Biomarkers of Osteoarthritis—A Narrative Review on Causal Links with Metabolic Syndrome
Abstract
:1. Introduction
1.1. Discovery of Biomarkers Pertaining to the Constituent Pathologies of MetS (HTN, Raised Fasting Glucose, Obesity, Hypercholesterolaemia)
1.1.1. Obesity and BMI
1.1.2. Therapeutic Treatments Targeting Obesity-Associated OA Biomarkers
1.1.3. Hyper-Cholesterolemia
1.1.4. Therapeutic Treatments Targeting Hypercholesterolemia-Associated OA Biomarkers
1.1.5. Fasting Glucose/Insulin Resistance
1.1.6. Therapeutic Treatments Targeting Diabetes-Associated OA Biomarkers
Biomarker | Pathophysiological Description | Association with MetS or Constituent Pathologies | Sample Type | Expression in OA/MetS (Up or Downregulation) | Reference |
---|---|---|---|---|---|
Proinflammatory | |||||
Resistin | Pro-inflammatory (increasing IL-6, MMP-1, MMP-13, MMP-3, ADAMTS-4 expression) * | Insulin resistance | SF/P/S | N.B.: Weak -ve correlation with OA severity [59] Upregulated (OA) [65,66] Upregulated (MetS-OA) [76] | [59,65,66,76] |
F2RL3 | Meta-inflammation * | MetS | Subject gene expression profiles obtained from GEO public repository database | Downregulated (OA) Upregulated (MetS) | [77] |
GP9 | Cell turnover and DNA replication * | MetS | Subject gene expression profiles obtained from GEO public repository database | Downregulated (OA) Upregulated (MetS) | [77] |
ITGA2B | Platelet aggregation, inflammation * | MetS | Subject gene expression profiles obtained from GEO public repository database | Downregulated (OA) Upregulated (MetS) | [77] |
Clusterin | Pain, synovitis inflammation (IL-6,8, NFκβ) and cartilage degeneration * | MetS, obesity, insulin resistance | SF/S | Upregulated (OA) | [78] |
Leptin | Lipid metabolism modulation, insulin sensitivity, inflammation (IGF-1 TGF-beta1, IL-6, IL-1beta, TNF-alpha, MMP-1, MMP-3, ADAMTS 4 and 5) | MetS, insulin resistance | S/SF | Upregulated (OA) [54] Downregulated in S with weight loss (OA) [31] | [31,54] |
RBP4 | Upregulated by adipokines (adipsin, leptin & resistin) Meta-inflammation/synovitis (MMP1, MMP3, YKL-40) * | MetS, insulin resistance, hyperlipidaemia | P/SF/C | Upregulated (OA) | [21] |
LBP | Meta-inflammation | MetS, insulin resistance | S | Upregulated (OA) | [26] |
sTLR4 | Immune system dysregulation—meta-inflammation Elevated uCTX-II—marker of articular cartilage degradation | MetS, meta-inflammation, insulin resistance, hyperglycaemia | S | Upregulated (OA) | [26] |
LOX-1 | Endothelial damage, inflammation, articular cartilage catabolism (MMP-3) | Hypercholesterolaemia, atherosclerosis, hypertension, insulin resistance, T2DM | C, SF | Upregulated (OA) | [24] |
Chemerin | Endothelial & synovial inflammation (cytokine release from synovial fibroblasts) Articular cartilage catabolism | MetS, atherosclerosis, obesity | SF/ST | Upregulated (OA) | [79] |
SERPINE2 | Meta-inflammation * | Obesity | ST | Upregulated (OA) | [80] |
ITIH5 | Cell differentiation, ECM stabilisation * | Obesity | ST | Downregulated (OA) Upregulated (MetS) | [80] |
IL-6 | Endothelial damage, meta-inflammation—adipose and articular fat pads Cartilage degradation (Helix II—marker for degradation) | MetS, insulin resistance, obesity, meta-inflammation | S | Upregulated—associated with worse WOMAC scores in knee OA Downregulated with surgical weight loss—no correlation with clinical outcomes | [18] |
Visfatin | Chronic inflammation (IL-1, IL-6, TNF-α)—secreted by white adipose | Insulin resistance, Type II diabetes, obesity | SF | Upregulated (OA) | [58] |
oxLDL | Binds chondrocyte LOX—oxidative stress, cartilage degeneration and inflammation | Hypercholesterolaemia, atherosclerosis | C | Upregulated (OA) | [24] |
Anti-inflammatory | |||||
ELOVL7 | Fatty acid elongation and accumulation of lipids * | MetS, hypercholesterolaemia and dyslipidaemia | Subject gene expression profiles obtained from Gene Expression Omnibus (GEO) public repository database | Downregulated (OA) Upregulated (MetS) | [77] |
Metrnl | Inflammation and cartilage catabolism # (decreased PPAR-γ) * | Insulin resistance # Hyperlipidaemia # | S/SF | Downregulated (In serum) Upregulated (In SF) | [62] |
HDL-C | Dysregulated lipid metabolism * | Obesity #, MetS # and dyslipidaemia # | SF | Downregulated (OA) | [81] |
ApoA1 | Dysregulated lipid metabolism * | Obesity #, MetS # and dyslipidaemia # | SF | Downregulated (OA) | [81] |
Adiponectin | Anti-inflammatory:
| Central obesity #, MetS #, insulin sensitivity | P (Laurberg) | Upregulated (OA) | [19,20] |
Adropin | Inhibition of pro-inflammatory cytokines (TNF-α) * | Hypertension #, insulin resistance #, type II diabetes # | S | Downregulated (OA) | [11] |
Anti-inflammatory/Anti-catabolic | |||||
Adipolin | Anti-catabolic (MMP-13 #) * | Insulin sensitivity | S/SF | Downregulated (OA) ns | [62] |
Catabolic | |||||
COMP | Biomarker of cartilage loss Prognostic indicator of joint damage, pain & stiffness WOMAC score | MetS, Obesity and hyperinsulinaemia | S | Downregulated (OA) with surgical weight loss | [18] |
Anabolic | |||||
PIIANP | Biomarker of cartilage anabolism * | No correlation with MetS | S | Upregulated (OA) with surgical weight loss | [18] |
1.1.7. Hypertension
1.1.8. Therapeutic Treatments Targeting Hypertension-Associated OA Biomarkers
1.2. Discussion
1.3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Definition |
ApoA1 | Apolipoprotein A1 |
COMP | Cartilage oligomeric matrix protein |
COX-2 | Cyclooxygenase-2 |
ECM ELOVL7 | Extracellular matrix Elongation of very long chain fatty acids protein 7 |
F2RL3 | F2R like thrombin or trypsin receptor 3 |
FABP4 | Fatty acid binding protein 4 |
FoxO | Forkhead box O |
GP9 | Gene encoding for platelet glycoprotein IX |
HDL-C | High density lipoprotein cholesterol |
IL-1β | Interleukin-1-beta |
IL-6 | Interleukin 6 |
iNOS | Inducible nitric oxide synthase |
ITIH5 | Inter-alpha-trypsin inhibitor heavy chain family, member 5 |
LOX-1 | Lectin-like oxidised low-density lipoprotein receptor 1 |
LPS | Lipopolysaccharide |
MCP-1 | Monocyte, chemoattractant protein 1 |
Metrnl | Meteorin-like protein |
MMP-1 | Matrix metalloproteinase 1 |
MMP-13 | Matrix metalloproteinase 13 |
MMP-3 | Matrix metalloproteinase 3 |
NGF oxLDL | Nerve growth factor Oxidised Low-density-lipoprotein |
PIIANP | Serum N-terminal pro-peptide of type IIA collagen |
PLA2G2A | Phospholipase A2, membrane associated |
PUFA | Polyunsaturated fatty acid |
QUICKI | Quantitative insulin-sensitivity check index |
RBP4 | Retinol binding protein 4 |
SGLT-2 | Sodium-glucose cotransporter 2 |
SOX9 | SRY-Box transcription factor 9 |
sTLR4 | Serum Toll-like receptor 4 |
TAE | Transcatheter arterial embolization |
TIMP-2 | Tissue inhibitor of metalloproteinase 2 |
TLR4 | Toll-like receptor 4 |
TNFα | Tumour necrosis factor alpha |
uCTX-I | Urinary Crosslinked C-Telopeptide of Type I Collagen |
uCTX-II | Urinary Crosslinked C-Telopeptide of Type II Collagen |
YKL-40 | Chitinase-3-like protein 1 (derived from three N-terminal amino acids present on the secreted form and its molecular mass) |
References
- Fahed, G.; Aoun, L.; Bou Zerdan, M.; Allam, S.; Bou Zerdan, M.; Bouferraa, Y.; Assi, H.I. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int. J. Mol. Sci. 2022, 23, 786. [Google Scholar] [CrossRef]
- Calay, E.S.; Hotamisligil, G.S. Turning off the inflammatory, but not the metabolic, flames. Nat. Med. 2013, 19, 265–267. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Eckel, R.H. Pharmacological treatment and therapeutic perspectives of metabolic syndrome. Rev. Endocr. Metab. Disord. 2014, 15, 329–341. [Google Scholar] [CrossRef]
- Group, B.D.W.; Atkinson, A.J., Jr.; Colburn, W.A.; DeGruttola, V.G.; DeMets, D.L.; Downing, G.J.; Hoth, D.F.; Oates, J.A.; Peck, C.C.; Schooley, R.T. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar]
- Ren, G.; Krawetz, R. Applying computation biology and “big data” to develop multiplex diagnostics for complex chronic diseases such as osteoarthritis. Biomarkers 2015, 20, 533–539. [Google Scholar] [CrossRef] [Green Version]
- Heard, B.J.; Rosvold, J.M.; Fritzler, M.J.; El-Gabalawy, H.; Wiley, J.P.; Krawetz, R.J. A computational method to differentiate normal individuals, osteoarthritis and rheumatoid arthritis patients using serum biomarkers. J. R. Soc. Interface 2014, 11, 20140428. [Google Scholar] [CrossRef] [PubMed]
- Kumavat, R.; Kumar, V.; Malhotra, R.; Pandit, H.; Jones, E.; Ponchel, F.; Biswas, S. Biomarkers of Joint Damage in Osteoarthritis: Current Status and Future Directions. Mediat. Inflamm. 2021, 2021, 5574582. [Google Scholar] [CrossRef] [PubMed]
- Mraz, M.; Haluzik, M. The role of adipose tissue immune cells in obesity and low-grade inflammation. J. Endocrinol. 2014, 222, R113–R127. [Google Scholar] [CrossRef] [Green Version]
- Mooney, R.A.; Sampson, E.R.; Lerea, J.; Rosier, R.N.; Zuscik, M.J. High-fat diet accelerates progression of osteoarthritis after meniscal/ligamentous injury. Arthritis Res. Ther. 2011, 13, R198. [Google Scholar] [CrossRef] [Green Version]
- Aspden, R.M. Obesity punches above its weight in osteoarthritis. Nat. Rev. Rheumatol. 2011, 7, 65–68. [Google Scholar] [CrossRef]
- Gundogdu, G.; Gundogdu, K. A novel biomarker in patients with knee osteoarthritis: Adropin. Clin. Rheumatol. 2018, 37, 2179–2186. [Google Scholar] [CrossRef] [PubMed]
- Kellgren, J.H.; Lawrence, J.S. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 1957, 16, 494–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selim, F.; Ahmed, R.; Eid, M.; ElSaadany, H.; Nada, D.W. Role of serum adropin as a novel biomarker in primary knee osteoarthritis patients: Relation to the functional status, radiographic grading and ultrasonographic findings. Egypt. Rheumatol. 2022, 44, 295–299. [Google Scholar] [CrossRef]
- Zang, H.; Jiang, F.; Cheng, X.; Xu, H.; Hu, X. Serum adropin levels are decreased in Chinese type 2 diabetic patients and negatively correlated with body mass index. Endocr. J. 2018, 65, 685–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yosaee, S.; Khodadost, M.; Esteghamati, A.; Speakman, J.R.; Shidfar, F.; Nazari, M.N.; Bitarafan, V.; Djafarian, K. Metabolic syndrome patients have lower levels of adropin when compared with healthy overweight/obese and lean subjects. Am. J. Men’s Health 2017, 11, 426–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Favero, M.; El-Hadi, H.; Belluzzi, E.; Granzotto, M.; Porzionato, A.; Sarasin, G.; Rambaldo, A.; Iacobellis, C.; Cigolotti, A.; Fontanella, C.G.; et al. Infrapatellar fat pad features in osteoarthritis: A histopathological and molecular study. Rheumatology 2017, 56, 1784–1793. [Google Scholar] [CrossRef] [Green Version]
- Barboza, E.; Hudson, J.; Chang, W.P.; Kovats, S.; Towner, R.A.; Silasi-Mansat, R.; Lupu, F.; Kent, C.; Griffin, T.M. Profibrotic infrapatellar fat pad remodeling without m1 macrophage polarization precedes knee osteoarthritis in mice with diet-induced obesity. Arthritis Rheumatol. 2017, 69, 1221–1232. [Google Scholar] [CrossRef] [Green Version]
- Richette, P.; Poitou, C.; Garnero, P.; Vicaut, E.; Bouillot, J.-L.; Lacorte, J.-M.; Basdevant, A.; Clément, K.; Bardin, T.; Chevalier, X. Benefits of massive weight loss on symptoms, systemic inflammation and cartilage turnover in obese patients with knee osteoarthritis. Ann. Rheum. Dis. 2011, 70, 139–144. [Google Scholar] [CrossRef]
- De Boer, T.; Van Spil, W.; Huisman, A.; Polak, A.; Bijlsma, J.; Lafeber, F.; Mastbergen, S. Serum adipokines in osteoarthritis; comparison with controls and relationship with local parameters of synovial inflammation and cartilage damage. Osteoarthr. Cartil. 2012, 20, 846–853. [Google Scholar] [CrossRef] [Green Version]
- Laurberg, T.B.; Frystyk, J.; Ellingsen, T.; Hansen, I.T.; Jørgensen, A.; Tarp, U.; Hetland, M.L.; Hørslev-Petersen, K.; Hornung, N.; Poulsen, J.H. Plasma adiponectin in patients with active, early, and chronic rheumatoid arthritis who are steroid-and disease-modifying antirheumatic drug-naive compared with patients with osteoarthritis and controls. J. Rheumatol. 2009, 36, 1885–1891. [Google Scholar] [CrossRef]
- Scotece, M.; Koskinen-Kolasa, A.; Pemmari, A.; Leppänen, T.; Hämäläinen, M.; Moilanen, T.; Moilanen, E.; Vuolteenaho, K. Novel adipokine associated with OA: Retinol binding protein 4 (RBP4) is produced by cartilage and is correlated with MMPs in osteoarthritis patients. Inflamm. Res. 2020, 69, 415–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moraes-Vieira, P.M.; Yore, M.M.; Dwyer, P.M.; Syed, I.; Aryal, P.; Kahn, B.B. RBP4 activates antigen-presenting cells, leading to adipose tissue inflammation and systemic insulin resistance. Cell Metab. 2014, 19, 512–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilicarslan, M.; de Weijer, B.A.; Simonyté Sjödin, K.; Aryal, P.; Ter Horst, K.W.; Cakir, H.; Romijn, J.A.; Ackermans, M.T.; Janssen, I.M.; Berends, F.J.; et al. RBP4 increases lipolysis in human adipocytes and is associated with increased lipolysis and hepatic insulin resistance in obese women. FASEB J. 2020, 34, 6099–6110. [Google Scholar] [CrossRef] [Green Version]
- Simopoulou, T.; Malizos, K.; Tsezou, A. Lectin-like oxidized low density lipoprotein receptor 1 (LOX-1) expression in human articular chondrocytes. Clin. Exp. Rheumatol. 2007, 25, 605. [Google Scholar]
- Chen, M.; Masaki, T.; Sawamura, T. LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: Implications in endothelial dysfunction and atherosclerosis. Pharmacol. Ther. 2002, 95, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.Y.; Perry, E.; Huebner, J.L.; Katz, B.; Li, Y.J.; Kraus, V.B. Biomarkers of inflammation—LBP and TLR—predict progression of knee osteoarthritis in the DOXY clinical trial. Osteoarthr. Cartil. 2018, 26, 1658–1665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Z.; Kraus, V.B. Does lipopolysaccharide-mediated inflammation have a role in OA? Nat. Rev. Rheumatol. 2016, 12, 123–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandt, K.D.; Mazzuca, S.A.; Katz, B.P.; Lane, K.A.; Buckwalter, K.A.; Yocum, D.E.; Wolfe, F.; Schnitzer, T.J.; Moreland, L.W.; Manzi, S.; et al. Effects of doxycycline on progression of osteoarthritis: Results of a randomized, placebo-controlled, double-blind trial. Arthritis Rheum. 2005, 52, 2015–2025. [Google Scholar] [CrossRef]
- Lafeber, F.P.J.G.; van Spil, W.E. Osteoarthritis year 2013 in review: Biomarkers; reflecting before moving forward, one step at a time. Osteoarthr. Cartil. 2013, 21, 1452–1464. [Google Scholar] [CrossRef] [Green Version]
- Bartels, E.M.; Christensen, R.; Christensen, P.; Henriksen, M.; Bennett, A.; Gudbergsen, H.; Boesen, M.; Bliddal, H. Effect of a 16 weeks weight loss program on osteoarthritis biomarkers in obese patients with knee osteoarthritis: A prospective cohort study. Osteoarthr. Cartil. 2014, 22, 1817–1825. [Google Scholar] [CrossRef] [Green Version]
- King, L.K.; Henneicke, H.; Seibel, M.J.; March, L.; Anandacoomarasmy, A. Association of adipokines and joint biomarkers with cartilage-modifying effects of weight loss in obese subjects. Osteoarthr. Cartil. 2015, 23, 397–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashmeik, W.; Baal, J.D.; Foreman, S.C.; Joseph, G.B.; Bahroos, E.; Han, M.; Krug, R.; Link, T.M. Investigating the Association of Metabolic Biomarkers With Knee Cartilage Composition and Structural Abnormalities Using MRI: A Pilot Study. Cartilage 2021, 13 (Suppl. S1), 630S–638S. [Google Scholar] [CrossRef] [PubMed]
- Onkarappa, R.S.; Chauhan, D.K.; Saikia, B.; Karim, A.; Kanojia, R.K. Metabolic Syndrome and Its Effects on Cartilage Degeneration vs Regeneration: A Pilot Study Using Osteoarthritis Biomarkers. Indian J. Orthop. 2020, 54 (Suppl. S1), 20–24. [Google Scholar] [CrossRef] [PubMed]
- Bay-Jensen, A.-C.; Andersen, T.L.; Tabassi, N.C.-B.; Kristensen, P.W.; Kjærsgaard-Andersen, P.; Sandell, L.; Garnero, P.; Delaissé, J.-M. Biochemical markers of type II collagen breakdown and synthesis are positioned at specific sites in human osteoarthritic knee cartilage. Osteoarthr. Cartil. 2008, 16, 615–623. [Google Scholar] [CrossRef] [Green Version]
- García-Gil, M.; Reyes, C.; Ramos, R.; Sanchez-Santos, M.; Prieto-Alhambra, D.; Spector, T.D.; Hart, D.; Arden, N.K. Serum lipid levels and risk of hand osteoarthritis: The chingford prospective cohort study. Sci. Rep. 2017, 7, 3147. [Google Scholar] [CrossRef] [Green Version]
- Frey, N.; Hügle, T.; Jick, S.; Meier, C.; Spoendlin, J. Hyperlipidaemia and incident osteoarthritis of the hand: A population-based case-control study. Osteoarthr. Cartil. 2017, 25, 1040–1045. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Long, J.; Chen, X.; Li, Y.; Song, H. Dyslipidemia Might Be Associated with an Increased Risk of Osteoarthritis. Biomed. Res. Int. 2020, 2020, 3105248. [Google Scholar] [CrossRef]
- Mobasheri, A.; Rayman, M.P.; Gualillo, O.; Sellam, J.; van der Kraan, P.; Fearon, U. The role of metabolism in the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 2017, 13, 302–311. [Google Scholar] [CrossRef]
- Davies-Tuck, M.L.; Hanna, F.; Davis, S.R.; Bell, R.J.; Davison, S.L.; Wluka, A.E.; Adams, J.; Cicuttini, F.M. Total cholesterol and triglycerides are associated with the development of new bone marrow lesions in asymptomatic middle-aged women—A prospective cohort study. Arthritis Res. Ther. 2009, 11, R181. [Google Scholar] [CrossRef] [Green Version]
- Lippiello, L.; Walsh, T.; Fienhold, M. The association of lipid abnormalities with tissue pathology in human osteoarthritic articular cartilage. Metabolism 1991, 40, 571–576. [Google Scholar] [CrossRef]
- Villalvilla, A.; Larrañaga-Vera, A.; Lamuedra, A.; Pérez-Baos, S.; López-Reyes, A.G.; Herrero-Beaumont, G.; Largo, R. Modulation of the Inflammatory Process by Hypercholesterolemia in Osteoarthritis. Front. Med. 2020, 7, 566250. [Google Scholar] [CrossRef]
- van Gastel, N.; Stegen, S.; Eelen, G.; Schoors, S.; Carlier, A.; Daniëls, V.W.; Baryawno, N.; Przybylski, D.; Depypere, M.; Stiers, P.-J.; et al. Lipid availability determines fate of skeletal progenitor cells via SOX9. Nature 2020, 579, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Akasaki, Y.; Hasegawa, A.; Saito, M.; Asahara, H.; Iwamoto, Y.; Lotz, M.K. Dysregulated FOXO transcription factors in articular cartilage in aging and osteoarthritis. Osteoarthr. Cartil. 2014, 22, 162–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mustonen, A.-M.; Nieminen, P. Fatty acids and oxylipins in osteoarthritis and rheumatoid arthritis—A complex field with significant potential for future treatments. Curr. Rheumatol. Rep. 2021, 23, 41. [Google Scholar] [CrossRef] [PubMed]
- Haj-Mirzaian, A.; Mohajer, B.; Guermazi, A.; Conaghan, P.G.; Lima, J.A.C.; Blaha, M.J.; Bingham, C.O.; Roemer, F.W.; Cao, X.; Demehri, S. Statin Use and Knee Osteoarthritis Outcome Measures according to the Presence of Heberden Nodes: Results from the Osteoarthritis Initiative. Radiology 2019, 293, 396–404. [Google Scholar] [CrossRef]
- Finan, P.H.; Buenaver, L.F.; Bounds, S.C.; Hussain, S.; Park, R.J.; Haque, U.J.; Campbell, C.M.; Haythornthwaite, J.A.; Edwards, R.R.; Smith, M.T. Discordance between pain and radiographic severity in knee osteoarthritis: Findings from quantitative sensory testing of central sensitization. Arthritis Rheum. 2013, 65, 363–372. [Google Scholar] [CrossRef] [Green Version]
- Veronese, N.; Koyanagi, A.; Stubbs, B.; Cooper, C.; Guglielmi, G.; Rizzoli, R.; Schofield, P.; Punzi, L.; Al-Daghri, N.; Smith, L. Statin use and knee osteoarthritis outcomes: A longitudinal cohort study. Arthritis Care Res. 2019, 71, 1052–1058. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Deng, C.; Ma, X.; Wu, Q.; Zhou, F.; Liu, X. The association between statin use and osteoarthritis-related outcomes: An updated systematic review and meta-analysis. Front. Pharmacol. 2022, 13, 1003370. [Google Scholar] [CrossRef]
- Waine, H.; Nevinny, D.; Rosenthal, J.; Joffe, I. Association of osteoarthritis and diabetes mellitus. Tufts Folia Med. 1961, 7, 13–19. [Google Scholar]
- Dong, M.; Ren, J. What fans the fire: Insights into mechanisms of leptin in metabolic syndrome-associated heart diseases. Curr. Pharm. Des. 2014, 20, 652–658. [Google Scholar] [CrossRef]
- Agrawal, S.; Gollapudi, S.; Su, H.; Gupta, S. Leptin Activates Human B Cells to Secrete TNF-α, IL-6, and IL-10 via JAK2/STAT3 and p38MAPK/ERK1/2 Signaling Pathway. J. Clin. Immunol. 2011, 31, 472–478. [Google Scholar] [CrossRef] [Green Version]
- Lord, G.M.; Matarese, G.; Howard, J.K.; Baker, R.J.; Bloom, S.R.; Lechler, R.I. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 1998, 394, 897–901. [Google Scholar] [CrossRef] [PubMed]
- Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.; Arya, S.; Stewart, A.J.; Gojobori, T.; Isenovic, E.R. Leptin and obesity: Role and clinical implication. Front. Endocrinol. 2021, 12, 585887. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.H.; Zhao, C.W.; Liu, B.; Dong, N.; Ding, L.; Li, Y.R.; Liu, J.G.; Feng, W.; Qi, X.; Jin, X.H. An update on the association between metabolic syndrome and osteoarthritis and on the potential role of leptin in osteoarthritis. Cytokine 2020, 129, 155043. [Google Scholar] [CrossRef]
- Liang, H.; Wang, H.; Luo, L.; Fan, S.; Zhou, L.; Liu, Z.; Yao, S.; Zhang, X.; Zhong, K.; Zhao, H.; et al. Toll-like receptor 4 promotes high glucose-induced catabolic and inflammatory responses in chondrocytes in an NF-κB-dependent manner. Life Sci. 2019, 228, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-H.; Chang, D.-M.; Lin, K.-C.; Shin, S.-J.; Lee, Y.-J. Visfatin in overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases: A meta-analysis and systemic review. Diabetes/Metab. Res. Rev. 2011, 27, 515–527. [Google Scholar] [CrossRef]
- Yammani, R.R.; Loeser, R.F. Extracellular nicotinamide phosphoribosyltransferase (NAMPT/visfatin) inhibits insulin-like growth factor-1 signaling and proteoglycan synthesis in human articular chondrocytes. Arthritis Res. Ther. 2012, 14, R23. [Google Scholar] [CrossRef] [Green Version]
- Franco-Trepat, E.; Guillán-Fresco, M.; Alonso-Pérez, A.; Jorge-Mora, A.; Francisco, V.; Gualillo, O.; Gómez, R. Visfatin Connection: Present and Future in Osteoarthritis and Osteoporosis. J. Clin. Med. 2019, 8, 1178. [Google Scholar] [CrossRef] [Green Version]
- Schadler, P.; Lohberger, B.; Thauerer, B.; Faschingbauer, M.; Kullich, W.; Stradner, M.H.; Leithner, A.; Ritschl, V.; Omara, M.; Steinecker-Frohnwieser, B. The Association of Blood Biomarkers and Body Mass Index in Knee Osteoarthritis: A Cross-Sectional Study. Cartilage 2022, 13, 19476035211069251. [Google Scholar] [CrossRef]
- Monroy-Muñoz, I.E.; Angeles-Martinez, J.; Posadas-Sánchez, R.; Villarreal-Molina, T.; Alvarez-León, E.; Flores-Dominguez, C.; Cardoso-Saldaña, G.; Medina-Urrutia, A.; Juárez-Rojas, J.G.; Posadas-Romero, C.; et al. PLA2G2A polymorphisms are associated with metabolic syndrome and type 2 diabetes mellitus. Results from the genetics of atherosclerotic disease Mexican study. Immunobiology 2017, 222, 967–972. [Google Scholar] [CrossRef]
- Jung, T.W.; Lee, S.H.; Kim, H.C.; Bang, J.S.; Abd El-Aty, A.M.; Hacımüftüoğlu, A.; Shin, Y.K.; Jeong, J.H. METRNL attenuates lipid-induced inflammation and insulin resistance via AMPK or PPARδ-dependent pathways in skeletal muscle of mice. Exp. Mol. Med. 2018, 50, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobieh, B.H.; Kassem, D.H.; Zakaria, Z.M.; El-Mesallamy, H.O. Potential emerging roles of the novel adipokines adipolin/CTRP12 and meteorin-like/METRNL in obesity-osteoarthritis interplay. Cytokine 2021, 138, 155368. [Google Scholar] [CrossRef] [PubMed]
- Steppan, C.M.; Bailey, S.T.; Bhat, S.; Brown, E.J.; Banerjee, R.R.; Wright, C.M.; Patel, H.R.; Ahima, R.S.; Lazar, M.A. The hormone resistin links obesity to diabetes. Nature 2001, 409, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Tuttolomondo, A.; La Placa, S.; Di Raimondo, D.; Bellia, C.; Caruso, A.; Lo Sasso, B.; Guercio, G.; Diana, G.; Ciaccio, M.; Licata, G.; et al. Adiponectin, resistin and IL-6 plasma levels in subjects with diabetic foot and possible correlations with clinical variables and cardiovascular co-morbidity. Cardiovasc. Diabetol. 2010, 9, 50. [Google Scholar] [CrossRef] [Green Version]
- Koskinen, A.; Vuolteenaho, K.; Moilanen, T.; Moilanen, E. Resistin as a factor in osteoarthritis: Synovial fluid resistin concentrations correlate positively with interleukin 6 and matrix metalloproteinases MMP-1 and MMP-3. Scand. J. Rheumatol. 2014, 43, 249–253. [Google Scholar] [CrossRef]
- Alissa, E.M.; Alzughaibi, L.S.; Marzouki, Z.M. Relationship between serum resistin, body fat and inflammatory markers in females with clinical knee osteoarthritis. Knee 2020, 27, 45–50. [Google Scholar] [CrossRef]
- De Graaf, C.; Donnelly, D.; Wootten, D.; Lau, J.; Sexton, P.M.; Miller, L.J.; Ahn, J.-M.; Liao, J.; Fletcher, M.M.; Yang, D. Glucagon-like peptide-1 and its class BG protein–coupled receptors: A long march to therapeutic successes. Pharmacol. Rev. 2016, 68, 954–1013. [Google Scholar] [CrossRef] [Green Version]
- Clements, J.N.; Shealy, K.M. Liraglutide: An injectable option for the management of obesity. Ann. Pharmacother. 2015, 49, 938–944. [Google Scholar] [CrossRef]
- Meurot, C.; Jacques, C.; Martin, C.; Sudre, L.; Breton, J.; Rattenbach, R.; Bismuth, K.; Berenbaum, F. Targeting the GLP-1/GLP-1R axis to treat osteoarthritis: A new opportunity? J. Orthop. Transl. 2022, 32, 121–129. [Google Scholar] [CrossRef]
- Que, Q.; Guo, X.; Zhan, L.; Chen, S.; Zhang, Z.; Ni, X.; Ye, B.; Wan, S. The GLP-1 agonist, liraglutide, ameliorates inflammation through the activation of the PKA/CREB pathway in a rat model of knee osteoarthritis. J. Inflamm. 2019, 16, 13. [Google Scholar] [CrossRef] [Green Version]
- BioRender. Available online: https://www.biorender.com (accessed on 20 December 2022).
- He, M.; Lu, B.; Opoku, M.; Zhang, L.; Xie, W.; Jin, H.; Chen, S.; Li, Y.; Deng, Z. Metformin Prevents or Delays the Development and Progression of Osteoarthritis: New Insight and Mechanism of Action. Cells 2022, 11, 3012. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wu, Z.; Zhao, P. The effects of metformin in the treatment of osteoarthritis: Current perspectives. Front. Pharmacol. 2022, 13, 952560. [Google Scholar] [CrossRef] [PubMed]
- Dludla, P.V.; Nkambule, B.B.; Mazibuko-Mbeje, S.E.; Nyambuya, T.M.; Mxinwa, V.; Mokgalaboni, K.; Ziqubu, K.; Cirilli, I.; Marcheggiani, F.; Louw, J.; et al. Adipokines as a therapeutic target by metformin to improve metabolic function: A systematic review of randomized controlled trials. Pharmacol. Res. 2021, 163, 105219. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yang, Y.; Zhang, Y.; Liu, J.; Yao, Z.; Zhang, C. Protective effects of metformin against osteoarthritis through upregulation of SIRT3-mediated PINK1/Parkin-dependent mitophagy in primary chondrocytes. Biosci. Trends 2019, 12, 605–612. [Google Scholar] [CrossRef] [Green Version]
- Saluk, J.; Banos, A.; Hopkinson, W.; Rees, H.; Syed, D.; Hoppensteadt, D.; Abro, S.; Iqbal, O.; Fareed, J. Prevalence of metabolic syndrome in patients undergoing total joint arthroplasty and relevance of biomarkers. Int. Angiol. 2017, 36, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zhong, R.Z.; Dai, W.F.; Huang, H.; Yu, Q.N.; Zhang, J.A.; Cai, Y.R. Exploring Diagnostic Biomarkers and Comorbid Pathogenesis for Osteoarthritis and Metabolic Syndrome via Bioinformatics Approach. Int. J. Gen. Med. 2021, 14, 6201–6213. [Google Scholar] [CrossRef]
- Ungsudechachai, T.; Honsawek, S.; Jittikoon, J.; Udomsinprasert, W. Clusterin Is Associated with Systemic and Synovial Inflammation in Knee Osteoarthritis. Cartilage 2021, 13 (Suppl. S1), 1557S–1565S. [Google Scholar] [CrossRef]
- Ma, J.; Niu, D.S.; Wan, N.J.; Qin, Y.; Guo, C.J. Elevated chemerin levels in synovial fluid and synovial membrane from patients with knee osteoarthritis. Int. J. Clin. Exp. Pathol. 2015, 8, 13393–13398. [Google Scholar]
- Conde, J.; Scotece, M.; Abella, V.; Gómez, R.; López, V.; Villar, R.; Hermida, M.; Pino, J.; Gómez-Reino, J.J.; Gualillo, O. Identification of Novel Adipokines in the Joint. Differential Expression in Healthy and Osteoarthritis Tissues. PLoS ONE 2015, 10, e0123601. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Ji, Y.; Dai, H.; Khan, A.A.; Zhou, Y.; Chen, R.; Jiang, Y.; Gui, J. High-Density Lipoprotein Cholesterol and Apolipoprotein A1 in Synovial Fluid: Potential Predictors of Disease Severity of Primary Knee Osteoarthritis. Cartilage 2021, 13 (Suppl. S1), 1465S–1473S. [Google Scholar] [CrossRef]
- Puenpatom, R.A.; Victor, T.W. Increased prevalence of metabolic syndrome in individuals with osteoarthritis: An analysis of NHANES III data. Postgrad. Med. 2009, 121, 9–20. [Google Scholar] [CrossRef]
- Lo, K.; Au, M.; Ni, J.; Wen, C. Association between hypertension and osteoarthritis: A systematic review and meta-analysis of observational studies. J. Orthop. Transl. 2022, 32, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Karasik, D.; Kiel, D.P.; Kiely, D.K.; Cupples, L.A.; Wilson, P.W.F.; O’Donnell, C.J.; Felson, D.T. Abdominal Aortic Calcification and Exostoses at the Hand and Lumbar Spine: The Framingham Study. Calcif. Tissue Int. 2006, 78, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Saetan, N.; Honsawek, S.; Tanavalee, A.; Yuktanandana, P.; Meknavin, S.; Ngarmukos, S.; Tanpowpong, T.; Parkpian, V. Relationship of plasma and synovial fluid vascular endothelial growth factor with radiographic severity in primary knee osteoarthritis. Int. Orthop. 2014, 38, 1099–1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaballah, A.; Hussein, N.A.; Risk, M.; Elsawy, N.; Elabasiry, S. Correlation between synovial vascular endothelial growth factor, clinical, functional and radiological manifestations in knee osteoarthritis. Egypt. Rheumatol. 2016, 38, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Pufe, T.; Harde, V.; Petersen, W.; Goldring, M.B.; Tillmann, B.; Mentlein, R. Vascular endothelial growth factor (VEGF) induces matrix metalloproteinase expression in immortalized chondrocytes. J. Pathol. 2004, 202, 367–374. [Google Scholar] [CrossRef]
- Chakravarty, E.F.; Hubert, H.B.; Lingala, V.B.; Zatarain, E.; Fries, J.F. Long distance running and knee osteoarthritis. A prospective study. Am. J. Prev. Med. 2008, 35, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Arnoldi, C.C.; Lemperg, K.; Linderholm, H. Intraosseous hypertension and pain in the knee. J. Bone Joint Surg. Br. 1975, 57, 360–363. [Google Scholar] [CrossRef]
- Imhof, H.; Breitenseher, M.; Kainberger, F.; Trattnig, S. Degenerative joint disease: Cartilage or vascular disease? Skelet. Radiol. 1997, 26, 398–403. [Google Scholar] [CrossRef]
- Okuno, Y.; Korchi, A.M.; Shinjo, T.; Kato, S. Transcatheter arterial embolization as a treatment for medial knee pain in patients with mild to moderate osteoarthritis. Cardiovasc. Interv. Radiol. 2015, 38, 336–343. [Google Scholar] [CrossRef] [Green Version]
- Okuno, Y.; Korchi, A.M.; Shinjo, T.; Kato, S.; Kaneko, T. Midterm Clinical Outcomes and MR Imaging Changes after Transcatheter Arterial Embolization as a Treatment for Mild to Moderate Radiographic Knee Osteoarthritis Resistant to Conservative Treatment. J. Vasc. Interv. Radiol. 2017, 28, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Azzini, G.O.M.; Santos, G.S.; Visoni, S.B.C.; Azzini, V.O.M.; Santos, R.G.D.; Huber, S.C.; Lana, J.F. Metabolic syndrome and subchondral bone alterations: The rise of osteoarthritis—A review. J. Clin. Orthop. Trauma 2020, 11 (Suppl. S5), S849–S855. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Li, H.; Zhu, X.; Gu, H.; Chen, J.; Wang, L.; Harding, P.; Xu, W. Inverse correlation between plasma adropin and ET-1 levels in essential hypertension: A cross-sectional study. Medicine 2015, 94, e1712. [Google Scholar] [CrossRef]
- Çelik, H.T.; Akkaya, N.; Erdamar, H.; Gok, S.; Kazanci, F.; Demircelik, B.; Cakmak, M.; Yigitoglu, R. The effects of valsartan and amlodipine on the levels of irisin, adropin, and perilipin. Clin. Lab. 2015, 61, 1889–1895. [Google Scholar] [CrossRef] [PubMed]
- Valdes, A.M.; Abhishek, A.; Muir, K.; Zhang, W.; Maciewicz, R.A.; Doherty, M. Association of Beta-Blocker Use With Less Prevalent Joint Pain and Lower Opioid Requirement in People With Osteoarthritis. Arthritis Care Res. 2017, 69, 1076–1081. [Google Scholar] [CrossRef] [Green Version]
- Takamatsu, A.; Ohkawara, B.; Ito, M.; Masuda, A.; Sakai, T.; Ishiguro, N.; Ohno, K. Verapamil Protects against Cartilage Degradation in Osteoarthritis by Inhibiting Wnt/β-Catenin Signaling. PLoS ONE 2014, 9, e92699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silveira, K.D.; Coelho, F.M.; Vieira, A.T.; Barroso, L.C.; Queiroz-Junior, C.M.; Costa, V.V.; Sousa, L.F.; Oliveira, M.L.; Bader, M.; Silva, T.A. Mechanisms of the anti-inflammatory actions of the angiotensin type 1 receptor antagonist losartan in experimental models of arthritis. Peptides 2013, 46, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Efficacy and safety of adalimumab by intra-articular injection for moderate to severe knee osteoarthritis: An open-label randomized controlled trial. J. Int. Med. Res. 2018, 46, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Ching, K.; Houard, X.; Berenbaum, F.; Wen, C. Hypertension meets osteoarthritis—Revisiting the vascular aetiology hypothesis. Nat. Rev. Rheumatol. 2021, 17, 533–549. [Google Scholar] [CrossRef]
- Riecke, B.F.; Christensen, R.; Christensen, P.; Leeds, A.R.; Boesen, M.; Lohmander, L.S.; Astrup, A.; Bliddal, H. Comparing two low-energy diets for the treatment of knee osteoarthritis symptoms in obese patients: A pragmatic randomized clinical trial. Osteoarthr. Cartil. 2010, 18, 746–754. [Google Scholar] [CrossRef] [Green Version]
- Loeser, R.F.; Goldring, S.R.; Scanzello, C.R.; Goldring, M.B. Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum. 2012, 64, 1697–1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynard, L.N.; Barter, M.J. Osteoarthritis year in review 2019: Genetics, genomics and epigenetics. Osteoarthr. Cartil. 2020, 28, 275–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lynskey, S.J.; Macaluso, M.J.; Gill, S.D.; McGee, S.L.; Page, R.S. Biomarkers of Osteoarthritis—A Narrative Review on Causal Links with Metabolic Syndrome. Life 2023, 13, 730. https://doi.org/10.3390/life13030730
Lynskey SJ, Macaluso MJ, Gill SD, McGee SL, Page RS. Biomarkers of Osteoarthritis—A Narrative Review on Causal Links with Metabolic Syndrome. Life. 2023; 13(3):730. https://doi.org/10.3390/life13030730
Chicago/Turabian StyleLynskey, Samuel James, Marc Julian Macaluso, Stephen D. Gill, Sean L. McGee, and Richard S. Page. 2023. "Biomarkers of Osteoarthritis—A Narrative Review on Causal Links with Metabolic Syndrome" Life 13, no. 3: 730. https://doi.org/10.3390/life13030730
APA StyleLynskey, S. J., Macaluso, M. J., Gill, S. D., McGee, S. L., & Page, R. S. (2023). Biomarkers of Osteoarthritis—A Narrative Review on Causal Links with Metabolic Syndrome. Life, 13(3), 730. https://doi.org/10.3390/life13030730