Assessment of Exercise Capacity in Post-COVID-19 Patients: How Is the Appropriate Test Chosen?
Abstract
:1. Introduction
2. Laboratory Test in Post-COVID-19 Patients
Cardiopulmonary Exercise Test
3. Field Test in Post-COVID-19 Patients (Figure 1)
3.1. Six-Minute Walk Test
3.2. Sit-to-Stand Test
3.3. Chester Step Test
3.4. Shuttle Walking Test
3.5. Other Tests
3.6. Integration of Field Tests with Biological Signals
3.7. Factors That Affect the Exercise Capacity
- Age: The age of the patient is directly related to the functional capacity. The first published reports of physical capacity had a mean age of more than 70 years [74,75], particularly in the European population, showing low success rates when performing tests that required independent walking, such as the 6MWT. On the other hand, many of these patients may present frailty, so in this case, it is advisable to perform physical function tests such as the SPPB [8,62] (Table 1).
- Frailty: The literature has shown that COVID-19 infection was associated with functional decline in at least one-third of survivors [76]. On the other hand, recent evidence suggested that elderly COVID-19 patients have a high incidence of frailty, and frailty is detrimental to COVID-19 prognosis. In this scenario, the frailty assessment can be assessed, ideally with objective and multidimensional tools [77]. Physical and multidimensional frailty are both predictors of outcome and important moments to decide on rehabilitation programmes for this population, especially for the elderly [77].
- Balance: People who have been hospitalised for long periods develop muscle weakness, affecting balance and increasing the frequency of falls [78]. Balance is a predictor of a person’s ability to walk [79]. Additionally, if the patient is an older adult, it will be even more difficult to turn and accelerate in each lap in the 6MWT or SWT [80].
- Cognitive state: The cognitive state can be affected in post-ICU patients due to the use of medicaments and/or the presence of delirium [81]. Cognitive dysfunction produces a greater affectation of the activities of daily living and decreases the possibilities of optimal rehabilitation [82]. In addition, we must consider that all physical capacity assessment tests require the patient to follow instructions [20].
- Infrastructure: The current ATS/ERS recommendation supports that the 6MWD is very sensitive to methodology variations, including track layout and length changes [20]. Moreover, a recent study showed that the difference between the two protocols could reach almost 70 m apart [32]. The reasons to obtain different distances walked are multiple if the length of the corridor is not the same. Firstly, patients slow down the walking speed through the cone, decreasing the final distance. For example, a person who walks 600 m will only turn 20 times in the 30-m tracks but will turn 60 times in the 10-m corridor [24].
4. Practical Considerations
- When should I carry out the physical capacity evaluations? The decision of the ideal moment to carry out these evaluations will depend on the objective. If the goal is the follow-up, it is usually conducted between 8 and 12 weeks after discharge [19,83]. However, if the objective is to evaluate the effect of rehabilitation, it is advisable to perform it before (baseline evaluation) and after the programme (post-intervention evaluation) [84]. If the programmes are short, as has happened in the first reports in the literature [85,86], it does not make sense to carry out interim evaluations.
- How should I test if my patient uses supplemental oxygen? The use of supplemental oxygen will depend on the extent of lung damage caused by the infection. There are several possible scenarios as to why a patient may need to undertake the test with supplemental oxygen. One of the critical points to consider is who carries the oxygen device. If the objective is to evaluate the impact of an intervention such as the use of a drug or the effect of a rehabilitation programme, it is better if the technician carries the device (both the compressed gas cylinder or portable oxygen concentrator) so that its weight does not influence the final result of the test [87]. On the other hand, if we want to evaluate physical performance through an activity of daily living, it is recommended that the patient carries the device, especially if the patient uses home supplemental oxygen such as portable oxygen concentrator, and in this way we can evaluate the impact of its transfer on our patient [88].
- Does the patient have to wear a mask? In the current pandemic context, we recommend following the local safety guidelines. If these do not exist, we recommend the use of a surgical mask. Although these masks slightly increase the sensation of dyspnoea, they do not affect the final result [89]. Notably, the use of FFP2 or N95 masks has been shown to decrease performance in field tests, as well as modifying exhaled gases [90]. This point is of crucial consideration in patients who have hypercapnia.
- Should I continuously monitor the biological signals? Yes. One of the main problems that post-COVID-19 patients have is desaturation on exertion, so the patient must be monitored during the entire test [4]. The lowest saturation should be registered if it is less than 90% and if the drop is greater than four points [91]. Another variable that can provide indirect information on cardiovascular health isheart rate recovery (HRR) per minute. HRR after one minute of less than 10–15 points is related to morbidity and mortality in various chronic diseases [92,93].
- When should I stop the test? Field and laboratory tests must include strict monitoring of biological signals. If the heart rate exceeds the established maximum value or if the oxygen saturation is ≤80%, for the test must be stopped [20]. On the other hand, we must be attentive to the behavior of the patient, particularly with respect to signs indicative of any possible complication such as excessive sweating, feeling dizzy, or similar [20].
- What should I do if the patient has technical aids? If the patient has a walking aid of any form, such as a cane or a crutch, they must use it as prescribed by the physician, and it is recommended to perform the test using the technical aid. These devices usually help maintain balance by expanding the base of support, so not using them puts patient safety at risk.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- John Hopkins University, COVID-19 Dashboard by Centre for Systems Science and Engineering at the John Hopkins University. 2022. Available online: https://coronavirus.jhu.edu/map.html (accessed on 25 December 2022).
- Berlin, D.; Gulick, R.; Martinez, F. Severe COVID-19. N. Engl. J. Med. 2020, 383, 2451–2460. [Google Scholar] [CrossRef] [PubMed]
- Empson, S.; Rogers, A.; Wilson, J. COVID-19 Acute Respiratory Distress Syndrome: One Pathogen, Multiple Phenotypes. Crit. Care Clin. 2022, 38, 505–519. [Google Scholar] [CrossRef]
- Núñez-Cortés, R.; Rivera-Lillo, G.; Arias-Campoverde, M.; Soto-García, D.; García-Palomera, R.; Torres-Castro, R. Use of sit-to-stand test to assess the physical capacity and exertional desaturation in patients post COVID-19. Chron. Respir. Dis. 2021, 18, 1479973121999205. [Google Scholar] [CrossRef]
- Paneroni, M.; Simonelli, C.; Saleri, M.; Bertacchini, L.; Venturelli, M.; Troosters, T.; Ambrosino, N.; Vitacca, M. Muscle Strength and Physical Performance in Patients without Previous Disabilities Recovering From COVID-19 Pneumonia. Am. J. Phys. Med. Rehabil. 2021, 100, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Feigen, C.; Vazquez, J.; Kobets, A.; Altschul, D. Neurological Sequelae of COVID-19. J. Integr. Neurosci. 2022, 21, 77. [Google Scholar] [CrossRef]
- Willi, S.; Lüthold, R.; Hunt, A.; Hänggi, N.; Sejdiu, D.; Scaff, C.; Bender, N.; Staub, K.; Schlagenhauf, P. COVID-19 sequelae in adults aged less than 50 years: A systematic review. Travel Med. Infect. Dis. 2021, 40, 101995. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Cortés, R.; Leyton-Quezada, F.; Pino, M.; Costa-Costa, M.; Torres-Castro, R. Physical and emotional sequelae after hospitalization for COVID-19. Rev. Med. Chil. 2021, 149, 1031–1035. [Google Scholar] [CrossRef] [PubMed]
- Ceban, F.; Ling, S.; Lui, L.; Lee, Y.; Gill, H.; Teopiz, K.; Rodrigues, N.; Subramaniapillai, M.; Di Vincenzo, J.; Cao, B.; et al. Fatigue and cognitive impairment in Post-COVID-19 Syndrome: A systematic review and meta-analysis. Brain Behav. Immun. 2022, 101, 93–135. [Google Scholar] [CrossRef] [PubMed]
- Tabacof, L.; Tosto-Mancuso, J.; Wood, J.; Cortes, M.; Kontorovich, A.; McCarthy, D.; Rizk, D.; Rozanski, G.; Breyman, E.; Nasr, L.; et al. Post-acute COVID-19 Syndrome Negatively Impacts Physical Function, Cognitive Function, Health-Related Quality of Life, and Participation. Am. J. Phys. Med. Rehabil. 2022, 101, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Brehon, K.; Niemeläinen, R.; Hall, M.; Bostick, G.; Brown, C.; Wieler, M.; Gross, D. Return-to-Work Following Occupational Rehabilitation for Long COVID: Descriptive Cohort Study. JMIR Rehabil. Assist. Technol. 2022, 9, e39883. [Google Scholar] [CrossRef]
- Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet 2021, 397, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Torres-Castro, R.; Neculhueque-Zapata, X.; Hrzic-Miranda, K.; Gutiérrez-Arias, R.; Valenzuela-Suazo, R.; Castro-Acuña, C.; Ríos-Quevedo, M.; Águila-Villanueva, C.; Seron, P. How a Developing Country Faces COVID-19 Rehabilitation: The Chilean Experience. Front. Public Heal. 2022, 10, 924068. [Google Scholar] [CrossRef]
- Sibila, O.; Perea, L.; Albacar, N.; Moisés, J.; Cruz, T.; Mendoza, N.; Solarat, B.; Lledó, G.; Espinosa, G.; Barberà, J.; et al. Elevated plasma levels of epithelial and endothelial cell markers in COVID-19 survivors with reduced lung diffusing capacity six months after hospital discharge. Respir. Res. 2022, 23, 37. [Google Scholar] [CrossRef] [PubMed]
- Sibila, O.; Albacar, N.; Perea, L.; Faner, R.; Torralba, Y.; Hernandez-Gonzalez, F.; Moisés, J.; Sanchez-Ruano, N.; Sequeira-Aymar, E.; Badia, J.; et al. Lung Function sequelae in COVID-19 Patients 3 Months After Hospital Discharge. Arch. Bronconeumol. 2021, 57 (Suppl. 2), 59–61. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Yao, Q.; Gu, X.; Wang, Q.; Ren, L.; Wang, Y.; Hu, P.; Guo, L.; Liu, M.; Xu, J.; et al. 1-year outcomes in hospital survivors with COVID-19: A longitudinal cohort study. Lancet 2021, 398, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, K.M.; Vasarmidi, E.; Russell, A.-M.; Andrejak, C.; Crestani, B.; Delcroix, M.; Dinh-Xuan, A.T.; Poletti, V.; Sverzellati, N.; Vitacca, M.; et al. European Respiratory Society statement on long COVID follow-up. Eur. Respir. J. 2022, 60, 2102174. [Google Scholar] [CrossRef] [PubMed]
- Sisó-Almirall, A.; Brito-Zerón, P.; Ferrín, L.C.; Kostov, B.; Moreno, A.M.; Mestres, J.; Sellarès, J.; Galindo, G.; Morera, R.; Basora, J.; et al. Long COVID-19: Proposed Primary Care Clinical Guidelines for Diagnosis and Disease Management. Int. J. Environ. Res. Public Health 2021, 18, 4350. [Google Scholar] [CrossRef]
- Sibila, O.; Molina-Molina, M.; Valenzuela, C.; Ríos-Cortés, A.; Arbillaga-Etxarri, A.; García, Y.T.; Díaz-Pérez, D.; Landete, P.; Mediano, O.; López, L.T.; et al. Documento de consenso de la Sociedad Española de Neumología y Cirugía Torácica (SEPAR) para el seguimiento clínico post-COVID-19. Open Respir. Arch. 2020, 2, 278–283. [Google Scholar] [CrossRef]
- Holland, A.E.; Spruit, M.A.; Troosters, T.; Puhan, M.A.; Pepin, V.; Saey, D.; McCormack, M.C.; Carlin, B.W.; Sciurba, F.C.; Pitta, F.; et al. An official European Respiratory Society/American Thoracic Society technical standard: Field walking tests in chronic respiratory disease. Eur. Respir. J. 2014, 44, 1428–1446. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Crouch, R. 1-Minute Sit-to-Stand Test. J. Cardiopulm. Rehabilitation Prev. 2019, 39, 2–8. [Google Scholar] [CrossRef]
- Vilarinho, R.; Caneiras, C.; Montes, A.M. Measurement properties of step tests for exercise capacity in COPD: A systematic review. Clin. Rehabil. 2020, 35, 578–588. [Google Scholar] [CrossRef]
- Simonelli, C.; Paneroni, M.; Vitacca, M.; Ambrosino, N. Measures of physical performance in COVID-19 patients: A mapping review. Pulmonology 2021, 27, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Torres-Castro, R.; Gimeno-Santos, E.; Blanco, I. Use of six-minute walking test to predict peak oxygen consumption in pulmonary vascular disease. Pulm. Circ. 2022, 12, e12129. [Google Scholar] [CrossRef] [PubMed]
- Herdy, A.H.; Ritt, L.E.F.; Stein, R.; Araújo, C.G.S.D.; Milani, M.; Meneghelo, R.S.; Ferraz, A.S.; Hossri, C.; De Almeida, A.E.M.; Fernandes-Silva, M.M.; et al. Cardiopulmonary Exercise Test: Fundamentals, Applicability and Interpretation. Arq. Bras. Cardiol. 2016, 107, 467–481. [Google Scholar] [CrossRef] [PubMed]
- Laveneziana, P.; Di Paolo, M.; Palange, P. The clinical value of cardiopulmonary exercise testing in the modern era. Eur. Respir. Rev. 2021, 30, 200187. [Google Scholar] [CrossRef] [PubMed]
- Radtke, T.; Crook, S.; Kaltsakas, G.; Louvaris, Z.; Berton, D.; Urquhart, D.S.; Kampouras, A.; Rabinovich, R.A.; Verges, S.; Kontopidis, D.; et al. ERS statement on standardisation of cardiopulmonary exercise testing in chronic lung diseases. Eur. Respir. Rev. 2019, 28, 180101. [Google Scholar] [CrossRef] [Green Version]
- Casaburi, R.; Cotes, J.; Donner, C.; Estenne, M.; Folgering, H.; Higenbottam, T.; Killian, K.J.; Palange, P.; Patessio, A.; Prefaut, C.; et al. Clinical exercise testing with reference to lung diseases: Indications, standardization and interpretation strategies. Eur. Respir. J. 1997, 10, 2662–2689. [Google Scholar] [CrossRef] [Green Version]
- Arena, R.; Faghy, M.A. Cardiopulmonary exercise testing as a vital sign in patients recovering from COVID-19. Expert Rev. Cardiovasc. Ther. 2021, 19, 877–880. [Google Scholar] [CrossRef]
- Spruit, M.A.; Singh, S.J.; Garvey, C.; ZuWallack, R.; Nici, L.; Rochester, C.; Hill, K.; Holland, A.E.; Lareau, S.C.; Man, W.D.-C.; et al. An Official American Thoracic Society/European Respiratory Society Statement: Key Concepts and Advances in Pulmonary Rehabilitation. Am. J. Respir. Crit. Care Med. 2013, 188, e13–e64. [Google Scholar] [CrossRef] [Green Version]
- Beekman, E.; Mesters, I.; Gosselink, R.; Klaassen, M.P.M.; Hendriks, E.J.M.; Van Schayck, O.C.P.; A de Bie, R. The first reference equations for the 6-minute walk distance over a 10 m course: Table 1. Thorax 2014, 69, 867–868. [Google Scholar] [CrossRef] [Green Version]
- Fell, B.; Hanekom, S.; Heine, M. A modified six-minute walk test (6MWT) for low-resource settings-a cross-sectional study. Heart Lung 2022, 52, 117–122. [Google Scholar] [CrossRef]
- Olezene, C.S.; Hansen, E.; Steere, H.K.; Giacino, J.T.; Polich, G.R.; Borg-Stein, J.; Zafonte, R.D.; Schneider, J.C. Functional outcomes in the inpatient rehabilitation setting following severe COVID-19 infection. PLoS ONE 2021, 16, e0248824. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Cortés, R.; Malhue-Vidal, C.; Gath, F.; Valdivia-Lobos, G.; Torres-Castro, R.; Cruz-Montecinos, C.; Martinez-Arnau, F.M.; Pérez-Alenda, S.; López-Bueno, R.; Calatayud, J. The Impact of Charlson Comorbidity Index on the Functional Capacity of COVID-19 Survivors: A Prospective Cohort Study with One-Year Follow-Up. Int. J. Environ. Res. Public Health 2022, 19, 7473. [Google Scholar] [CrossRef]
- González, J.; Benítez, I.D.; Carmona, P.; Santisteve, S.; Monge, A.; Moncusí-Moix, A.; Gort-Paniello, C.; Pinilla, L.; Carratalá, A.; Zuil, M.; et al. Pulmonary Function and Radiologic Features in Survivors of Critical COVID-19. Chest 2021, 160, 187–198. [Google Scholar] [CrossRef]
- Chen, H.; Shi, H.; Liu, X.; Sun, T.; Wu, J.; Liu, Z. Effect of Pulmonary Rehabilitation for Patients with Post-COVID-19: A Systematic Review and Meta-Analysis. Front. Med. 2022, 9, 837420. [Google Scholar] [CrossRef]
- Applebaum, E.V.; Breton, D.; Feng, Z.W.; Ta, A.-T.; Walsh, K.; Chassé, K.; Robbins, S.M. Modified 30-second Sit to Stand test predicts falls in a cohort of institutionalized older veterans. PLoS ONE 2017, 12, e0176946. [Google Scholar] [CrossRef] [Green Version]
- Holland, A.E.; Malaguti, C.; Hoffman, M.; Lahham, A.; Burge, A.T.; Dowman, L.; May, A.K.; Bondarenko, J.; Graco, M.; Tikellis, G.; et al. Home-based or remote exercise testing in chronic respiratory disease, during the COVID-19 pandemic and beyond: A rapid review. Chronic Respir. Dis. 2020, 17, 147997312095241. [Google Scholar] [CrossRef]
- A Morita, A.; Bisca, G.W.; Machado, F.V.C.; A Hernandes, N.; Pitta, F.; Probst, V.S. Best Protocol for the Sit-to-Stand Test in Subjects with COPD. Respir. Care 2018, 63, 1040–1049. [Google Scholar] [CrossRef]
- Atrsaei, A.; Paraschiv-Ionescu, A.; Krief, H.; Henchoz, Y.; Santos-Eggimann, B.; Büla, C.; Aminian, K. Instrumented 5-Time Sit-To-Stand Test: Parameters Predicting Serious Falls beyond the Duration of the Test. Gerontology 2021, 68, 587–600. [Google Scholar] [CrossRef]
- Zou, Z.; Chen, Z.; Ni, Z.; Hou, Y.; Zhang, Q. The effect of group-based Otago exercise program on fear of falling and physical function among older adults living in nursing homes: A pilot trial. Geriatr. Nurs. 2021, 43, 288–292. [Google Scholar] [CrossRef]
- Alcazar, J.; Kamper, R.S.; Aagaard, P.; Haddock, B.; Prescott, E.; Ara, I.; Suetta, C. Relation between leg extension power and 30-s sit-to-stand muscle power in older adults: Validation and translation to functional performance. Sci. Rep. 2020, 10, 16337. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Cortés, R.; Cruz-Montecinos, C.; Martinez-Arnau, F.; Torres-Castro, R.; Zamora-Risco, E.; Pérez-Alenda, S.; Andersen, L.L.; Calatayud, J.; Arana, E. 30 s sit-to-stand power is positively associated with chest muscle thickness in COVID-19 survivors. Chronic Respir. Dis. 2022, 19, 14799731221114264. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Cortés, R.; Flor-Rufino, C.; Martínez-Arnau, F.M.; Arnal-Gómez, A.; Espinoza-Bravo, C.; Hernández-Guillén, D.; Cortés-Amador, S. Feasibility of the 30 s Sit-to-Stand Test in the Telehealth Setting and Its Relationship to Persistent Symptoms in Non-Hospitalized Patients with Long COVID. Diagnostics 2022, 13, 24. [Google Scholar] [CrossRef]
- Sevillano-Castaño, A.; Peroy-Badal, R.; Torres-Castro, R.; Gimeno-Santos, E.; Fernández, P.G.; Vila, C.G.; Alfaro, A.A.; Álvarez, R.D.D.; Vilaró, J.; Blanco, I. Is there a learning effect on 1-minute sit-to-stand test on post-COVID-19 patients? ERJ Open Res. 2022, 8, 00189–2022. [Google Scholar] [CrossRef]
- Strassmann, A.; Steurer-Stey, C.; Lana, K.D.; Zoller, M.; Turk, A.J.; Suter, P.; Puhan, M.A. Population-based reference values for the 1-min sit-to-stand test. Int. J. Public Health 2013, 58, 949–953. [Google Scholar] [CrossRef] [Green Version]
- Dalbosco-Salas, M.; Torres-Castro, R.; Leyton, A.R.; Zapata, F.M.; Salazar, E.H.; Bastías, G.E.; Díaz, M.E.B.; Allers, K.T.; Fonseca, D.M.; Vilaró, J. Effectiveness of a Primary Care Telerehabilitation Program for Post-COVID-19 Patients: A Feasibility Study. J. Clin. Med. 2021, 10, 4428. [Google Scholar] [CrossRef]
- Benavides-Cordoba, V.; Barros-Poblete, M.; Vieira, R.P.; Mazzucco, G.; Fregonezi, G.; Torres-Castro, R. Provision of pulmonary rehabilitation in Latin America 18 months after the COVID-19 pandemic: A survey of the Latin American Thoracic Association. Chronic Respir. Dis. 2022, 19, 147997312211041. [Google Scholar] [CrossRef]
- Buckley, J.P.; Sim, J.; Eston, R.; Hession, R.; Fox, R. Reliability and validity of measures taken during the Chester step test to predict aerobic power and to prescribe aerobic exercise. Br. J. Sports Med. 2004, 38, 197–205. [Google Scholar] [CrossRef]
- Sykes, K. Capacity assessment in the workplace: A new step test. Occup. Health 1995, 47, 20–22. [Google Scholar]
- Sykes, K.; Roberts, A. The Chester step test—A simple yet effective tool for the prediction of aerobic capacity. Physiotherapy 2004, 90, 183–188. [Google Scholar] [CrossRef]
- De Camargo, A.A.; Justino, T.; de Andrade, C.H.S.; Malaguti, C.; Corso, S.D. Chester Step Test in Patients with COPD: Reliability and Correlation with Pulmonary Function Test Results. Respir. Care 2011, 56, 995–1001. [Google Scholar] [CrossRef] [Green Version]
- Lau, H.M.-C.; Lee, E.W.-C.; Wong, C.N.-C.; Ng, G.Y.-F.; Jones, A.Y.-M.; Hui, D.S.-C. The Impact of Severe Acute Respiratory Syndrome on the Physical Profile and Quality of Life. Arch. Phys. Med. Rehabil. 2005, 86, 1134–1140. [Google Scholar] [CrossRef] [Green Version]
- Peroy-Badal, R.; Sevillano-Castaño, A.; Núñez-Cortés, R.; García-Fernández, P.; Torres-Castro, R.; Vilaró, J.; Blanco, I.; Gimeno-Santos, E. The Chester Step Test Is a Reproducible Tool to Assess Exercise Capacity and Exertional Desaturation in Post-COVID-19 Patients. Healthcare 2022, 11, 51. [Google Scholar] [CrossRef]
- Peroy-Badal, R.; Sevillano-Castaño, A.; Torres-Castro, R.; García-Fernández, P.; Maté-Muñoz, J.; Dumitrana, C.; Rodriguez, E.S.; Lobo, M.d.F.; Vilaró, J. Comparison of different field tests to assess the physical capacity of post-COVID-19 patients. Pulmonology, 2022; in press. [Google Scholar] [CrossRef]
- Turner, S.E.; Eastwood, P.R.; Cecins, N.M.; Hillman, D.R.; Jenkins, S.C. Physiologic Responses to Incremental and Self-Paced Exercise in COPD. Chest 2004, 126, 766–773. [Google Scholar] [CrossRef]
- Singh, S.J.; Morgan, M.D.; Scott, S.; Walters, D.; E Hardman, A. Development of a shuttle walking test of disability in patients with chronic airways obstruction. Thorax 1992, 47, 1019–1024. [Google Scholar] [CrossRef] [Green Version]
- Onorati, P.; Antonucci, R.; Valli, G.; Berton, E.; De Marco, F.; Serra, P.; Palange, P. Non-invasive evaluation of gas exchange during a shuttle walking test vs. a 6-min walking test to assess exercise tolerance in COPD patients. Eur. J. Appl. Physiol. 2003, 89, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Emtner, M.I.; Arnardottir, H.R.; Hallin, R.; Lindberg, E.; Janson, C. Walking distance is a predictor of exacerbations in patients with chronic obstructive pulmonary disease. Respir. Med. 2006, 101, 1037–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, H.-J.; Jee, S.-J.; Lee, M.-M. Comparison of Incremental Shuttle Walking Test, 6-Minute Walking Test, and Cardiopulmonary Exercise Stress Test in Patients with Myocardial Infarction. Experiment 2022, 28, e938140. [Google Scholar] [CrossRef]
- Gloeckl, R.; Leitl, D.; Jarosch, I.; Schneeberger, T.; Nell, C.; Stenzel, N.; Vogelmeier, C.F.; Kenn, K.; Koczulla, A.R. Benefits of pulmonary rehabilitation in COVID-19: A prospective observational cohort study. ERJ Open Res. 2021, 7, 00108–2021. [Google Scholar] [CrossRef] [PubMed]
- Redín-Sagredo, M.J.; Herce, P.A.; Herrero, A.C.; Gutiérrez-Valencia, M.; Martínez-Velilla, N. Heterogeneity amongst different diagnostic tools in frailty screening. An. Sist. Sanit. Navar. 2019, 42, 169–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A Short Physical Performance Battery Assessing Lower Extremity Function: Association with Self-Reported Disability and Prediction of Mortality and Nursing Home Admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef]
- Shumway-Cook, A.; Brauer, S.; Woollacott, M. Predicting the Probability for Falls in Community-Dwelling Older Adults Using the Timed Up & Go Test. Phys. Ther. 2000, 80, 896–903. [Google Scholar] [PubMed] [Green Version]
- Kanazawa, H.; Ijiri, N.; Hirata, K.; Yoshikawa, T. Application of a new parameter in the 6-minute walk test for manifold analysis of exercise capacity in patients with COPD. Int. J. Chronic Obstr. Pulm. Dis. 2014, 9, 1235–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujimoto, Y.; Oki, Y.; Kaneko, M.; Sakai, H.; Misu, S.; Yamaguchi, T.; Mitani, Y.; Yasuda, H.; Ishikawa, A. Usefulness of the desaturation–distance ratio from the six-minute walk test for patients with COPD. Int. J. Chronic Obstr. Pulm. Dis. 2017, 12, 2669–2675. [Google Scholar] [CrossRef] [Green Version]
- Pimenta, S.P.; da Rocha, R.B.; Baldi, B.G.; Kawassaki, A.D.M.; Kairalla, R.A.; Carvalho, C.R.R. Desaturation—Distance ratio: A new concept for a functional assessment of interstitial lung diseases. Clinics 2010, 65, 841–846. [Google Scholar] [CrossRef] [Green Version]
- Alsina-Restoy, X.; Burgos, F.; Torres-Castro, R.; Torralba-García, Y.; Arismendi, E.; Barberà, J.A.; Agustí, À.; Blanco, I. A New and More Sensitive Method to Integrate the Desaturation Distance Ratio During a 6-Minute Walking Test in Chronic Respiratory Diseases: Physiological Correlates. Arch. Bronconeumol. 2022, 58, 188–190. [Google Scholar] [CrossRef] [PubMed]
- Andrianopoulos, V.; Wouters, E.F.; Pinto-Plata, V.M.; Vanfleteren, L.E.; Bakke, P.S.; Franssen, F.M.; Agusti, A.; MacNee, W.; Rennard, S.I.; Tal-Singer, R.; et al. Prognostic value of variables derived from the six-minute walk test in patients with COPD: Results from the ECLIPSE study. Respir. Med. 2015, 109, 1138–1146. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, M.-H.; Fang, Y.-F.; Chung, F.-T.; Lee, C.-S.; Chang, Y.-C.; Liu, Y.-Z.; Wu, C.-H. Distance-saturation product of the 6-minute walk test predicts mortality of patients with non-cystic fibrosis bronchiectasis. J. Thorac. Dis. 2017, 9, 3168–3176. [Google Scholar] [CrossRef] [Green Version]
- Lettieri, C.J.; Nathan, S.D.; Browning, R.F.; Barnett, S.D.; Ahmad, S.; Shorr, A.F. The distance-saturation product predicts mortality in idiopathic pulmonary fibrosis. Respir. Med. 2006, 100, 1734–1741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurbani, N.; Gonçalves, J.M.F.; Bello, M.G.; García-Talavera, I.; Díaz, A.A. Prognostic ability of the distance-saturation product in the 6-minute walk test in patients with chronic obstructive pulmonary disease. Clin. Respir. J. 2019, 14, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Alsina-Restoy, X.; Torres-Castro, R.; Torralba-García, Y.; Burgos, F.; Barberà, J.A.; Agustí, A.; Blanco, I. Does arterial oxygenation during exercise add prognostic value in pulmonary arterial hypertension? Respir. Med. 2022, 206, 107070. [Google Scholar] [CrossRef]
- Belli, S.; Balbi, B.; Prince, I.; Cattaneo, D.; Masocco, F.; Zaccaria, S.; Bertalli, L.; Cattini, F.; Lomazzo, A.; Negro, F.D.; et al. Low physical functioning and impaired performance of activities of daily life in COVID-19 patients who survived hospitalisation. Eur. Respir. J. 2020, 56, 2002096. [Google Scholar] [CrossRef] [PubMed]
- 75. Curci, C.; Pisano, F.; Bonacci, E.; Camozzi, D.M.; Ceravolo, C.; Bergonzi, R.; De Franceschi, S.; Moro, P.; Guarnieri, R.; Ferrillo, M.; et al. Early rehabilitation in post-acute COVID-19 patients: Data from an Italian COVID-19 Rehabilitation Unit and proposal of a treatment protocol. Eur. J. Phys. Rehabilitation Med. 2020, 56, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Prampart, S.; Le Gentil, S.; Bureau, M.L.; Macchi, C.; Leroux, C.; Chapelet, G.; de Decker, L.; Rouaud, A.; Boureau, A.S. Functional decline, long term symptoms and course of frailty at 3-months follow-up in COVID-19 older survivors, a prospective observational cohort study. BMC Geriatr. 2022, 22, 542. [Google Scholar] [CrossRef]
- Curcio, F.; De Vita, A.; Gerundo, G.; Puzone, B.; Flocco, V.; Cante, T.; Medio, P.; Cittadini, A.; Gentile, I.; Cacciatore, F.; et al. Reliability of fr-AGILE tool to evaluate multidimensional frailty in hospital settings for older adults with COVID-19. Aging Clin. Exp. Res. 2022, 34, 939–944. [Google Scholar] [CrossRef]
- Parry, S.; Denehy, L.; Granger, C.; McGinley, J.; Files, D.C.; Berry, M.; Dhar, S.; Bakhru, R.; Larkin, J.; Puthucheary, Z.; et al. The fear and risk of community falls in patients following an intensive care admission: An exploratory cohort study. Aust. Crit. Care 2019, 33, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Yakut, H.; Karadibak, D.; Metin, S.K.; Karabay, D.; Gençpınar, T. Predictors of walking capacity in patients with peripheral arterial disease. Wien. Klin. Wochenschr. 2022, 68, 537–541. [Google Scholar] [CrossRef]
- Dunn, A.; Marsden, D.L.; Nugent, E.; Van Vliet, P.; Spratt, N.J.; Attia, J.; Callister, R. Protocol Variations and Six-Minute Walk Test Performance in Stroke Survivors: A Systematic Review with Meta-Analysis. Stroke Res. Treat. 2015, 2015, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Torres-Castro, R.; Solis-Navarro, L.; Sitjà-Rabert, M.; Vilaró, J. Functional limitations post-COVID-19: A comprehensive assessment strategy. Arch. Bronconeumol. 2021, 57, 7–8. [Google Scholar] [CrossRef]
- Pizarro-Pennarolli, C.; Sánchez-Rojas, C.; Torres-Castro, R.; Vera-Uribe, R.; Sanchez-Ramirez, D.C.; Vasconcello-Castillo, L.; Solís-Navarro, L.; Rivera-Lillo, G. Assessment of activities of daily living in patients post COVID-19: A systematic review. PeerJ 2021, 9, e11026. [Google Scholar] [CrossRef]
- British Thoracic Society. British Thoracic Society Guidance on Respiratory Follow Up of Patients with a Clinico-Radiological Diagnosis of COVID-19 Pneumonia. 2020. Available online: https://www.brit-thoracic.org.uk/document-library/quality-improvement/covid-19/resp-follow-up-guidance-post-covid-pneumonia/ (accessed on 20 November 2022).
- Spruit, M.A.; Holland, A.E.; Singh, S.J.; Tonia, T.; Wilson, K.C.; Troosters, T. COVID-19: Interim guidance on rehabilitation in the hospital and post-hospital phase from a European Respiratory Society- and American Thoracic Society-coordinated international task force. Eur. Respir. J. 2020, 56, 2002197. [Google Scholar] [CrossRef]
- Udina, C.; Ars, J.; Morandi, A.; Vilaró, J.; Cáceres, C.; Inzitari, M. Rehabilitation in adult post-COVID-19 patients in post-acute care with Therapeutic Exercise. J. Frailty Aging 2021, 10, 297–300. [Google Scholar] [CrossRef] [PubMed]
- Daynes, E.; Gerlis, C.; Chaplin, E.; Gardiner, N.; Singh, S.J. Early experiences of rehabilitation for individuals post-COVID to improve fatigue, breathlessness exercise capacity and cognition—A cohort study. Chronic Respir. Dis. 2021, 18, 14799731211015692. [Google Scholar] [CrossRef]
- Fujimoto, K.; Matsuzawa, Y.; Yamaguchi, S.; Koizumi, T.; Kubo, K. Benefits of Oxygen on Exercise Performance and Pulmonary Hemodynamics in Patients with COPD with Mild Hypoxemia. Chest 2002, 122, 457–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enright, P. The six-minute walk test. Respir. Care 2003, 48, 783–785. [Google Scholar]
- Person, E.; Lemercier, C.; Royer, A.; Reychler, G. Effet du port d’un masque de soins lors d’un test de marche de six minutes chez des sujets sains. Rev. Mal. Respir. 2018, 35, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Kyung, S.Y.; Kim, Y.; Hwang, H.; Park, J.-W.; Jeong, S.H. Risks of N95 Face Mask Use in Subjects with COPD. Respir. Care 2020, 65, 658–664. [Google Scholar] [CrossRef] [PubMed]
- A Wedzicha, J. Domiciliary oxygen therapy services: Clinical guidelines and advice for prescribers. Summary of a report of the Royal College of Physicians. J. R. Coll. Physicians Lond. 2000, 33, 445–447. [Google Scholar]
- Rodríguez, D.A.; Kortianou, E.A.; Alison, J.A.; Casas, A.; Giavedoni, S.; Barberan-Garcia, A.; Arbillaga-Etxarri, A.; Vilaró, J.; Gimeno-Santos, E.; Vogiatzis, I.; et al. Heart Rate Recovery After 6-min Walking Test Predicts Acute Exacerbation in COPD. Lung 2017, 195, 463–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, S.; Cai, X.; Sun, Z.; Li, L.; Zuegel, M.; Steinacker, J.M.; Schumann, U. Heart Rate Recovery and Risk of Cardiovascular Events and All-Cause Mortality: A Meta-Analysis of Prospective Cohort Studies. J. Am. Heart Assoc. 2017, 6, e005505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Assessment | <70 Years without Comorbidities | <70 Years with Comorbidities | >70 Years with Comorbidities | >70 Years without Comorbidities |
---|---|---|---|---|
CPET | ☆☆☆ | ☆☆ | ☆ | ☆☆ |
6MWT | ☆☆☆ | ☆☆☆ | ☆ | ☆☆ |
1 min-STST | ☆☆☆ | ☆☆☆ | ☆ | ☆ |
30 s-STST | ☆☆ | ☆☆ | ☆☆ | ☆☆ |
5-STST | ☆ | ☆ | ☆☆☆ | ☆☆☆ |
CST | ☆☆☆ | ☆☆☆ | ☆ | ☆ |
SPPB | ☆ | ☆☆ | ☆☆☆ | ☆☆☆ |
TUG | ☆ | ☆ | ☆☆ | ☆☆☆ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Castro, R.; Núñez-Cortés, R.; Larrateguy, S.; Alsina-Restoy, X.; Barberà, J.A.; Gimeno-Santos, E.; García, A.R.; Sibila, O.; Blanco, I. Assessment of Exercise Capacity in Post-COVID-19 Patients: How Is the Appropriate Test Chosen? Life 2023, 13, 621. https://doi.org/10.3390/life13030621
Torres-Castro R, Núñez-Cortés R, Larrateguy S, Alsina-Restoy X, Barberà JA, Gimeno-Santos E, García AR, Sibila O, Blanco I. Assessment of Exercise Capacity in Post-COVID-19 Patients: How Is the Appropriate Test Chosen? Life. 2023; 13(3):621. https://doi.org/10.3390/life13030621
Chicago/Turabian StyleTorres-Castro, Rodrigo, Rodrigo Núñez-Cortés, Santiago Larrateguy, Xavier Alsina-Restoy, Joan Albert Barberà, Elena Gimeno-Santos, Agustin Roberto García, Oriol Sibila, and Isabel Blanco. 2023. "Assessment of Exercise Capacity in Post-COVID-19 Patients: How Is the Appropriate Test Chosen?" Life 13, no. 3: 621. https://doi.org/10.3390/life13030621
APA StyleTorres-Castro, R., Núñez-Cortés, R., Larrateguy, S., Alsina-Restoy, X., Barberà, J. A., Gimeno-Santos, E., García, A. R., Sibila, O., & Blanco, I. (2023). Assessment of Exercise Capacity in Post-COVID-19 Patients: How Is the Appropriate Test Chosen? Life, 13(3), 621. https://doi.org/10.3390/life13030621