Determination of Antioxidant, Anti-Alzheimer, Antidiabetic, Antiglaucoma and Antimicrobial Effects of Zivzik Pomegranate (Punica granatum)—A Chemical Profiling by LC-MS/MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Materials
2.3. Preparation of Zivzik Pomegranate (Punica granatum)’s Extracts
2.4. Total Phenolic Contents
2.5. Total Flavonoid Contents
2.6. Analaysis of Polyphenolic Composition by LC-MS/MS
2.6.1. Sample Preparation
2.6.2. Method Validation Parameters and LC-MS/MS Analysis
2.7. Fe3+ Reducing Capacity
2.8. Cu2+ Reducing Capacity
2.9. Fe3+-TPTZ Reducing Capacity
2.10. DPPH• Scavenging Activity
2.11. ABTS•+ Scavenging Activity
2.12. Enzyme Inhibition Studies
2.12.1. Acetylcholinesterase Inhibition Study
2.12.2. α-Glycosidase Inhibition Study
2.12.3. α-Amylase Inhibition Study
2.12.4. hCA Inhibition Study
2.13. Antimicrobial Studies
2.13.1. Microorganisms to Be Used in the Study
2.13.2. Identification of E. coli Clinical Isolates
2.13.3. Antimicrobial Activity Determination
2.14. Statistical Analysis
3. Results
3.1. Total Phenolics, Total Flavonoids, and LC-MS/MS Analysis Results
3.2. Reducing Ability Results
3.3. Radical Scavenging Results
3.4. Enzyme Inhibition Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kandylis, P.; Kokkinomagoulos, E. Food applications and potential health benefits of pomegranate and its derivatives. Foods 2020, 9, 122. [Google Scholar] [CrossRef] [PubMed]
- Nikdel, K.; Seifi, E.; Babaie, H.; Sharifani, M.; Hemmati, K. Physicochemical properties and antioxidant activities of five Iranian pomegranate cultivars (Punica granatum L.) in maturation stage. Acta Agric. Slov. 2016, 107, 277–286. [Google Scholar] [CrossRef]
- Esther, L.D.; Khusro, A.; Immanuel, P.; Esmail, G.A.; Al-Dhabi, N.A.; Arasu, M.V. Photo-activated synthesis and characterization of gold nanoparticles from Punica granatum L. seed oil: An assessment on antioxidant and anticancer properties for functional yoghurt nutraceuticals. J. Photochem. Photobiol. 2020, 206, 111868. [Google Scholar] [CrossRef] [PubMed]
- Qu, W.; Li, P.; Hong, J.; Hong, J.; Liu, Z.; Chen, Y.; Breksa, A.P.; Pan, Z. Thermal stability of liquid antioxidative extracts from pomegranate peel. J. Sci. Food Agric. 2014, 94, 1005–1012. [Google Scholar] [CrossRef]
- Mannino, G.; Chinigo, G.; Serio, G.; Genova, T.; Gentile, C.; Munaron, L.; Bertea, C.M. Proanthocyanidins and where to find them: A meta-analytic approach to investigate their chemistry, biosynthesis, distribution, and effect on human health. Antioxidants 2021, 10, 1229. [Google Scholar] [CrossRef]
- Borochov, N.H.; Judeinstein, S.; Tripler, E.; Harari, M.; Greenberg, A.; Shomer, I.; Holland, D. Seasonal and cultivar variations in antioxidant and sensory quality of pomegranate (Punica granatum L.) fruit. J. Food Comp. Anal. 2009, 22, 189–195. [Google Scholar] [CrossRef]
- Gulcin, I.; Kaya, R.; Goren, A.C.; Akincioglu, H.; Topal, M.; Bingol, Z.; Cakmak, C.K.; Sarikaya, B.O.S.; Durmaz, L.; Alwasel, S. Anticholinergic, antidiabetic and antioxidant activities of cinnamon (Cinnamomum verum) bark extracts: Polyphenol contents analysis by LC-MS/MS. Int. J. Food Prop. 2019, 22, 1511–1526. [Google Scholar] [CrossRef]
- Gulcin, I.; Bursal, E.; Sehitoglu, M.H.; Bilsel, M.; Goren, A.C. Polyphenol contents and antioxidant activity of lyophilized aqueous extract of propolis from Erzurum, Turkey. Food Chem. Toxicol. 2010, 48, 2227–2238. [Google Scholar] [CrossRef]
- Gulcin, I.; Berashvili, D.; Gepdiremen, A. Antiradical and antioxidant activity of total anthocyanins from Perilla pankinensis decne. J. Ethnopharmacol. 2005, 101, 287–293. [Google Scholar] [CrossRef]
- Gulcin, I.; Elmastas, M.; Aboul-Enein, H.Y. Antioxidant activity of clove oil-A powerful antioxidant source. Arab. J. Chem. 2012, 5, 489–499. [Google Scholar] [CrossRef]
- Ak, T.; Gulcin, I. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 2008, 174, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, I.; Goren, A.C.; Taslimi, P.; Alwasel, S.H.; Kilic, O.; Bursal, E. Anticholinergic, antidiabetic and antioxidant activities of Anatolian pennyroyal (Mentha pulegium)-Analysis of its polyphenol contents by LC-MS/MS. Biocat. Agric. Biotechnol. 2020, 23, 101441. [Google Scholar] [CrossRef]
- Gulcin, I. Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology 2006, 217, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, I.; Kufrevioglu, O.I.; Oktay, M.; Buyukokuroglu, M.E. Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J. Ethnopharmacol. 2004, 90, 205–215. [Google Scholar] [CrossRef]
- Gulcin, I.; Oktay, M.; Kireçci, E.; Küfrevioǧlu, Ö.I. Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chem. 2003, 83, 371–382. [Google Scholar] [CrossRef]
- Koksal, E.; Bursal, E.; Gulcin, I.; Korkmaz, M.; Çaglayan, C.; Goren, A.C.; Alwasel, S.H. Antioxidant activity and polyphenol content of Turkish thyme (Thymus vulgaris) monitored by LC-MS/MS. Int. J. Food Prop. 2017, 20, 514–525. [Google Scholar] [CrossRef]
- Gulcin, I.; Tel, A.Z.; Kirecci, E. Antioxidant, antimicrobial, antifungal and antiradical activities of Cyclotrichium niveum (Boiss.) Manden and Scheng. Int. J. Food Prop. 2008, 11, 450–471. [Google Scholar] [CrossRef]
- Gulcin, I. Antioxidant properties of resveratrol: A structure-activity insight. Innov. Food Sci. Emerg. 2010, 11, 210–218. [Google Scholar] [CrossRef]
- Bursal, E.; Gulcin, I. Polyphenol contents and in vitro antioxidant activities of lyophilised aqueous extract of kiwifruit (Actinidia deliciosa). Food Res. Int. 2011, 44, 1482–1489. [Google Scholar] [CrossRef]
- Bursal, E.; Koksal, E.; Gulcin, I.; Bilsel, G.; Goren, A.C. Antioxidant activity and polyphenol content of cherry stem (Cerasus avium L.) determined by LC-MS/MS. Food Res. Int. 2013, 51, 66–74. [Google Scholar] [CrossRef]
- Cetin, C.K.; Gulcin, I. Anticholinergic and antioxidant activities of usnic acid-an activity-structure insight. Toxicol. Rep. 2019, 6, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Yemis, O.; Bakkalbasi, E.; Artik, N. Antioxidative activities of grape (Vitis vinifera) seed extracts obtained from different varieties grown in Turkey. Int. J. Food Sci. Technol. 2008, 43, 154–159. [Google Scholar] [CrossRef]
- Ceylan, R.; Zengin, G.; Guler, G.O.; Aktumsek, A. Bioactive constituents of Lathyrus czeczottianus and ethyl acetate and water extracts and their biological activities: An endemic plant to Turkey. S. Afr. J. Bot. 2020, 143, 306–311. [Google Scholar] [CrossRef]
- Zengin, R.; Gok, Y.; Demir, Y.; Sen, B.; Taskin-Tok, T.; Aktas, A.; Demirci, O.; Gulcin, I.; Aygun, M. Fluorinated benzimidazolium salts: Synthesis, characterization, molecular docking studies and inhibitory properties against some metabolic enzymes. J. Fluor. Chem. 2023, 267, 110094. [Google Scholar] [CrossRef]
- Karakaya, S.; Bingol, Z.; Koca, M.; Dagoglu, S.; Pınar, N.M.; Demirci, B.; Gulcin, I.; Brestic, M.; Sytar, O. Identification of non-alkaloid natural compounds of Angelica purpurascens (Avé-Lall.) Gilli. (Apiaceae) with cholinesterase and carbonic anhydrase inhibition potential. Saudi Pharm. J. 2020, 28, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Mutlu, M.; Bingöl, Z.; Uc, E.M.; Koksal, E.; Goren, A.C.; Alwasel, S.H.; Gulcin, I. Comprehensive metabolite profiling of cinnamon (Cinnamomum zeylanicum) leaf oil using LC-HR/MS, GC/MS, and GC-FID: Determination of antiglaucoma, antioxidant, anticholinergic, and antidiabetic profiles. Life 2023, 13, 136. [Google Scholar] [CrossRef]
- Bulut, Z.; Abul, N.; Halıc Poslu, A.; Gulcin, I.; Ece, A.; Erçag, E.; Koz, O.; Koz, G. Structural characterization and biological evaluation of uracil-appended benzylic amines as acetylcholinesterase and carbonic anhydrase I and II inhibitors. J. Mol. Struct. 2023, 1280, 135047. [Google Scholar] [CrossRef]
- Ozcan, K. Antibacterial, antioxidant and enzyme inhibition activity capacities of Doronicum macrolepis (FREYN&SINT): An endemic plant from Turkey. Saudi Pharm. J. 2020, 28, 95–100. [Google Scholar]
- Yigit, B.; Taslimi, P.; Barut Celepci, D.; Taskin-Tok, T.; Yigit, M.; Aygun, M.; Ozdemir, I.; Gulcin, I. Novel PEPPSI-type N-heterocyclic carbene palladium(II) complexes: Synthesis, characterization, in silico studies and enzyme inhibitory properties against some metabolic enzymes. Inorg. Chim. Acta 2023, 544, 121239. [Google Scholar] [CrossRef]
- Gulcin, I.; Taslimi, P.; Aygun, A.; Sadeghian, N.; Bastem, E.; Kufrevioglu, O.I.; Turkan, F.; Şen, F. Antidiabetic and antiparasitic potentials: Inhibition effects of some natural antioxidant compounds on α-glycosidase, α-amylase and human glutathione S-transferase enzymes. Int. J. Biol. Macromol. 2018, 119, 741–746. [Google Scholar] [CrossRef]
- Taslimi, P.; Koksal, E.; Goren, A.C.; Bursal, E.; Aras, A.; Kilic, O.; Alwasel, S.; Gulcin, I. Anti-Alzheimer, antidiabetic and antioxidant potential of Satureja cuneifolia and analysis of its phenolic contents by LC-MS/MS. Arab. J. Chem. 2020, 13, 4528–4537. [Google Scholar] [CrossRef]
- Durmaz, L.; Erturk, A.; Akyüz, M.; Polat, K.L.; Uc, E.M.; Bingol, Z.; Saglamtas, R.; Alwasel, S.; Gulcin, I. Screening of carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α-glycosidase enzyme inhibition effects and antioxidant activity of coumestrol. Molecules 2022, 27, 3091. [Google Scholar] [CrossRef]
- Karakaya, S.; Bingol, Z.; Koca, M.; Demirci, B.; Gulcin, I.; Baser, K.H.C. Screening of non-alkaloid acetylcholinesterase and carbonic anhydrase isoenzymes inhibitors of Leiotulus dasyanthus (K. Koch) Pimenov & Ostr. (Apiaceae). J. Essent. Oil Res. 2020, 32, 227–241. [Google Scholar]
- Yildirim, A.; Atmaca, U.; Keskin, A.; Topal, M.; Celik, M.; Gulcin, I. N-Acylsulfonamides strongly inhibit human carbonic anhydrase isoenzymes I and II. Bioorg. Med. Chem. 2015, 23, 2598–2605. [Google Scholar] [CrossRef]
- Durmaz, L.; Kiziltas, H.; Guven, L.; Karagecili, H.; Alwasel, S.; Gulcin, I. Antioxidant, antidiabetic, anticholinergic, and antiglaucoma effects of magnofluorine. Molecules 2020, 27, 5902. [Google Scholar] [CrossRef] [PubMed]
- Oktay, M.; Gülçin, I.; Kufrevioglu, O.I. Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. Lebensm. Wissen. Technol. 2003, 36, 263–271. [Google Scholar] [CrossRef]
- Gulcin, I.; Sat, I.G.; Beydemir, S.; Elmastas, M.; Kufrevioglu, O.I. Comparison of antioxidant activity of clove (Eugenia caryophylata Thunb) buds and lavender (Lavandula stoechas L.). Food Chem. 2004, 87, 393–400. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Elmastas, M.; Türkekul, I.; Ozturk, L.; Gulcin, I.; Isıldak, O.; Aboul-Enein, H.Y. The antioxidant activity of two wild edible mushrooms (Morchella vulgaris and Morchella esculanta). Comb. Chem. High Throughput Screen. 2006, 9, 443–448. [Google Scholar] [CrossRef]
- Bursal, E.; Aras, A.; Kilic, O.; Taslimi, P.; Goren, A.C.; Gulcin, I. Phytochemical content, antioxidant activity and enzyme inhibition effect of Salvia eriophora Boiss. & Kotschy against acetylcholinesterase, α-amylase, butyrylcholinesterase and α-glycosidase enzymes. J. Food Biochem. 2019, 43, e12776. [Google Scholar]
- Gulcin, I.; Topal, F.; Cakmakci, R.; Bilsel, M.; Goren, A.C.; Erdogan, U. Pomological features, nutritional quality, polyphenol content analysis, and antioxidant properties of domesticated and 3 wild ecotype forms of raspberries (Rubus idaeus L.). J. Food Sci. 2011, 76, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Karagecili, H.; Yilmaz, M.A.; Erturk, A.; Kiziltas, H.; Guven, L.; Alwasel, S.H.; Gulcin, I. Comprehensive metabolite profiling of Berdav propolis using LC-MS/MS: Determination of antioxidant, anticholinergic, antiglaucoma, and antidiabetic effects. Molecules 2023, 28, 1739. [Google Scholar] [CrossRef]
- Yilmaz, M.A. Simultaneous quantitative screening of 53 phytochemicals in 33 species of medicinal and aromatic plants: A detailed, robust and comprehensive LC–MS/MS method validation. Ind. Crops Prod. 2020, 149, 112347. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Dietet. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Gocer, H.; Gulcin, I. Caffeic acid phenethyl ester (CAPE): Correlation of structure and antioxidant properties. Int. J. Food Sci. Nutr. 2011, 62, 821–825. [Google Scholar] [CrossRef]
- Apak, R.; Guclu, K.; Ozyurek, M.; Esin, K.S.; Ercag, E. The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. Int. J. Food Sci. Nutr. 2006, 57, 292–304. [Google Scholar] [CrossRef]
- Koksal, E.; Gulcin, I. Antioxidant activity of cauliflower (Brassica oleracea L.). Turk. J. Agric. For. 2008, 32, 65–78. [Google Scholar]
- Talaz, O.; Gulcin, I.; Goksu, S.; Saracoglu, N. Antioxidant activity of 5,10-dihydroindeno[1,2-b]indoles containing substituents on dihydroindeno part. Bioorg. Med. Chem. 2009, 17, 6583–6589. [Google Scholar] [CrossRef]
- Topal, M.; Gocer, H.; Topal, F.; Kalin, P.; Polat Kose, P.; Gulcin, I.; Cetin Cakmak, K.C.; Kucuk, M.; Durmaz, L.; Goren, A.C.; et al. Antioxidant, antiradical and anticholinergic properties of cynarin purified from the illyrian thistle (Onopordum illyricum L.). J. Enzyme Inhib. Med. Chem. 2006, 31, 266–275. [Google Scholar] [CrossRef]
- Cetinkaya, Y.; Gocer, H.; Menzek, A.; Gulcin, I. Synthesis and antioxidant properties of (3,4-dihydroxyphenyl)(2,3,4- trihydroxyphenyl)methanone and its derivatives. Arch. Pharm. 2012, 345, 323–334. [Google Scholar] [CrossRef]
- Gulcin, I.; Beydemir, S.; Sat, I.G.; Kufrevioglu, O.I. Evaluation of antioxidant activity of cornelian cherry (Cornus mas L.). Acta Aliment. Hung. 2005, 34, 193–202. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Gulcin, I. The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds. Int. J. Food Sci. Nutr. 2005, 56, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, I.; Dastan, A. Synthesis of dimeric phenol derivatives and determination of in vitro antioxidant and radical scavenging activities. J. Enzyme Inhib. Med. Chem. 2007, 22, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Ancerewicz, J.; Migliavacca, E.; Carrupt, P.A.; Testa, B.; Brée, F.; Zini, R.; Tillement, J.P.; Labidalle, S.; Guyot, D.; Chauvet-Monges, A.M.; et al. Structure-property relationships of trimetazidine derivatives and model compounds as potential antioxidants. Free Radic. Biol. Med. 1998, 25, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, I.; Sat, I.G.; Beydemir, S.; Kufrevioglu, O.I. Evaluation of the in vitro antioxidant properties of extracts of broccoli (Brassica oleracea L.). Ital. J. Food Sci. 2004, 16, 17–30. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Gulcin, I.; Mshvildadze, V.; Gepdiremen, A.; Elias, R. Screening of antiradical and antioxidant activity of monodesmosides and crude extract from Leontice smirnowii tuber. Phytomedicine 2006, 13, 343–351. [Google Scholar] [CrossRef]
- Cakmakci, S.; Topdas, E.F.; Kalın, P.; Han, H.; Sekerci, P.; Polat Kose, L.; Gulcin, I. Antioxidant capacity and functionality of oleaster (Elaeagnus angustifolia L.) flour and crust in a new kind of fruity ice cream. Int. J. Food Sci. Technol. 2015, 50, 472–481. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 2952. [Google Scholar] [CrossRef]
- Ozbey, F.; Taslimi, P.; Gulcin, I.; Maras, A.; Goksu, S.; Supuran, C.T. Synthesis of diaryl ethers with acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase inhibitory actions. J. Enzyme Inhib. Med. Chem. 2016, 31, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Savikin, K.; Zivkovic, J.; Alimpic, A.; Zdunic, G.; Jankovic, T.; Duletic-Lausevic, S.; Menkovic, N. Activity guided fractionation of pomegranate extract and its antioxidant, antidiabetic and antineurodegenerative properties. Ind. Crops Prod. 2018, 113, 142–149. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, Y.; Cheng, Y.; Wang, Y. Rapid screening and identification of α-glucosidase inhibitors from mulberry leaves using enzyme-immobilized magnetic beads coupled with HPLC/MS and NMR. Biomed. Chromatogr. 2013, 27, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Gondolova, G.; Taslimi, P.; Medjidov, A.; Farzaliyev, V.; Sujayev, A.; Huseynova, M.; Sahin, O.; Yalcın, B.; Turkan, F.; Gulcin, I. Synthesis, crystal structure and biological evaluation of spectroscopic characterization of Ni(II) and Co(II) complexes with N-salicyloil-N′-maleoil-hydrazine as anticholinergic and antidiabetic agents. J. Biochem. Mol. Toxicol. 2018, 32, e22197. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Storms, R.; Tsang, A. A quantitative starch-iodine method for measuring alpha-amylase and glucoamylase activities. Anal. Biochem. 2006, 351, 146–148. [Google Scholar] [CrossRef] [PubMed]
- Kocyigit, U.M.; Budak, Y.; Gurdere, M.B.; Erturk, F.; Yencilek, B.; Taslimi, P.; Gulcin, I.; Ceylan, M. Synthesis, characterization, anticancer, antimicrobial and carbonic anhydrase inhibition profiles of novel (3aR,4S,7R,7aS)-2-(4-((E)-3-(3-aryl)acryloyl) phenyl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione derivatives. Bioorg. Chem. 2017, 70, 118–125. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 67, 248–254. [Google Scholar] [CrossRef]
- Verpoorte, J.A.; Mehta, S.; Edsall, J.T. Esterase activities of human carbonic anhydrases B and C. J. Biol. Chem. 1967, 242, 4221–4229. [Google Scholar] [CrossRef]
- Huseynova, M.; Taslimi, P.; Medjidov, A.; Farzaliyev, V.; Aliyeva, M.; Gondolova, G.; Sahin, O.; Yalcın, B.; Sujayev, A.; Orman, E.B.; et al. Synthesis, characterization, crystal structure, electrochemical studies and biological evaluation of metal complexes with thiosemicarbazone of glyoxylic acid. Polyhedron 2018, 155, 25–33. [Google Scholar] [CrossRef]
- Tohma, H.; Koksal, E.; Kılıc, O.; Alan, Y.; Yılmaz, M.A.; Gulcin, I.; Bursal, E.; Alwasel, S.H. RP-HPLC/MS/MS analysis of the phenolic compounds, antioxidant and antimicrobial activities of Salvia L. species. Antioxidants 2016, 5, 38. [Google Scholar] [CrossRef]
- Deniz, S.; Büyük, F.; Murat, K. Investigation of CTX-M, TEM and SHV type extended spectrum beta-lactamase activity with automated system and molecular methods in Escherichia coli and Klebsiella pneumonia strains isolated from individuals with urinary track infections. Kafkas J. Med. Sci. 2021, 11, 307–317. [Google Scholar] [CrossRef]
- Kocyigit, U.M.; Budak, Y.; Gurdere, M.B.; Erturk, F.; Yencilek, B.; Taslimi, P.; Gulcin, I.; Ceylan, M. Synthesis of chalcone-imide derivatives and investigation of their anticancer and antimicrobial activities, carbonic anhydrase and acetylcholinesterase enzymes inhibition profiles. Arch. Physiol. Biochem. 2018, 124, 61–68. [Google Scholar] [CrossRef]
- Kocyigit, U.M.; Okten, S.; Cakmak, O.; Burhan, G.; Atas, M.; Taslimi, P.; Gulcin, I. Arylated quinoline and tetrahydroquinolines: Synthesis, characterization and their metabolic enzyme inhibitory and antimicrobial activities. ChemistrySelect 2022, 7, 202203469. [Google Scholar] [CrossRef]
- Koksal, E.; Tohma, S.H.; Kılıc, O.; Alan, Y.; Aras, A.; Gulcin, I.; Bursal, E. Assessment of antimicrobial and antioxidant activities of Nepeta trachonitica-Analysis of its phenolic compounds using HPLC-MS/MS. Sci. Pharm. 2017, 15, 24. [Google Scholar] [CrossRef]
- Limbago, B. M100-S11, Performance standards for antimicrobial susceptibility testing. Clin. Microbiol. Newslett. 2001, 23, 49. [Google Scholar]
- Chater, J.M.; Garner, L.C. Foliar nutrient applications to ‘Wonderful’ pomegranate (Punica granatum L.). I. Effects on fruit mineral nutrient concentrations and internal quality. Sci. Horticul. 2019, 244, 421–427. [Google Scholar] [CrossRef]
- Chukwuma, C.I.; Mashele, S.S.; Akuru, E.A. Evaluation of the in vitro ⍺-amylase inhibitory, antiglycation, and antioxidant properties of Punica granatum L. (pomegranate) fruit peel acetone extract and its effect on glucose uptake and oxidative stress in hepatocytes. J. Food Biochem. 2020, 44, 1–14. [Google Scholar] [CrossRef]
- Kucukoglu, K.; Gul, H.I.; Taslimi, P.; Gulcin, I.; Supuran, C.T. Investigation of inhibitory properties of some hydrazone compounds on hCA I, hCA II and AChE enzymes. Bioorg. Chem. 2019, 86, 316–321. [Google Scholar] [CrossRef]
- Bicer, A.; Taslimi, P.; Yakali, G.; Gulcin, I.; Gultekin, M.S.; Turgut Cin, G. Synthesis, characterization, crystal structure of novel bis-thiomethylcyclohexanone derivatives and their inhibitory properties against some metabolic enzymes. Bioorg. Chem. 2019, 82, 393–404. [Google Scholar] [CrossRef]
- Silva, J.C.; Rodrigues, S.; Feas, X.; Estevinho, L.M. Antimicrobial activity, phenolic profile and role in the inflammation of propolis. Food Chem. Toxicol. 2012, 50, 1790–1795. [Google Scholar] [CrossRef]
- Kalın, P.; Gulcin, I.; Goren, A.C. Antioxidant activity and polyphenol content of cranberries (Vaccinium macrocarpon). Rec. Nat. Prod. 2015, 9, 496–502. [Google Scholar]
- Zhu, H.; Yan, Y.; Jiang, Y.; Meng, X. Ellagic acid and its anti-aging effects on central nervous system. Int. J. Mol. Sci. 2022, 23, 10937. [Google Scholar] [CrossRef] [PubMed]
- Mechchate, H.; Es-safi, I.; Haddad, H.; Bekkari, H.; Grafov, A.; Bousta, D. Combination of catechin, epicatechin, and rutin: Optimization of a novel complete antidiabetic formulation using a mixture design approach. J. Nutr. Biochem. 2021, 88, 108520. [Google Scholar] [CrossRef]
- Andreu-Fernandez, V.; Toledano, L.A.; Pizarro, N.; Navarro-Tapia, E.; Gomez-Roig, M.D.; de la Torre, R.; Garcia-Algar, O. Bioavailability of epigallocatechin gallate administered with different nutritional strategies in healthy volunteers. Antioxidants 2020, 9, 440. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.L.; Fu, S.T.; Jiang, Y.Y.; Cao, Y.B.; Guo, M.L.; Wang, Y.; Xu, Z. Protective effects of nicotiflorin on reducing memory dysfunction, energy metabolism failure and oxidative stress in multi-infarct dementia model rats. Pharmacol. Biochem. Behav. 2007, 86, 741–748. [Google Scholar] [CrossRef]
- Araujo-Padilla, X.; Ramón-Gallegos, E.; Díaz-Cedillo, F.; Silva-Torres, R. Astragalin identification in graviola pericarp indicates a possible participation in the anticancer activity of pericarp crude extracts: In vitro and in silico approaches. Arab. J. Chem. 2022, 15, 103720. [Google Scholar] [CrossRef]
- Cotea, V.V.; Luchian, C.E.; Bilba, N.; Niculaua, M. Mesoporous silica SBA-15, a new adsorbent for bioactive polyphenols from red wine. Anal. Chim. Acta 2012, 732, 180–185. [Google Scholar] [CrossRef]
- Samimi, S.; Ardestani, M.S.; Dorkoosh, F.A. Preparation of carbon quantum dots-quinic acid for drug delivery of gemcitabine to breast cancer cells. J. Drug Deliv. Sci. Technol. 2021, 61, 102287. [Google Scholar] [CrossRef]
- Kaczmarek, B. Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials-A minireview. Materials 2020, 13, 3224. [Google Scholar] [CrossRef]
- Rajan, P.; Natraj, P.; Ranaweera, S.S.; Dayarathne, L.A.; Lee, Y.J.; Han, C.H. Anti-diabetic effect of hesperidin on palmitate (PA)-treated HepG2 cells and high fat diet-induced obese mice. Food Res. Int. 2022, 162, 112059. [Google Scholar] [CrossRef]
- Gulcin, I.; Elias, R.I.; Gepdiremen, A.; Boyer, L.; Koksal, E. A comparative study on the antioxidant activity of fringe tree (Chionanthus virginicus L.) extracts. Afr. J. Biotechnol. 2007, 6, 410–418. [Google Scholar]
- Rezai, M.; Bayrak, C.; Taslimi, P.; Gulcin, I.; Menzek, A. The first synthesis, antioxidant and anticholinergic activities of 1-(4,5-dihydroxybenzyl)pyrrolidin-2-one derivative bromophenols including natural products. Turk. J. Chem. 2018, 42, 808–825. [Google Scholar]
- Gulcin, I.; Topal, F.; Ozturk Sarikaya, S.B.; Bursal, E.; Goren, A.C.; Bilsel, M. Polyphenol contents and antioxidant properties of medlar (Mespilus germanica L.). Rec. Nat. Prod. 2011, 5, 158–175. [Google Scholar]
- Han, H.; Yılmaz, H.; Gulcin, I. Antioxidant activity of flaxseed (Linum usitatissimum L.) and analysis of its polyphenol contents by LC-MS/MS. Rec. Nat. Prod. 2018, 12, 397–402. [Google Scholar] [CrossRef]
- Karaman, Ş.; Tutem, E.; Sozgen, B.K.; Apak, R. Comparison of total antioxidant capacity and phenolic composition of some apple juices with combined HPLC-CUPRAC assay. Food Chem. 2010, 120, 1201–1209. [Google Scholar] [CrossRef]
- Gulcin, I. Measurement of antioxidant ability of melatonin and serotonin by the DMPD and CUPRAC methods as trolox equivalent. J. Enzyme Inhib. Med. Chem. 2008, 23, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Apak, R.; Calokerinos, A.; Gorinstein, S.; Segundo, M.A.; Hibbert, D.B.; Gulcin, I.; Demirci Cekic, S.; Güçlü, K.; Özyürek, M.; Çelik, S.E.; et al. Methods to Evaluate the Scavenging Activity of antioxidants towards reactive oxygen and nitrogen species (IUPAC Technical Report). Pure Appl. Chem. 2022, 94, 87–144. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef]
- Kiziltas, H.; Goren, A.C.; Bingol, Z.; Alwasel, S.H.; Gulcin, I. Anticholinergic, antidiabetic and antioxidant activities of Ferula oriantalis L. determination of its polyphenol contents by LC-HRMS. Rec. Nat. Prod. 2021, 15, 513–528. [Google Scholar] [CrossRef]
- Eruygur, N.; Kocyigit, U.M.; Taslimi, P.; Atas, M.; Tekin, M.; Gulcin, I. Screening the in vitro antioxidant, antimicrobial, anticholinesterase, antidiabetic activities of endemic Achillea cucullata (Asteraceae) ethanol extract. S. Afr. J. Bot. 2019, 120, 141–145. [Google Scholar] [CrossRef]
- Mitra, K.; Uddin, N. Total phenolics, flavonoids, proanthrocyanidins, ascorbic acid contents and in-vitro antioxidant activities of newly developed isolated soya protein. Discour. J. Agric. Food Sci. 2014, 2, 160–168. [Google Scholar]
- Sheng, J.; Zhou, J.; Wang, L.; Xu, J.; Hu, Q. Antioxidant activity of ethanol and petroleum ether extracts from Brazilian propolis. Eur. Food Res. Technol. 2007, 225, 249–253. [Google Scholar] [CrossRef]
- Gulcin, I. Antioxidant activity of food constituents: An overview. Arch. Toxicol. 2012, 86, 345–391. [Google Scholar] [CrossRef] [PubMed]
- Shahbazi, Y. Antibacterial and antioxidant properties of methanolic extracts of apple (Malus pumila), grape (Vitis vinifera), poegranate (Punica granatum L.) and common fig (Ficus carica L.) fruits. Pharm. Sci. 2017, 24, 308–315. [Google Scholar] [CrossRef]
- Mayasankaravalli, C.; Deepika, K.; Lydia, E.D.; Agada, R.; Thagriki, D.; Govindasamy, C.; Chinnadurai, V.; Gatar, O.M.O.; Khusro, A.; Kim, Y.O.; et al. Profiling the phyto-constituents of Punica granatum fruits peel extract and accessing its in-vitro antioxidant, anti-diabetic, anti-obesity, and angiotensin-converting enzyme inhibitory properties. Saudi J. Biol. Sci. 2020, 27, 3228–3234. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, I.; Beydemir, S.; Topal, F.; Gagua, N.; Bakuridze, A.; Bayram, R.; Gepdiremen, A. Apoptotic, antioxidant and antiradical effects of majdine and isomajdine from Vinca herbacea Waldst. and kit. J. Enzyme Inhib. Med. Chem. 2012, 27, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, I.; Huyut, Z.; Elmastas, M.; Aboul-Enein, H.Y. Radical scavenging and antioxidant activity of tannic acid. Arab. J. Chem. 2010, 3, 43–53. [Google Scholar] [CrossRef]
- Hashmi, S.; Khan, S.; Shafiq, Z.; Taslimi, P.; Ishaq, M.; Sadeghian, N.; Karaman, S.H.; Akhtar, N.; Islam, M.; Ansari, A.; et al. Probing 4-(diethylamino)-salicylaldehyde-based thiosemicarbazones as multi-target directed ligands against cholinesterases, carbonic anhydrases and α-glycosidase enzymes. Bioorg. Chem. 2021, 107, 104554. [Google Scholar] [CrossRef]
- Taslimi, P.; Caglayan, C.; Farzaliyev, F.; Nabiyev, O.; Sujayev, A.; Türkan, F.; Kaya, R.; Gulcin, I. Synthesis and discovery of potent carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glycosidase enzymes inhibitors: The novel N,N’-bis-cyanomethylamine and alkoxymethylamine derivatives. J. Biochem. Mol. Toxicol. 2018, 32, e22042. [Google Scholar] [CrossRef]
- Taslimi, P.; Gulcin, I. Antidiabetic potential: In vitro inhibition effects of some natural phenolic compounds on α-glycosidase and α-amylase enzymes. J. Biochem. Mol. Toxicol. 2017, 31, e21956. [Google Scholar] [CrossRef] [PubMed]
- Cam, M.; Icyer, N.C. Phenolics of pomegranate peels: Extraction optimization by central composite design and alpha glucosidase inhibition potentials. J. Food Sci. Technol. 2015, 52, 1489–1497. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, I.; Tel, A.Z.; Goren, A.C.; Taslimi, P.; Alwasel, S. Sage (Salvia pilifera): Determination its polyphenol contents, anticholinergic, antidiabetic and antioxidant activities. J. Food Meas. Charact. 2019, 13, 2062–2074. [Google Scholar] [CrossRef]
- Kiziltas, H.; Gören, A.C.; Alwasel, S.; Gulcin, I. Sahlep (Dactylorhiza osmanica): Phytochemical analyses by LC-HRMS, molecular docking, antioxidant activity and enzyme inhibition profiles. Molecules 2022, 27, 6907. [Google Scholar] [CrossRef]
- Laaraj, N.; Bouhrim, M.; Kharchoufa, L.; Tiji, S.; Bendaha, H.; Addi, M.; Drouet, S.; Hano, C.; Lorenzo, J.M.; Bnouham, M.; et al. Phytochemical analysis, α-glucosidase and α-amylase inhibitory activities and acute toxicity studies of extracts 797 from pomegranate (Punica granatum) bark, a valuable agro-industrial by-product. Foods 2022, 11, 1353. [Google Scholar] [CrossRef]
- Akincioglu, A.; Akincioglu, H.; Gulcin, I.; Durdagi, S.; Supuran, C.T.; Goksu, S. Discovery of potent carbonic anhydrase and acetylcholine esterase inhibitors: Novel sulfamoylcarbamates and sulfamides derived from acetophenones. Bioorg. Med. Chem. 2015, 23, 3592–3602. [Google Scholar] [CrossRef]
- Kiziltas, H.; Goren, A.C.; Alwasel, S.; Gulcin, I. Comprehensive metabolic profiling of Acantholimon caryophyllaceum using LC-HRMS and evaluation of antioxidant activities, enzyme inhibition properties and molecular docking studies. S. Afr. J. Bot. 2022, 151, 743–751. [Google Scholar] [CrossRef]
- Gulcin, I.; Scozzafava, A.; Supuran, C.T.; Akıncıoglu, H.; Koksal, Z.; Turkan, F.; Alwasel, S. The effect of caffeic acid phenethyl ester (CAPE) metabolic enzymes including acetylcholinesterase, butyrylcholinesterase, glutathione s-transferase, lactoperoxidase and carbonic anhydrase isoenzymes I, II, IX and XII. J. Enzyme Inhib. Med. Chem. 2016, 31, 1095–1101. [Google Scholar] [CrossRef]
- Holth, T.F.; Tollefsen, K.E. Acetylcholine esterase inhibitors in effluents from oil production platforms in the North Sea. Aquat. Toxicol. 2012, 112–113, 92–98. [Google Scholar] [CrossRef]
- Bursal, E.; Taslimi, P.; Goren, A.; Gulcin, I. Assessments of anticholinergic, antidiabetic, antioxidant activities and phenolic content of Stachys annua. Biocat. Agric. Biotechnol. 2020, 28, 101711. [Google Scholar] [CrossRef]
- Konsoula, Z. A preliminary in vitro investigation of anticholinesterase activity of pomegranate peel extracts. J. Biotechnol. 2018, 280, S88. [Google Scholar] [CrossRef]
- Scozzafava, A.; Kalin, P.; Supuran, C.T.; Gulcin, I.; Alwasel, S.H. The impact of hydroquinone on acetylcholine esterase and certain human carbonic anhydrase isoenzymes (hCA I, II, IX, and XII). J. Enzyme Inhib. Med. Chem. 2015, 30, 941–946. [Google Scholar] [CrossRef] [PubMed]
- Taslimi, P.; Turhan, K.; Turkan, F.; Sedef, K.H.; Turgut, Z.; Gulcin, I. Cholinesterases, α-glycosidase, and carbonic anhydrase inhibition properties of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives: Synthetic analogues for the treatment of Alzheimer’s disease and diabetes mellitus. Bioorg. Chem. 2020, 97, 103647. [Google Scholar] [CrossRef] [PubMed]
- Supuran, C.T. Structure and function of carbonic anhydrases. Biochem. J. 2016, 473, 22023–22032. [Google Scholar] [CrossRef]
- Genc Bilgicli, H.; Kestane, A.; Taslimi, P.; Karabay, O.; Bytyqi-Damoni, A.; Zengin, M.; Gulcin, I. Novel eugenol bearing oxypropanolamines: Synthesis, characterization, antibacterial, antidiabetic, and anticholinergic potentials. Bioorg. Chem. 2019, 88, 102931. [Google Scholar] [CrossRef]
- Rauha, J.P.; Remes, S.; Heinonen, M.; Hopia, A.; Kahkonen, M.; Kujala, T.; Pihlaja, K.; Vuorela, H.; Vuorela, P. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int. J. Food Microbiol. 2000, 56, 3–12. [Google Scholar] [CrossRef]
- Kumar, S.; Maheshwari, K.K.; Singh, V. Central nervous system activity of acute administration of ethanol extract of Punica granatum L. seeds in mice. Ind. J. Exp. Biol. 2008, 46, 811–816. [Google Scholar]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant flavonoids: Chemical characteristics and biological activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef]
- Cano-Lamadrid, M.; Nowicka, P.; Hernandez, F.; Carbonell-Barrachina, A.A.; Wojdylo, A. Phytochemical composition of smoothies combining pomegranate juice (Punica granatum L) and Mediterranean minor crop purees (Ficus carica, Cydonia oblonga, and Ziziphus jujube). J. Sci. Food Agric. 2018, 98, 5731–5741. [Google Scholar] [CrossRef]
No | Analyte | RT a | M.I. (m/z) b | F.I. (m/z) c | Ion. Mode | Equation | r2 d | RSD% e | Linearity Range (mg/L) | LOD/LOQ (µg/L) f | Recovery (%) | U g | Gr. No i | Phenolics | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Interday | Intraday | Interday | Intraday | WEZP | EEZP | ||||||||||||
1 | Quinic acid | 3.0 | 190.8 | 93.0 | Neg | y = −0.0129989 + 2.97989x | 0.996 | 0.69 | 0.51 | 0.1–5 | 25.7/33.3 | 1.0011 | 1.0083 | 0.0372 | 1 | 44.662 | 17.460 |
2 | Fumaric aid | 3.9 | 115.2 | 40.9 | Neg | y = −0.0817862 + 1.03467x | 0.995 | 1.05 | 1.02 | 1–50 | 135.7/167.9 | 0.9963 | 1.0016 | 0.0091 | 1 | N.D. | 2.128 |
3 | Aconitic acid | 4.0 | 172.8 | 129.0 | Neg | y = −0.7014530 + 32.9994x | 0.971 | 2.07 | 0.93 | 0.1–5 | 16.4/31.4 | 0.9968 | 1.0068 | 0.0247 | 1 | N.D. | 8.190 |
4 | Gallic acid | 4.4 | 168.8 | 79.0 | Neg | y = 0.0547697 + 20.8152x | 0.999 | 1.60 | 0.81 | 0.1–5 | 13.2/17.0 | 1.0010 | 0.9947 | 0.0112 | 1 | 0.846 | 20.021 |
5 | Epigallocatechin | 6.7 | 304.8 | 219.0 | Neg | y = −0.00494986 + 0.0483704x | 0.998 | 1.22 | 0.73 | 1–50 | 237.5/265.9 | 0.9969 | 1.0040 | 0.0184 | 3 | N.D. | 19.148 |
6 | Protocatechuic acid | 6.8 | 152.8 | 108.0 | Neg | y = 0.211373 + 12.8622x | 0.957 | 1.43 | 0.76 | 0.1–5 | 21.9/38.6 | 0.9972 | 1.0055 | 0.0350 | 1 | N.D. | 0.371 |
7 | Catechin | 7.4 | 288.8 | 203.1 | Neg | y = −0.00370053 + 0.431369x | 0.999 | 2.14 | 1.08 | 0.2–10 | 55.0/78.0 | 1.0024 | 1.0045 | 0.0221 | 3 | 0.195 | 27.664 |
8 | Gentisic acid | 8.3 | 152.8 | 109.0 | Neg | y = −0.0238983 + 12.1494x | 0.997 | 1.81 | 1.22 | 0.1–5 | 18.5/28.2 | 0.9963 | 1.0077 | 0.0167 | 1 | N.D. | N.D. |
9 | Chlorogenic acid | 8.4 | 353.0 | 85.0 | Neg | y = 0.289983 + 36.3926x | 0.995 | 2.15 | 1.52 | 0.1–5 | 13.1/17.6 | 1.0000 | 1.0023 | 0.0213 | 1 | N.D. | N.D. |
10 | Protocatechuic aldehyde | 8.5 | 137.2 | 92.0 | Neg | y = 0.257085 + 25.4657x | 0.996 | 2.08 | 0.57 | 0.1–5 | 15.4/22.2 | 1.0002 | 0.9988 | 0.0396 | 1 | N.D. | 0.154 |
11 | Tannic acid | 9.2 | 182.8 | 78.0 | Neg | y = 0.0126307 + 26.9263x | 0.999 | 2.40 | 1.16 | 0.05–2.5 | 15.3/22.7 | 0.9970 | 0.9950 | 0.0190 | 1 | 1.694 | 12.287 |
12 | Epigallocatechin gallate | 9.4 | 457.0 | 305.1 | Neg | y = −0.0380744 + 1.61233x | 0.999 | 1.30 | 0.63 | 0.2–10 | 61.0/86.0 | 0.9981 | 1.0079 | 0.0147 | 3 | 0.090 | 25.600 |
13 | 1,5-Dicaffeoylquinic acid | 9.8 | 515.0 | 191.0 | Neg | y = −0.0164044 + 16.6535x | 0.999 | 2.42 | 1.48 | 0.1–5 | 5.8/9.4 | 0.9983 | 0.9997 | 0.0306 | 1 | N.D. | N.D. |
14 | 4-OH Benzoic acid | 10.5 | 137.2 | 65.0 | Neg | y = −0.0240747 + 5.06492x | 0.999 | 1.24 | 0.97 | 0.2–10 | 68.4/88.1 | 1.0032 | 1.0068 | 0.0237 | 1 | N.D. | N.D. |
15 | Epicatechin | 11.6 | 289.0 | 203.0 | Neg | y = −0.0172078 + 0.0833424x | 0.996 | 1.47 | 0.62 | 1–50 | 139.6/161.6 | 1.0013 | 1.0012 | 0.0221 | 3 | N.D. | 24.210 |
16 | Vanillic acid | 11.8 | 166.8 | 108.0 | Neg | y = −0.0480183 + 0.779564x | 0.999 | 1.92 | 0.76 | 1–50 | 141.9/164.9 | 1.0022 | 0.9998 | 0.0145 | 1 | N.D. | N.D. |
17 | Caffeic acid | 12.1 | 179.0 | 134.0 | Neg | y = 0.120319 + 95.4610x | 0.999 | 1.11 | 1.25 | 0.05–2.5 | 7.7/9.5 | 1.0015 | 1.0042 | 0.0152 | 1 | N.D. | 0.096 |
18 | Syringic acid | 12.6 | 196.8 | 166.9 | Neg | y = −0.0458599 + 0.663948x | 0.998 | 1.18 | 1.09 | 1–50 | 82.3/104.5 | 1.0006 | 1.0072 | 0.0129 | 1 | N.D. | N.D. |
19 | Vanillin | 13.9 | 153.1 | 125.0 | Poz | y = 0.00185898 + 20.7382x | 0.996 | 1.10 | 0.85 | 0.1–5 | 24.5/30.4 | 1.0009 | 0.9967 | 0.0122 | 1 | N.D. | 0.201 |
20 | Syringic aldehyde | 14.6 | 181.0 | 151.1 | Neg | y = −0.0128684 + 7.90153x | 0.999 | 2.51 | 0.77 | 0.4–20 | 19.7/28.0 | 1.0001 | 0.9964 | 0.0215 | 1 | N.D. | N.D. |
21 | Daidzin | 15.2 | 417.1 | 199.0 | Poz | y = 9.45747 + 152.338x | 0.996 | 2.25 | 1.32 | 0.05–2.5 | 7.0/9.5 | 0.9955 | 1.0017 | 0.0202 | 2 | N.D. | N.D. |
22 | Epicatechin gallate | 15.5 | 441.0 | 289.0 | Neg | y = −0.0142216 + 1.06768x | 0.997 | 1.63 | 1.28 | 0.1–5 | 19.5/28.5 | 0.9984 | 0.9946 | 0.0229 | 3 | N.D. | 1.060 |
23 | Piceid | 17.2 | 391.0 | 135/106.9 | Poz | y = 0.00772525 + 25.4181x | 0.999 | 1.94 | 1.16 | 0.05–2.5 | 13.8/17.8 | 1.0042 | 0.9979 | 0.0199 | 1 | N.D. | 0.23 |
24 | p-Coumaric acid | 17.8 | 163.0 | 93.0 | Neg | y = 0.0249034 + 18.5180x | 0.999 | 1.92 | 1.43 | 0.1–5 | 25.9/34.9 | 1.0049 | 1.0001 | 0.0194 | 1 | N.D. | 0.874 |
25 | Ferulic acid-D3-IS h | 18.8 | 196.2 | 152.1 | Neg | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | 0.0170 | 1 | N.A. | N.A. |
26 | Ferulic acid | 18.8 | 192.8 | 149.0 | Neg | y = −0.0735254 + 1.34476x | 0.999 | 1.44 | 0.53 | 1–50 | 11.8/15.6 | 0.9951 | 0.9976 | 0.0181 | 1 | N.D. | N.D. |
27 | Sinapic acid | 18.9 | 222.8 | 193.0 | Neg | y = −0.0929932 + 0.836324x | 0.999 | 1.45 | 0.52 | 0.2–10 | 65.2/82.3 | 1.0031 | 1.0037 | 0.0317 | 1 | N.D. | N.D. |
28 | Coumarin | 20.9 | 146.9 | 103.1 | Poz | y = 0.0633397 + 136.508x | 0.999 | 2.11 | 1.54 | 0.05–2.5 | 214.2/247.3 | 0.9950 | 0.9958 | 0.0383 | 1 | N.D. | N.D. |
29 | Salicylic acid | 21.8 | 137.2 | 65.0 | Neg | y = 0.239287 + 153.659x | 0.999 | 1.48 | 1.18 | 0.05–2.5 | 6.0/8.3 | 0.9950 | 0.9998 | 0.0158 | 1 | N.D. | N.D. |
30 | Cynaroside | 23.7 | 447.0 | 284.0 | Neg | y = 0.280246 + 6.13360x | 0.997 | 1.56 | 1.12 | 0.05–2.5 | 12.1/16.0 | 1.0072 | 1.0002 | 0.0366 | 2 | N.D. | 0.926 |
31 | Miquelianin | 24.1 | 477.0 | 150.9 | Neg | y = −0.00991585 + 5.50334x | 0.999 | 1.31 | 0.95 | 0.1–5 | 10.6/14.7 | 0.9934 | 0.9965 | 0.0220 | 2 | N.D. | N.D. |
32 | Rutin-D3-IS h | 25.5 | 612.2 | 304.1 | Neg | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | 2 | N.A. | N.A. |
33 | Rutin | 25.6 | 608.9 | 301.0 | Neg | y = −0.0771907 + 2.89868x | 0.999 | 1.38 | 1.09 | 0.1–5 | 15.7/22.7 | 0.9977 | 1.0033 | 0.0247 | 2 | 0.024 | 2.732 |
34 | Isoquercitrin | 25.6 | 463.0 | 271.0 | Neg | y = −0.111120 + 4.10546x | 0.998 | 2.13 | 0.78 | 0.1–5 | 8.7/13.5 | 1.0057 | 0.9963 | 0.0220 | 2 | 0.038 | 4.056 |
35 | Hesperidin | 25.8 | 611.2 | 449.0 | Poz | y = 0.139055 + 13.2785x | 0.999 | 1.84 | 1.35 | 0.1–5 | 19.0/26.0 | 0.9967 | 1.0043 | 0.0335 | 2 | 0.063 | 6.136 |
36 | o-Coumaric acid | 26.1 | 162.8 | 93.0 | Neg | y = 0.00837193 + 11.2147x | 0.999 | 2.11 | 1.46 | 0.1–5 | 31.8/40.4 | 1.0044 | 0.9986 | 0.0147 | 1 | N.D. | N.D. |
37 | Genistin | 26.3 | 431.0 | 239.0 | Neg | y = 1.65808 + 7.57459x | 0.991 | 2.01 | 1.28 | 0.1–5 | 14.9/21.7 | 1.0062 | 1.0047 | 0.0083 | 2 | N.D. | N.D. |
38 | Rosmarinic acid | 26.6 | 359.0 | 197.0 | Neg | y = −0.0117238 + 8.04377x | 0.999 | 1.24 | 0.86 | 0.1–5 | 16.2/21.2 | 1.0056 | 1.0002 | 0.0130 | 1 | N.D. | N.D. |
39 | Ellagic acid | 27.6 | 301.0 | 284.0 | Neg | y = 0.00877034 + 0.663741x | 0.999 | 1.57 | 1.23 | 0.4–20 | 56.9/71.0 | 1.0005 | 1.0048 | 0.0364 | 1 | 1.518 | 199.967 |
40 | Cosmosiin | 28.2 | 431.0 | 269.0 | Neg | y = −0.708662 + 8.62498x | 0.998 | 1.65 | 1.30 | 0.1–5 | 6.3/9.2 | 0.9940 | 0.9973 | 0.0083 | 2 | 0.019 | 2.036 |
41 | Quercitrin | 29.8 | 447.0 | 301.0 | Neg | y = −0.00153274 + 3.20368x | 0.999 | 2.24 | 1.16 | 0.1–5 | 4.8/6.4 | 0.9960 | 0.9978 | 0.0268 | 2 | N.D. | N.D. |
42 | Astragalin | 30.4 | 447.0 | 255.0 | Neg | y = 0.00825333 + 3.51189x | 0.999 | 2.08 | 1.72 | 0.1–5 | 6.6/8.2 | 0.9968 | 0.9957 | 0.0114 | 2 | 0.243 | 20.551 |
43 | Nicotiflorin | 30.6 | 592.9 | 255.0/284.0 | Neg | y = 0.00499333 + 2.62351x | 0.999 | 1.48 | 1.23 | 0.05–2.5 | 11.9/16.7 | 0.9954 | 1.0044 | 0.0108 | 2 | 0.273 | 23.535 |
44 | Fisetin | 30.6 | 285.0 | 163.0 | Neg | y = 0.0365705 + 8.09472x | 0.999 | 1.75 | 1.19 | 0.1–5 | 10.1/12.7 | 0.9980 | 1.0042 | 0.0231 | 3 | N.D. | N.D. |
45 | Daidzein | 34.0 | 253.0 | 223.0 | Neg | y = −0.0329252 + 6.23004x | 0.999 | 2.18 | 1.73 | 0.1–5 | 9.8/11.6 | 0.9926 | 0.9963 | 0.0370 | 3 | N.D. | N.D. |
46 | Quercetin-D3-IS h | 35.6 | 304.0 | 275.9 | Neg | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | 3 | N.A. | N.A. |
47 | Quercetin | 35.7 | 301.0 | 272.9 | Neg | y = +0.00597342 + 3.39417x | 0.999 | 1.89 | 1.38 | 0.1–5 | 15.5/19.0 | 0.9967 | 0.9971 | 0.0175 | 3 | N.D. | 0.136 |
48 | Naringenin | 35.9 | 270.9 | 119.0 | Neg | y = −0.00393403 + 14.6424x | 0.999 | 2.34 | 1.69 | 0.1–5 | 2.6/3.9 | 1.0062 | 1.0020 | 0.0392 | 3 | 0.004 | 0.234 |
49 | Hesperetin | 36.7 | 301.0 | 136.0/286.0 | Neg | y = +0.0442350 + 6.07160x | 0.999 | 2.47 | 2.13 | 0.1–5 | 7.1/9.1 | 0.9998 | 0.9963 | 0.0321 | 3 | N.D. | N.D. |
50 | Luteolin | 36.7 | 284.8 | 151.0/175.0 | Neg | y = −0.0541723 + 30.7422x | 0.999 | 1.67 | 1.28 | 0.05–2.5 | 2.6/4.1 | 0.9952 | 1.0029 | 0.0313 | 3 | 0.005 | 1.126 |
51 | Genistein | 36.9 | 269.0 | 135.0 | Neg | y = −0.00507501 + 12.1933x | 0.999 | 1.48 | 1.19 | 0.05–2.5 | 3.7/5.3 | 1.0069 | 1.0012 | 0.0337 | 3 | N.D. | N.D. |
52 | Kaempferol | 37.9 | 285.0 | 239.0 | Neg | y = −0.00459557 + 3.13754x | 0.999 | 1.49 | 1.26 | 0.05–2.5 | 10.2/15.4 | 0.9992 | 0.9990 | 0.0212 | 3 | N.D. | 0.357 |
53 | Apigenin | 38.2 | 268.8 | 151.0/149.0 | Neg | y = 0.119018 + 34.8730x | 0.998 | 1.17 | 0.96 | 0.05–2.5 | 1.3/2.0 | 0.9985 | 1.0003 | 0.0178 | 3 | N.D. | 0.338 |
54 | Amentoflavone | 39.7 | 537.0 | 417.0 | Neg | y = 0.727280 + 33.3658x | 0.992 | 1.35 | 1.12 | 0.05–2.5 | 2.8/5.1 | 0.9991 | 1.0044 | 0.0340 | 3 | 0.013 | 0.009 |
55 | Chrysin | 40.5 | 252.8 | 145.0/119.0 | Neg | y = −0.0777300 + 18.8873x | 0.999 | 1.46 | 1.21 | 0.05–2.5 | 1.5/2.8 | 0.9922 | 1.0050 | 0.0323 | 3 | N.D. | N.D. |
56 | Acacetin | 40.7 | 283.0 | 239.0 | Neg | y = −0.559818 + 163.062x | 0.997 | 1.67 | 1.28 | 0.02–1 | 1.5/2.5 | 0.9949 | 1.0011 | 0.0363 | 3 | N.D. | N.D. |
Antioxidant | Fe3+ Reducing * | Cu2+ Reducing * | Fe3+-TPTZ Reducing * | |||
---|---|---|---|---|---|---|
λ700 | r2 | λ450 | r2 | λ593 | r2 | |
BHA | 2.319 ± 0.041 a | 0.9629 | 2.849 ± 0.020 a | 0.9994 | 2.151 ± 0.020 b | 0.9367 |
BHT | 1.873 ± 0.152 b | 0.9918 | 2.865 ± 0.038 a | 0.9991 | 2.031 ± 0.190 b | 0.9670 |
Trolox | 2.334 ± 0.167 a | 0.9997 | 2.555 ± 0.022 a | 0.9987 | 2.108 ± 0.026 b | 0.9291 |
α-Tocopherol | 2.778 ± 0.248 a | 0.9999 | 2.185 ± 0.110 b | 0.9986 | 2.434 ± 0.103 a | 0.8714 |
WEZP peel | 1.278 ± 0.143 c | 0.9995 | 0.927 ± 0.022 c | 0.9965 | 1.903 ± 0.052 b | 0.9875 |
WEZP seed | 0.229 ± 0.033 d | 0.9252 | 0.114 ± 0.034 d | 0.8485 | 0.483 ± 0.023 c | 0.9124 |
EEZP peel | 1.219 ± 0.028 c | 0.9253 | 0.878 ± 0.017 c | 0.9967 | 2.086 ± 0.080 b | 0.9866 |
EEZP seed | 0.258 ± 0.005 d | 0.9712 | 0.194 ± 0.008 d | 0.9974 | 0.606 ± 0.011 c | 0.9471 |
P. granatum juice | 1.810 ± 0.149 b | 0.4020 | 2.790 ± 0.045 a | 0.9999 | 2.230 ± 0.010 b | 0.9056 |
Antioxidant | DPPH• Scavenging | ABTS•+ Scavenging | ||
---|---|---|---|---|
IC50 | r2 | IC50 | r2 | |
BHA | 6.86 | 0.9949 | 6.35 | 0.9746 |
BHT | 49.50 | 0.9957 | 12.60 | 0.9995 |
Trolox | 6.03 | 0.9925 | 16.50 | 0.9775 |
α-Tocopherol | 7.70 | 0.9961 | 18.72 | 0.9347 |
Ascorbic acid | 5.82 | 0.9668 | 11.74 | 0.9983 |
WEZP peel | 31.50 | 0.9995 | 8.80 | 0.9178 |
WEZP seed | - | - | - | - |
EEZP peel | 16.10 | 0.9310 | 5.90 | 0.9669 |
EEZP seed | - | - | - | - |
P. granatum Juice | - | - | - | - |
Enzyme | AChE | hCA II | α-Glycosidase | α-Amylase | ||||
---|---|---|---|---|---|---|---|---|
IC50 | r2 | IC50 | r2 | IC50 | r2 | IC50 | r2 | |
WEZP peel | 20.0 | 0.9976 | 36.4 | 0.9957 | 28.8 | 0.9420 | 494.3 | 0.7705 |
WEZP seed | 20.4 | 0.9851 | 144.5 | 0.9906 | 6.4 | 0.8819 | 375.8 | 0.8193 |
EEZP peel | 19.7 | 0.9869 | 106.3 | 0.9941 | 7.3 | 0.9399 | 317.7 | 0.7778 |
EEZP seed | 17.8 | 0.9976 | 30.4 | 0.8881 | - | - | ||
P. granatum juice | 22.6 | 0.9951 | 94.0 | 0.9909 | 27.1 | 0.9665 | 70.1 | 0.9999 |
Standards | 5.97 1 | 0.9706 | 8.4 2 | 0.9825 | 22,800 3 | - |
Sample | Antimicrobial Zone (mm) | |
---|---|---|
Escherichia coli ATCC 39628 | Staphylococcuc aureus ATCC 25923 | |
WEZP peel | 8 | 8 |
WEZP seed | R, N.D. | 9 |
EEZP peel | R, N.D. | R, N.D. |
EEZP seed | R, N.D. | R, N.D. |
P. granatum juice | 10 | R, N.D. |
Amc/Clav-30 | 10, R | R, N.D. |
Sxt-25 | R, N.D. | R, N.D. |
Cip-5 | R, N.D. | 10, R |
Gnt-10 | 11, R | R, N.D. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karagecili, H.; İzol, E.; Kirecci, E.; Gulcin, İ. Determination of Antioxidant, Anti-Alzheimer, Antidiabetic, Antiglaucoma and Antimicrobial Effects of Zivzik Pomegranate (Punica granatum)—A Chemical Profiling by LC-MS/MS. Life 2023, 13, 735. https://doi.org/10.3390/life13030735
Karagecili H, İzol E, Kirecci E, Gulcin İ. Determination of Antioxidant, Anti-Alzheimer, Antidiabetic, Antiglaucoma and Antimicrobial Effects of Zivzik Pomegranate (Punica granatum)—A Chemical Profiling by LC-MS/MS. Life. 2023; 13(3):735. https://doi.org/10.3390/life13030735
Chicago/Turabian StyleKaragecili, Hasan, Ebubekir İzol, Ekrem Kirecci, and İlhami Gulcin. 2023. "Determination of Antioxidant, Anti-Alzheimer, Antidiabetic, Antiglaucoma and Antimicrobial Effects of Zivzik Pomegranate (Punica granatum)—A Chemical Profiling by LC-MS/MS" Life 13, no. 3: 735. https://doi.org/10.3390/life13030735
APA StyleKaragecili, H., İzol, E., Kirecci, E., & Gulcin, İ. (2023). Determination of Antioxidant, Anti-Alzheimer, Antidiabetic, Antiglaucoma and Antimicrobial Effects of Zivzik Pomegranate (Punica granatum)—A Chemical Profiling by LC-MS/MS. Life, 13(3), 735. https://doi.org/10.3390/life13030735