Chitinase Is Involved in the Fruiting Body Development of Medicinal Fungus Cordyceps militaris
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Culture Conditions
2.2. Homology Comparison and Bioinformatics Analysis
2.3. cDNA Preparation and qRT-PCR
2.4. Chitinase Activity Assay Method
2.5. Determination of Chitin Content
2.6. Construction of RNAi Strains
2.7. Transmission Electron Microscopy (TEM)
3. Results
3.1. Character of Chitinase in Fruiting Body Development of C. militaris
3.2. Disruption of Chitinase in C. militaris
3.3. Chitinase 1 and 4 Is Involved in Fruit Body Formation of C. militaris
3.4. Increased Cell Wall Chitin Content and Thickness in Chitinase Silenced Strains
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, F.; Zhu, Z.Y.; Sun, X.; Gao, H.; Zhang, Y.M. The Preparation of Three Selenium-Containing Cordyceps militaris Polysaccharides: Characterization and Anti-Tumor Activities. Int. J. Biol. Macromol. 2017, 99, 196–204. [Google Scholar] [CrossRef]
- Song, Q.; Zhu, Z. Using Cordyceps militaris Extracellular Polysaccharides to Prevent Pb2+-Induced Liver and Kidney Toxicity by Activating Nrf2 Signals and Modulating Gut Microbiota. Food Funct. 2020, 11, 9226–9239. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.H.; Park, H.; Sung, G.H.; Lee, K.; Lee, T.; Lee, I.; Park, M.S.; Jung, Y.W.; Shin, Y.S.; Kang, H.; et al. Anti-Influenza Effect of Cordyceps militaris through Immunomodulation in a Dba/2 Mouse Model. J. Microbiol. 2014, 52, 696–701. [Google Scholar] [CrossRef]
- Jo, E.; Jang, H.-J.; Yang, K.E.; Jang, M.S.; Huh, Y.H.; Yoo, H.-S.; Park, J.S.; Jang, I.-S.; Park, S.J. Cordyceps militaris Induces Apoptosis in Ovarian Cancer Cells through Tnf-Alpha/Tnfr1-Mediated Inhibition of Nf-Kappa B Phosphorylation. BMC Complement. Med. Ther. 2020, 20, 1. [Google Scholar] [CrossRef]
- Lu, Y.; Zhi, Y.; Miyakawa, T.; Tanokura, M. Metabolic profiling of natural and cultured Cordyceps by NMR spectroscopy. Sci. Rep. 2019, 9, 7735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, I.P.; Kang, P.D.; Kim, K.Y.; Nam, S.H.; Lee, M.Y.; Choi, Y.S.; Kim, N.S.; Kim, H.K.; Lee, K.G.; Humber, R.A. Fruit Body Formation on Silkworm by Cordyceps militaris. Mycobiology 2010, 38, 128–132. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Huang, C.; Cao, L.; Xie, C.; Han, R. Agrobacterium Tumefaciens-Mediated Transformation as a Tool for Insertional Mutagenesis in Medicinal Fungus Cordyceps militaris. Fungal Biol. 2011, 115, 265–274. [Google Scholar] [CrossRef]
- Wāng, Y.; Wang, R.; Wáng, Y.; Li, Y.; Yang, R.H.; Gong, M.; Shang, J.J.; Zhang, J.S.; Mao, W.J.; Zou, G.; et al. Diverse function and regulation of CmSnf1 in entomopathogenic fungus Cordyceps militaris. Fungal. Genet. Biol. 2020, 142, 103415. [Google Scholar] [CrossRef]
- Lou, H.W.; Zhao, Y.; Chen, B.X.; Yu, Y.H.; Tang, H.B.; Ye, Z.W.; Lin, J.F.; Guo, L.Q. Cmfhp Gene Mediates Fruiting Body Development and Carotenoid Production in Cordyceps militaris. Biomolecules 2020, 10, 410. [Google Scholar] [CrossRef] [Green Version]
- He, R.; Zhang, L.; Lan, J.; Mei, S.; Li, Y. Cmcrf1, a Putative Zn2Cys6 Fungal Transcription Factor, Is Involved in Conidiation, Carotenoid Production, and Fruiting Body Development in Cordyceps militaris. Biology 2022, 11, 1535. [Google Scholar] [CrossRef] [PubMed]
- Jiaojiao, Z.; Fen, W.; Kuanbo, L.; Qing, L.; Ying, Y.; Caihong, D. Heat and light stresses affect metabolite production in the fruit body of the medicinal mushroom Cordyceps militaris. Appl. Microbiol. Biotechnol. 2018, 102, 4523–4533. [Google Scholar] [CrossRef]
- Brown, H.E.; Esher, S.K.; Alspaugh, J.A. Chitin: A “Hidden Figure” in the Fungal Cell Wall. Curr. Top. Microbiol. Immunol. 2020, 425, 83–111. [Google Scholar] [CrossRef]
- Adrangi, S.; Faramarzi, M.A. From Bacteria to Human: A Journey into the World of Chitinases. Biotechnol. Adv. 2013, 31, 1786–1795. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Jiang, X.; Yang, Q. Glycoside Hydrolase Family 18 Chitinases: The Known and the Unknown. Biotechnol. Adv. 2020, 43, 107553. [Google Scholar] [CrossRef]
- Kai, C.; Bing, L.; Lu, Y.; Zhang, S.; Wang, C.J.P.P. Divergent Lysm Effectors Contribute to the Virulence of Beauveria Bassiana by Evasion of Insect Immune Defenses. PLoS Pathog. 2017, 13, e1006604. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, Y.; Nakade, K.; Sato, S.; Yoshida, K.; Miyazaki, K.; Natsume, S.; Konno, N. Lentinula Edodes Genome Survey and Postharvest Transcriptome Analysis. Appl Env. Microbiol. 2017, 83, e02990-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, Z.U.; Li, J.; Khan, N.M.; Mou, W.; Li, D.; Wang, Y.; Feng, S.; Luo, Z.; Mao, L.; Ying, T. Suppression of Cell Wall Degrading Enzymes and Their Encoding Genes in Button Mushrooms (Agaricus Bisporus) by Cacl2 and Citric Acid. Plant Foods Hum. Nutr. 2016, 72, 54–59. [Google Scholar] [CrossRef]
- Krizsán, K.; Almási, É.; Merényi, Z.; Sahu, N.; Virágh, M.; Kószó, T.; Mondo, S.; Kiss, B.; Bálint, B.; Kües, U.; et al. Transcriptomic Atlas of Mushroom Development Reveals Conserved Genes Behind Complex Multicellularity in Fungi. Proc. Natl. Acad. Sci. USA 2019, 116, 7409–7418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, P.; Xia, Y.; Xiao, G.; Xiong, C.; Hu, X.; Zhang, S.; Zheng, H.; Huang, Y.; Zhou, Y.; Wang, S.; et al. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol. 2011, 12, R116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, B.; Yang, Z.; Samma, M.K.; Wang, R.; Shen, W. Systematic Validation of Candidate Reference Genes for Qrt-Pcr Normalization under Iron Deficiency in Arabidopsis. Biometals 2013, 26, 403–413. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing Real-Time Pcr Data by the Comparative C(T) Method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Liu, Y.N.; Liu, B.Y.; Ma, Y.C.; Yang, H.L.; Liu, G.Q. Analysis of Reference Genes Stability and Histidine Kinase Expression under Cold Stress in Cordyceps militaris. PLoS ONE 2020, 15, e0236898. [Google Scholar] [CrossRef] [PubMed]
- Ndlovu, T.; Divol, B.; Bauer, F.F.J.A.; Microbiology, E. Yeast Cell Wall Chitin Reduces Wine Haze Formation. Appl. Environ. Microbiol. 2018, 84, e00668-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franois JM JN, P. A Simple Method for Quantitative Determination of Polysaccharides in Fungal Cell Walls. Nat. Protoc. 2006, 1, 2995–3000. [Google Scholar] [CrossRef]
- Kumar, K.; Sagar, B.K.C.; Giribhattanavar, P.; Patil, S.A. Ultrastructural Analysis of Cell Wall of Drug Resistant and Sensitive Mycobacterium Tuberculosis Isolated from Cerebrospinal Fluid by Transmission Electron Microscope. Microsc. Res. Technol. 2019, 82, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Seidl, V.; Huemer, B.; Seiboth, B.; Kubicek, C.P.J.F.J. A Complete Survey of Trichoderma Chitinases Reveals Three Distinct Subgroups of Family 18 Chitinases. FEBS J. 2010, 272, 5923–5939. [Google Scholar] [CrossRef]
- Riquelme, M.; Aguirre, J.; Bartnicki-Garcia, S.; Braus, G.H.; Feldbrugge, M.; Fleig, U.; Hansberg, W.; Herrera-Estrella, A.; Kamper, J.; Kuck, U.; et al. Fungal Morphogenesis, from the Polarized Growth of Hyphae to Complex Reproduction and Infection Structures. Microbiol. Mol. Biol. Rev. 2018, 82, e00068-17. [Google Scholar] [CrossRef] [Green Version]
- Roncero, C.; Vázquez de Aldana, C.R. Glucanases and Chitinases. Curr. Top. Microbiol. Immunol. 2020, 425, 131–166. [Google Scholar] [CrossRef]
- Zhou, J.; Kang, L.; Liu, C.; Niu, X.; Wang, X.; Liu, H.; Zhang, W.; Liu, Z.; Latgé, J.P.; Yuan, S. Chitinases Play a Key Role in Stipe Cell Wall Extension in the Mushroom Coprinopsis cinerea. Appl. Environ. Microbiol. 2019, 85, e00532-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, Y.; Kim, H.; Choi, H.T. Biochemical Characterization of Chitinase 2 Expressed During the Autolytic Phase of the Inky Cap, Coprinellus Congregatus. J. Microbiol. 2013, 51, 189–193. [Google Scholar] [CrossRef] [PubMed]
- van Munster, J.M.; Nitsche, B.M.; Krijgsheld, P.; van Wijk, A.; Dijkhuizen, L.; Wosten, H.A.; Ram, A.F.; van der Maarel, M. Chitinases Ctcb and Cfci Modify the Cell Wall in Sporulating Aerial Mycelium of Aspergillus Niger. Microbiology 2013, 159 Pt 9, 1853–1867. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Kang, L.; Niu, X.; Wang, J.; Liu, Z.; Yuan, S. Purification, Characterization and Physiological Significance of a Chitinase from the Pilei of Coprinopsis Cinerea Fruiting Bodies. FEMS Microbiol. Lett. 2016, 363, fnw120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arakane, Y.; Muthukrishnan, S. Insect Chitinase and Chitinase-Like Proteins. Cell Mol Life Sci. 2010, 67, 201–216. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Qu, M.; Zhou, Y.; Yang, Q. Structural Analysis of Group Ii Chitinase (Chtii) Catalysis Completes the Puzzle of Chitin Hydrolysis in Insects. J. Biol. Chem. 2018, 293, 2652–2660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curto, M.; Butassi, E.; Ribas, J.C.; Svetaz, L.A.; Cortés, J.C.G. Natural Products Targeting the Synthesis of Β(1,3)-D-Glucan and Chitin of the Fungal Cell Wall. Existing Drugs and Recent Findings. Phytomedicine 2021, 153556, 88. [Google Scholar] [CrossRef]
- Huang, Z.; Hao, Y.; Gao, T.; Huang, Y.; Ren, S.; Keyhani, N.O. The Ifchit1 Chitinase Gene Acts as a Critical Virulence Factor in the Insect Pathogenic Fungus Isaria Fumosorosea. Appl. Microbiol. Biotechnol. 2016, 100, 5491–5503. [Google Scholar] [CrossRef]
- Cai, Q.; Tian, L.; Xie, J.T.; Huang, Q.Y.; Feng, M.G.; Keyhani, N.O. A Fungal Sirtuin Modulates Development and Virulence in the Insect Pathogen, Beauveria Bassiana. Environ. Microbiol. 2021, 23, 5164–5183. [Google Scholar] [CrossRef]
- Kim, S.Y.; Shrestha, B.; Sung, G.H.; Han, S.K.; Sung, J.M. Optimum Conditions for Artificial Fruiting Body Formation of Cordyceps Cardinalis. Mycobiology 2010, 38, 133–136. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Liu, Y.; Guo, Q.; Zheng, Q.; Zhang, W. Metabolomic Comparison between Wild Ophiocordyceps Sinensis and Artificial Cultured Cordyceps militaris. Biomed. Chromatogr. 2018, 32, e4279. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.-J.; Yin, Y.-Y.; Cui, Y.; Zhang, Y.-X.; Liu, B.-Y.; Ma, Y.-C.; Liu, Y.-N.; Liu, G.-Q. Chitinase Is Involved in the Fruiting Body Development of Medicinal Fungus Cordyceps militaris. Life 2023, 13, 764. https://doi.org/10.3390/life13030764
Zhang Z-J, Yin Y-Y, Cui Y, Zhang Y-X, Liu B-Y, Ma Y-C, Liu Y-N, Liu G-Q. Chitinase Is Involved in the Fruiting Body Development of Medicinal Fungus Cordyceps militaris. Life. 2023; 13(3):764. https://doi.org/10.3390/life13030764
Chicago/Turabian StyleZhang, Zi-Juan, Yuan-Yuan Yin, Yao Cui, Yue-Xuan Zhang, Bi-Yang Liu, You-Chu Ma, Yong-Nan Liu, and Gao-Qiang Liu. 2023. "Chitinase Is Involved in the Fruiting Body Development of Medicinal Fungus Cordyceps militaris" Life 13, no. 3: 764. https://doi.org/10.3390/life13030764
APA StyleZhang, Z. -J., Yin, Y. -Y., Cui, Y., Zhang, Y. -X., Liu, B. -Y., Ma, Y. -C., Liu, Y. -N., & Liu, G. -Q. (2023). Chitinase Is Involved in the Fruiting Body Development of Medicinal Fungus Cordyceps militaris. Life, 13(3), 764. https://doi.org/10.3390/life13030764