ± 23.13 | 79.46 ± 23.40 | 84.91 ± 24.41 | 0.023 | |
Waist circumference (cm) | 97.24 ± 16.82 | 94.99 ± 18.49 | 99.04 ± 18.49 | 0.031 | |
Body mass index (kg/m2) | 29.40 ± 8.04 | 28.42 ± 7.91 | 29.56 ± 7.81 | 0.212 | |
Serum total cholesterol (TC) (mg/dL) | 180.78 ± 39.17 | 177.77 ± 37.70 | 183.77 ± 37.63 | 0.174 | |
Serum triglycerides (TG) (mg/dL) | 85.08 ± 47.57 | 86.14 ± 51.65 | 100.51 ± 62.68 | 0.081 | |
Serum low-density lipoprotein cholesterol (LDL-C) (mg/dL) | 105.50 ± 34.71 | 104.72 ± 32.35 | 109.61 ± 31.80 | 0.433 | |
Serum high-density lipoprotein cholesterol (HDL-C) (mg/dL) | 55.26 ± 18.33 | 55.55 ± 16.65 | 52.71 ± 14.62 | 0.079 | |
Serum 25-hydroxy-vitamin D2 (nmol/L) | 51.59 ± 22.80 | 55.00 ± 25.23 | 60.95 ± 24.72 | 0.001 | |
Serum high-sensitivity C-reactive protein (mg/dL) | 3.33 ± 4.86 | 3.90 ± 8.02 | 3.56 ± 4.74 | 0.713 | |
Smoking (Yes) (%) | 54.3 | 51.9 | 62.2 | 0.118 |
Vitamin D (D2 + D3) Intake Tertiles | ||||
---|---|---|---|---|
1st (<0.10 mcg/d; n = 1882) | 2nd (0.10–1.00 mcg/d; n = 236) | 3rd (>1.00 mcg/d; n = 384) | p-Value 1 | |
Energy (kcal/day) | 2673.00 ± 179.32 | 3308.13 ± 260.30 | 2992.29 ± 244.82 | 0.093 |
Protein (g/day) | 107.22 ± 88.73 | 156.97 ± 143.18 | 139.15 ± 131.62 | 0.013 |
Carbohydrates (g/day) | 269.66 ± 217.59 | 276.35 ± 268.25 | 318.51 ± 346.90 | 0.174 |
Total fats (g/day) | 129.91 ± 110.23 | 175.51 ± 147.42 | 131.50 ± 151.87 | 0.001 |
Dietary fiber, total (g/day) | 21.86 ± 26.36 | 18.75 ± 28.60 | 16.38 ± 25.78 | 0.202 |
Vitamin D (D2 + D3) Intake Tertiles | ||||
---|---|---|---|---|
1st (<0.10 mcg/d; n = 80) | 2nd (0.10–1.00 mcg/d; n = 236) | 3rd (>1.00 mcg/d; n = 384) | p-Value | |
Total Cholesterol (TC) | ||||
Model 1 | 1 | 0.91 (0.53 to 1.56) | 0.66 (0.44 to 0.97) | 0.219 |
Model 2 | 1 | 0.52 (0.15 to 1.85) | 0.52 (0.22 to 1.19) | 0.120 |
Model 3 | 1 | 1.27 (0.98 to 1.65) | 1.03 (1.02 to 1.04) | 0.068 |
Model 4 | 1 | 0.67 (0.37 to 1.22) | 0.57 (0.37 to 0.88) | 0.045 |
Triglyceride (TG) | ||||
Model 1 | 1 | 0.55 (0.15 to 1.93) | 0.51 (0.22 to 1.18) | 0.131 |
Model 2 | 1 | 0.52 (0.14 to 1.86) | 0.53 (0.23 to 1.23) | 0.129 |
Model 3 | 1 | 0.56 (0.15 to 2.01) | 0.55 (0.23 to 1.28) | 0.169 |
Model 4 | 1 | 0.46 (0.12 to 1.67) | 0.54 (0.23 to 1.26) | 0.104 |
Low-density lipoprotein cholesterol (LDL-C) | ||||
Model 1 | 1 | 0.61 (0.28 to 1.31) | 0.63 (0.38 to 1.05) | 0.070 |
Model 2 | 1 | 0.54 (0.24 to 1.19) | 0.63 (0.38 to 1.06) | 0.045 |
Model 3 | 1 | 0.52 (0.23 to 1.87) | 0.61 (0.35 to 1.06) | 0.043 |
Model 4 | 1 | 0.49 (0.22 to 1.10) | 0.59 (0.34 to 1.01) | 0.025 |
High-density lipoprotein cholesterol (HDL-C) | ||||
Model 1 | 1 | 1.27 (0.79 to 2.04) | 0.84 (0.44 to 1.57) | 0.986 |
Model 2 | 1 | 0.78 (0.41 to 1.49) | 1.12 (0.69 to 1.82) | 0.710 |
Model 3 | 1 | 0.72 (0.36 to 1.44) | 0.99 (0.59 to 1.66) | 0.457 |
Model 4 | 1 | 0.69 (0.34 to 1.40) | 0.91 (0.54 to 1.56) | 0.345 |
Vitamin D (D2 + D3) Intake Tertiles | ||||
---|---|---|---|---|
1st (<0.10 mcg/d; n = 80) | 2nd (0.10–1.00 mcg/d; n = 236) | 3rd (>1.00 mcg/d; n = 384) | p-Value | |
High-sensitivity C-reactive Protein (hs-CRP) | ||||
Model 1 | 1 | 0.80 (0.56 to 1.15) | 0.86 (0.51 to 1.45) | 0.336 |
Model 2 | 1 | 0.76 (0.44 to 1.29) | 0.78 (0.54 to 1.13) | 0.174 |
Model 3 | 1 | 0.70 (0.41 to 1.21) | 0.75 (0.51 to 1.08) | 0.096 |
Model 4 | 1 | 0.66 (0.38 to 1.15) | 0.67 (0.45 to 0.99) | 0.048 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hariri, Z.; Kord-Varkaneh, H.; Alyahya, N.; Prabahar, K.; Găman, M.-A.; Abu-Zaid, A. Higher Dietary Vitamin D Intake Influences the Lipid Profile and hs-CRP Concentrations: Cross-Sectional Assessment Based on The National Health and Nutrition Examination Survey. Life 2023, 13, 581. https://doi.org/10.3390/life13020581
Hariri Z, Kord-Varkaneh H, Alyahya N, Prabahar K, Găman M-A, Abu-Zaid A. Higher Dietary Vitamin D Intake Influences the Lipid Profile and hs-CRP Concentrations: Cross-Sectional Assessment Based on The National Health and Nutrition Examination Survey. Life. 2023; 13(2):581. https://doi.org/10.3390/life13020581
Chicago/Turabian StyleHariri, Zahra, Hamed Kord-Varkaneh, Noura Alyahya, Kousalya Prabahar, Mihnea-Alexandru Găman, and Ahmed Abu-Zaid. 2023. "Higher Dietary Vitamin D Intake Influences the Lipid Profile and hs-CRP Concentrations: Cross-Sectional Assessment Based on The National Health and Nutrition Examination Survey" Life 13, no. 2: 581. https://doi.org/10.3390/life13020581
APA StyleHariri, Z., Kord-Varkaneh, H., Alyahya, N., Prabahar, K., Găman, M. -A., & Abu-Zaid, A. (2023). Higher Dietary Vitamin D Intake Influences the Lipid Profile and hs-CRP Concentrations: Cross-Sectional Assessment Based on The National Health and Nutrition Examination Survey. Life, 13(2), 581. https://doi.org/10.3390/life13020581