Inhibitory Effects of Caulerpa racemosa, Ulva intestinalis, and Lobophora challengeriae on Tyrosinase Activity and α-MSH-Induced Melanogenesis in B16F10 Melanoma Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seaweed
2.2. Seaweed Extract Preparation
2.3. Determination of Total Phenolic Contents (TPC)
2.4. Mushroom Tyrosinase Assay
2.5. Melanocyte Cell Culture
2.6. Cell Viability Assay
2.7. Measurement of Cellular Melanin Contents
2.8. Intracellular Tyrosinase Activity Assay
2.9. Statistical Analysis
3. Results
3.1. The Extraction Yields and Total Phenolic Content of Seaweed Extracts
3.2. Mushroom Tyrosinase Inhibitory Activity
3.3. Cytotoxicity of Seaweed Extracts on B16F10 Cells
3.4. Effects of Seaweed Extracts on Melanin Synthesis in B16F10 Cells
3.5. Effects of Seaweed Extracts on Intracellular Tyrosinase Activity in B16F10 Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem. 2017, 32, 403–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Mello, S.; Finlay, G.; Baguley, B.; Askarian-Amiri, M. Signaling pathways in melanogenesis. Int. J. Mol. Sci. 2016, 17, 1144. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, F.B.; Alves, R.C.; Rodrigues, F.; Oliveira, P.P. Macroalgae-derived ingredients for cosmetic industry—An update. Cosmetics 2018, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Briganti, S.; Camera, E.; Picardo, M. Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res. 2003, 16, 101–110. [Google Scholar] [CrossRef]
- Kim, Y.M.; Cho, S.E.; Seo, Y.K. The activation of melanogenesis by p-CREB and MITF signaling with extremely low-frequency electromagnetic fields on B16F10 melanoma. Life Sci. 2016, 162, 25–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, T.S. An Updated Review of Tyrosinase Inhibitors. Int. J. Mol. Sci. 2009, 10, 2440–2475. [Google Scholar] [CrossRef] [Green Version]
- Kubo, I.; Chen, Q.X.; Nihei, K.I. Molecular design of antibrowning agent: Antioxidative tyrosinase inhibitors. Food Chem. 2003, 81, 241–247. [Google Scholar] [CrossRef]
- Slominski, A.; Moellmann, G.; Kuklinska, E.; Bomirski, A.; Pawelek, J. Positive regulation of melanin pigmentation by two key substrates of the melanogenic pathway, L-tyrosine and L-DOPA. J. Cell Sci. 1988, 89, 287–296. [Google Scholar] [CrossRef]
- Kang, S.M.; Heo, S.J.; Kim, K.N.; Lee, S.H.; Yang, H.M.; Kim, A.D.; Jeon, Y.J. Molecular docking studies of phlorotannin, dieckol isolated from Ecklonia cava with tyrosinase inhibitory activity. Bioorg. Med. Chem. 2012, 20, 311–316. [Google Scholar] [CrossRef]
- Chen, B.J.; Shi, M.J.; Cui, S.; Hao, S.X.; Hider, R.C.; Zhou, T. Improved antioxidant and anti-tyrosinase activity of polysaccharide from Sargassum fusiforme by degradation. Int. J. Biol. Macromol. 2016, 92, 715–722. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Jiang, L.; Geng, C.; Cao, J.; Zhong, L. Hydroquinone-induced genotoxicity and oxidative DNA damage in hepg2 cells. Chem. Biol. Interact. 2008, 173, 1–8. [Google Scholar] [CrossRef]
- Smit, N.; Vicanova, J.; Pavel, S. The hunt for natural skin whitening agents. Int. J. Mol. Sci. 2009, 1, 5326–5349. [Google Scholar] [CrossRef] [PubMed]
- Westerhof, W.; Kooyers, T.J. Hydroquinone and its analogues in dermatology-a potential health risk. J. Cosmet. Dermatol. 2005, 4, 55–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burnett, C.L.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Final report of the safety assessment of kojic acid as used in cosmetics. Int. J. Toxicol. 2010, 29, 244–273. [Google Scholar] [CrossRef]
- Cheng, S.L.; Liu, R.H.; Sheu, J.N.; Chen, S.T.; Sinchaikul, S.; Tsay, G.J. Toxicogenomics of A375 human malignant melanoma cell treated with Arbutin. J. Biomed. Sci. 2007, 14, 87–105. [Google Scholar] [CrossRef]
- Salehi, B.; Sharifi-Rad, J.; Seca, A.M.; Pinto, D.C.; Michalak, I.; Trincone, A.; Mishra, A.P.; Nigam, M.; Zam, W.; Martins, N. Current trends on seaweeds: Looking at chemical composition, phytopharmacology, and cosmetic applications. Molecules 2019, 24, 4182. [Google Scholar] [CrossRef] [Green Version]
- Thomas, N.V.; Kim, S.K. Beneficial effects of marine algal compounds in cosmeceuticals. Mar. Drugs 2013, 11, 146–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolorosa, M.T.; Purwaningsih, S.; Anwar, E.; Hidayat, T. Tyrosinase inhibitory activity of Sargassum plagyophyllum and Eucheuma cottonii methanol extracts. Earth Environ. Sci. 2019, 278, 012020. [Google Scholar] [CrossRef]
- Kang, H.S.; Kim, H.R.; Byun, D.S.; Son, B.W.; Nam, T.J.; Choi, J.S. Tyrosinase inhibitors isolated from the edible brown alga Ecklonia stolonifera. Arch. Pharm. Res. 2004, 27, 1226–1232. [Google Scholar] [CrossRef]
- Wang, L.W.; Cui, Y.R.; Yang, H.W.; Lee, G.L.; Ko, J.Y.; Jeon, Y.J. A mixture of seaweed extracts and glycosaminoglycans from sea squirts inhibits α-MSH-induced melanogenesis in B16F10 melanoma cells. J. Fish. Aquat. Sci. 2019, 22, 11. [Google Scholar] [CrossRef]
- Wang, L.; Jayawardena, T.U.; Yang, H.W.; Lee, H.G.; Jeon, Y.J. The potential of sulfated polysaccharides isolated from the brown seaweed Ecklonia maxima in cosmetics: Antioxidant, anti-melanogenesis, and photoprotective activities. Antioxidants 2020, 9, 724. [Google Scholar] [CrossRef] [PubMed]
- Yoon, N.Y.; Eom, T.K.; Kim, M.M.; Kim, S.K. Inhibitory effect of phlorotannins isolated from Ecklonia cava on mushroom tyrosinase activity and melanin formation in mouse B16F10 melanoma cells. J. Agric. Food Chem. 2009, 57, 4124–4129. [Google Scholar] [CrossRef] [PubMed]
- Partoomthai, B.; Songtavisin, T.; Gangnonngiw, W.; Wongprasert, K. In vitro inhibitory effect of sulfated galactans isolated from red alga Gracilaria fisheri on melonogenesis in B16F10 cells. J. Appl. Phycol. 2018, 30, 2611–2618. [Google Scholar] [CrossRef]
- Paudel, P.; Wagle, A.; Seong, H.; Park, H.J.; Jung, H.A.; Choi, J.S. A new tyrosinase inhibitor from the red alga Symphyocladia latiuscula (Harvey) Yamada (Rhodomelaceae). Mar. Drugs 2019, 17, 295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castejón, N.; Thorrinsdottir, K.A.; Einarsdóttir, R.; Krístbergsson, K.; Marteínsdóttir, G. Exploring the potential of Icelandic seaweeds extracts produced by aqueous pulsed electric field-assisted extraction for cosmetic application. Mar. Drugs 2021, 19, 662. [Google Scholar] [CrossRef] [PubMed]
- Zubia, M.; Thomas, O.P.; Soulet, S.; Demoy-Scheider, M.; Saulnier, D.; Connan, S.; Murphy, E.C.; Tintillier, F.; Stiger-Pouvreau, V.; Petek, S. Potential of tropical macroalgae from French Polynesia for biotechnological applications. J. Appl. Phycol. 2020, 32, 2343–2362. [Google Scholar] [CrossRef]
- Agardh, J.G. Till Algernes Systematik, Nya Bidrag; Lunds Universitets Årsskrift, Ny Foeljd, Afdelningen for Mathematik och Naturvetenskap: Lund, Sweden, 1873; 1872, pp. 1–71. [Google Scholar]
- Linnaeus, C. Species Plantarum, Exhibentes Plantas Rite Cognitas, ad Genera Relatas, Cum Differentiis Specificis, Nominibus Trivialibus, Synonymis Selectis, Locis Natalibus, Secundum Systema Sexuale Digestas; Holmiae: Stockholm, Sweden, 1753; pp. 561–1200. [Google Scholar]
- Vieira, C.; De Clerck, O.; Millet, L.; Payri, C.E. Description of ten new Lobophora species from the Bismarck Sea (Papua New Guinea). Phycol. Res. 2019, 67, 228–238. [Google Scholar] [CrossRef]
- Coppejans, E.; Prathep, A.; Lewmanomont, K.; Hayashizaki, K.; De Clerck, O.; Leliaert, F.; Terada, R. Seaweeds and Seagrasses of the Southern Andaman Sea Coast of Thailand; The Kagoshima University Museum: Kagoshima, Japan, 2017. [Google Scholar]
- Lewmanomont, K.; Ogawa, H. Common Seaweeds and Seagrasses of Thailand; Kasetsart University: Bangkok, Thailand, 1995. [Google Scholar]
- Chirapart, A.; Pimla, S.; Praiboon, J.; Boonprab, K.; Akakabe, Y.; Matsui, K.; Kajiwara, T. Contribution to the knowledge of morphometry and sulfated polysaccharides from Thai species of Caulerpa. Algal Resour. 2010, 3, 177–184. [Google Scholar] [CrossRef]
- Ruangchuay, R.; Dahamat, S.; Chirapat, A.; Notoya, M. Effects of culture conditions on the growth and reproduction of Gut Weed, Ulva intestinalis Linnaeus (Ulvales, Chlorophyta). Songklanakarin. J. Sci. Technol. 2012, 34, 501–507. [Google Scholar]
- Vieira, C.; Gaubert, J.; Clerck, O.D.; Payri, C.; Culioli, G.; Thomas, O.P. Biological activities associated to the chemodiversity of the brown algae belonging to genus Lobophora (Dictyotales, Pheophyceae). Phytochem. Rev. 2015, 16, 1–17. [Google Scholar] [CrossRef]
- Agardh, J.G. Novae Species Algarum, quas in Itinere ad oras Maris Rubri Collegit Eduardus Rüppell; cum Observationibus Nonnullis in Species Rariores Antea Cognitas; Museum Senckenbergianum: Frankfurt, Germany, 1837; pp. 169–174. [Google Scholar]
- Agardh, C.A. Species Algarum Rite Cognitae, Cum Synonymis, Differentiis Specificis et Descriptionibus Succinctis; Mauritius: New York, NY, USA, 1822. [Google Scholar]
- Agardh, C.A. Systema Algarum; Literis Berlingianis: Lund, Sweden, 1824. [Google Scholar]
- Kützing, F.T. Tabulae Phycologicae; Oder, Abbildungen der Tange; Algae: Nordhausen, Germany, 1860; pp. 1–39. [Google Scholar]
- Hauck, F. Ueber einige von J.M. Hildebrandt im Rothen Meere und Indischen Ocean gesammelte Algen III, IV. Hedwigia 1887, 26, 18–21, 41–45. [Google Scholar]
- Yamada, Y. Studien über die Meeresalgen von der Insel Formosa. 2. Phaeophyceae. Bot. Mag. 1925, 39, 239–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agardh, J.G. Algae Maris Mediterranei et Adriatici, Observationes in Diagnosin Specierum et Dispositionem Generum; Hardcover: Paris, France, 1842; pp. 1–164. [Google Scholar]
- Park, W.S.; Kim, H.-J.; Li, M.; Lim, D.H.; Kim, J.; Kwak, S.-S.; Kang, C.-M.; Ferruzzi, M.G.; Ahn, M.-J. Two Classes of Pigments, Carotenoids and C-Phycocyanin, in Spirulina Powder and Their Antioxidant Activities. Molecules 2018, 23, 2065. [Google Scholar] [CrossRef] [Green Version]
- Chan, Y.Y.; Kim, K.H.; Cheah, S.H. Inhibitory effects of Sargassum polycystum on tyrosinase activity and melanin formation in B16F10 murine melanoma cell. J. Ethnopharmacol. 2011, 137, 1183–1188. [Google Scholar] [CrossRef]
- Boonpisuttinant, K.; Sodamook, U.; Raksiriwanich, W.; Winitchai, S. In vitro anti-melanogenesis and collagen biosynthesis stimulating activities of Star Grass (Hypoxis aurea Lour.) extract. Asian J. Appl. Sci. 2014, 2, 405–413. [Google Scholar]
- Wang, Z.J.; Xu, W.; Liang, J.W.; Wang, C.S.; Kang, Y. Effect of fucoidan on murine melanoma cell melanin formation and apoptosis. Afr. J. Tradit. Complement. Med. 2017, 14, 149–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiocchio, I.; Mandrone, M.; Sanna, C.; Maxia, A.; Tacchini, M.; Poli, F. Screening of a hundred plant extracts as tyrosinase and elastase inhibitors, two enzymatic targets of cosmetic interest. Ind. Crops Prod. 2018, 122, 498–505. [Google Scholar] [CrossRef]
- Maeda, K.; Fukuda, M. In vitro effectiveness of several whitening cosmetic components in human melanocytes. J. Soc. Cosmet. Chem. 1991, 42, 361–368. [Google Scholar]
- Fernando, I.P.S.; AsankaSanjeewa, K.K.; Samarakoon, K.W. The potential of fucoidans from Chnoospora minima and Sargassum polycystum in cosmetics: Antioxidant, anti-inflammatory, skin-whitening, and antiwrinkle activities. J. Appl. Phycol. 2018, 30, 3223–3232. [Google Scholar] [CrossRef]
- Quah, C.C.; Kim, K.H.; Lau, M.S.; Kim, W.R.; Cheah, S.H.; Gundamaraju, R. Pigmentation and dermal conservative effects of the astonishing algae Sargassum polycystum and Padina tenuis on guinea pigs, human epidermal melanocytes (HEM) and Chang cells. Afr. J. Tradit. Complement. 2014, 11, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Sari, D.M.; Anwar, E.; Arifianti, A.E. Antioxidant and tyrosinase inhibitor activities of ethanol extracts of brown seaweed (Turbinaria conoides) as lightening ingredient. Pharmacogn. J. 2019, 11, 379–382. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.J.; Kim, D.S.; Yoon, H.S.; Lee, W.J.; Lee, N.H.; Hyun, C.G. Melanogenesis inhibitory activity of Korean Undaria pinnatifida in mouse B16 melanoma cells. Interdiscip. Toxicol. 2014, 7, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Shimoda, H.; Tanaka, J.; Shan, S.J.; Maoka, T. Anti-pigmentary activity of fucoxanthin and its influence on skin mRNA expression of melanogenic molecules. J. Pharm. Pharmacol. 2010, 62, 1137–1145. [Google Scholar] [CrossRef] [PubMed]
- Wijesinghe, W.A.J.P.; Jeon, Y.J. Biological activities and potential cosmeceutical applications of bioactive compounds from brown seaweeds: A review. Phytochem. Rev. 2011, 10, 431–443. [Google Scholar] [CrossRef]
- Chang, V.S.; Toe, S.S. Evaluation of heavy metal, antioxidant and anti-tyrosinase activities of red seaweed (Eucheuma cottonii). Int. Food Res. J. 2016, 23, 2370–2373. [Google Scholar]
- Xie, X.T.; Zhang, X.; Liu, Y.; Chen, X.Q.; Cheong, K.L. Quantification of 3,6-andydro-galactose in red seaweed polysaccharides and their potential skin-whitening activity. 3 Biotech 2020, 10, 189. [Google Scholar] [CrossRef]
- Permatasari, H.K.; Nurkolis, F.; Vivo, C.D.; Noor, S.L.; Rahmawati, R.; Radu, S.; Hardinsyah, H.; Taslim, N.A.; Mayulu, N.; Wewengkang, D.S.; et al. Sea grapes powder with the addition of tempe rich in collagen: An anti-aging functional food [version 3; peer review: 2 approved]. F1000Research 2022, 10, 789. [Google Scholar] [CrossRef]
- Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatic. J. Food Drug Anal. 2014, 22, 296–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zárate, R.; Portillo, E.; Teixidó, S.; Carvalho, M.A.P.D.; Nunes, N.; Ferraz, S.; Seca, A.M.; Rosa, G.P.; Barreto, M.C. Pharmacological and cosmeceutical potential of seaweed beach-casts of Macaronesia. Appl. Sci. 2020, 10, 5831. [Google Scholar] [CrossRef]
- Chung, H.Y.; Ma, W.C.J.; Ang, P.O.; Kim, J.S.; Chen, F. Seasonal variations of bromophenols in brown algae (Padina arborescens, Sargassum siliquastrum, and Lobophora variegata) collected in Hong Kong. J. Agric. Food Chem. 2003, 51, 2619–2624. [Google Scholar] [CrossRef] [PubMed]
- Gosch, B.J.; Paul, N.A.; de Nys, R.; Magnusson, M. Seasonal and within-plant variation in fatty acid content and composition in the brown seaweed Spatoglossum macrodontum (Dictyotales, Phaeophyceae). J. Appl. Phycol. 2015, 27, 387–398. [Google Scholar] [CrossRef]
- Targett, N.M.; Boettcher, A.A.; Targett, T.E.; Vrolijk, N.H. Tropical marine herbivore assimilation of phenolic-rich plant. Oecologia 1995, 103, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Matanjun, P.; Mohamed, S.; Mustapha, N.M.; Muhammad, K.; Ming, C.H. Antioxidant activities and phenolics content of eight species of seaweeds from north Borneo. J. Appl. Phycol. 2008, 20, 367–373. [Google Scholar] [CrossRef]
- Targett, N.M.; Coen, L.D.; Boettcher, A.A.; Tanner, C.E. Biogeographic comparisons of marine algal polyphenolics: Evidence against a latitudinal trend. Oecologia 1992, 89, 464–470. [Google Scholar] [CrossRef]
- Zubia, M.; Robledo, D.; Freile-Pelegrin, Y. Antioxidant activities in tropical marine macroalgae from the Yucatan Peninsula, Mexico. J. Appl. Phycol. 2007, 19, 449–458. [Google Scholar] [CrossRef]
- Kim, Y.J.; Uyama, H. Tyrosinase inhibitors from natural and synthetic sources: Structure, inhibition mechanism and perspective for the future. Cell. Mol. Life Sci. 2005, 62, 1707–1723. [Google Scholar] [CrossRef] [PubMed]
- Mekinić, I.G.; Šimat, V.; Botić, V.; Crnjac, A.; Smoljo, M.; Soldo, B.; Ljubenkov, I.; Cagalj, M.; Skroza, D. Bioactive phenolic metabolites from Adriatic brown algae Dictyota dichotoma and Padina pavonica (Dictyotaceae). Foods 2021, 10, 1187. [Google Scholar] [CrossRef]
- Mekinić, I.G.; Skroza, D.; Šimat, V.; Hamed, I.; Čagalj, M.; Perković, P. Phenolic content of brown algae (Pheophyceace) species: Extraction, identification, and quantification. Biomolecules 2019, 9, 244. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.X.; Wijesekara, I.; Li, Y.; Kim, S.K. Phlorotannins as bioactive agents from brown algae. Process. Biochem. 2011, 46, 2219–2224. [Google Scholar] [CrossRef]
- Shibata, T.; Kawaguchi, S.; Hama, Y.; Inagaki, M.; Yamaguchi, K.; Nakamura, T. Local and chemical distribution of phlorotannins in brown algae. J. Appl. Phycol. 2004, 16, 291–296. [Google Scholar] [CrossRef]
- Ko, R.K.; Kang, M.C.; Kim, S.S.; Oh, T.H.; Kim, G.O.; Hyun, C.G.; Hyun, J.W.; Lee, N.H. Anti-melanogenesis constituents from the seaweed Dictyota coriacea. Nat. Prod. Commun. 2013, 8, 1934578X1300800401. [Google Scholar] [CrossRef] [Green Version]
- Zubia, M.; Draisma, S.G.A.; Morrissey, K.L.; Varela-Álvarez, E.; Clerck, O.D. Concise review of the genus Caulerpa J.V. Lamouroux. J. Appl. Phycol. 2020, 32, 23–39. [Google Scholar] [CrossRef]
- Azam, M.S.; Joung, E.; Choi, J.; Kim, H.R. Ethanolic extract from Sargassum serratifolium attenuates hyperpigmentation through CREB/ERK signaling pathways in α-MSH-stimulated B16F10 melanoma cells. J. Appl. Phycol. 2017, 29, 2089–2096. [Google Scholar] [CrossRef]
- Kim, K.N.; Yang, H.M.; Kang, S.M.; Kim, D.; Ahn, G.; Jeon, Y.J. Octaphlorethol A isolated from Ishige foliacea inhibits α-MSH-stimulated induced melanogenesis via ERK pathway in B16F10 melanoma cells. Food Chem. Toxicol. 2013, 59, 521–526. [Google Scholar] [CrossRef] [PubMed]
Sample Code | Species | Location | Collection Time | Voucher Number |
---|---|---|---|---|
Chlorophyta | ||||
CL | Caulerpa lentillifera J. Agardh (1837) [35] | Chonburi Province (12°36′49.1″ N 100°55′26.2″ E) | March 2017 | FIKU_119 |
CR | Caulerpa racemosa (Forsskål) J. Agardh (1873) [27] | Chonburi Province (12°36′49.1″ N 100°55′26.2″ E) | March 2017 | FIKU_120 |
UI | Ulva intestinalis Linnaeus (1753) [28] | Pattani Province (6°52′39.4″ N 101°14′12.1″ E) | January 2017 | FIKU_118 |
UR | Ulva rigida C. Agardh (1823) [36] | Phetchaburi Province (13°02′36.2″ N 100°05′11.0″ E) | August 2017 | FIKU_127 |
Ochrophyta | ||||
SA | Sargassum aquifolium (Turner) C. Agardh (1820) [36] | Chonburi Province (12°36′49.1″ N 100°55′26.2″ E) | May 2017 | FIKU_124 |
SP | Sargassum polycystum C. Agardh (1824) [37] | Chonburi Province (12°36′10.0″ N 100°57′09.7″ E) | March 2017 | FIKU_121 |
TN | Turbinaria conoides (J. Agardh) Kützing (1860) [38] | Chonburi Province (12°36′49.1″ N 100°55′26.2″ E) | May 2017 | FIKU_125 |
TT | Turbinaria coniodes (J. Agardh) Kützing (1860) [38] | Trat Province (12°11′13.2″ N 102°18′04.6″ E) | March 2017 | FIKU_122 |
PA | Padina australis Hauck (1887) [39] | Chonburi Province (12°36′10.0″ N 100°57′09.7″ E) | April 2017 | FIKU_123 |
PM | Padina minor Yamada (1925) [40] | Trat Province (12°11′13.2″ N 102°18′04.6″ E) | December 2016 | FIKU_117 |
LC | Lobophora challengeriae C. W. Vieira (2019) [29] | Chonburi Province (12°36′49.1″ N 100°55′26.2″ E) | May 2017 | FIKU_126 |
Rhodophyta | ||||
GR | Gracilaria dura (C. Agardh) J. Agardh (1842) [41] | Chonburi Province (13°12′30.0″ N 100°58′29.2″ E) | September 2016 | FIKU_116 |
Sample | IC50 (mg mL −1) |
---|---|
Caulerpa lentillifera (CL) | >5.00 |
Caulerpa racemose (CR) | >5.00 |
Ulva intestinalis (UI) | 3.35 ± 0.12 |
Ulva rigida (UR) | >5.00 |
Sargassum aquifolium (SA) | 4.56 ± 0.14 |
Sargassum polycystum (SP) | 1.24 ± 0.24 |
Turbinalis coniodes (TN) | >5.00 |
Turbinalis coniodes (TT) | 4.62 ± 0.04 |
Padina australis (PA) | 1.09 ± 0.03 |
Padina minor (PM) | 1.23 ± 0.06 |
Lobophora challengeriae (LC) | 0.15 ± 0.01 |
Gracilaria dura (GR) | >5.00 |
Kojic acid (K) | 0.35 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choosuwan, P.; Praiboon, J.; Boonpisuttinant, K.; Klomjit, A.; Muangmai, N.; Ruangchuay, R.; Chirapart, A. Inhibitory Effects of Caulerpa racemosa, Ulva intestinalis, and Lobophora challengeriae on Tyrosinase Activity and α-MSH-Induced Melanogenesis in B16F10 Melanoma Cells. Life 2023, 13, 934. https://doi.org/10.3390/life13040934
Choosuwan P, Praiboon J, Boonpisuttinant K, Klomjit A, Muangmai N, Ruangchuay R, Chirapart A. Inhibitory Effects of Caulerpa racemosa, Ulva intestinalis, and Lobophora challengeriae on Tyrosinase Activity and α-MSH-Induced Melanogenesis in B16F10 Melanoma Cells. Life. 2023; 13(4):934. https://doi.org/10.3390/life13040934
Chicago/Turabian StyleChoosuwan, Pradtana, Jantana Praiboon, Korawinwich Boonpisuttinant, Anirut Klomjit, Narongrit Muangmai, Rapeeporn Ruangchuay, and Anong Chirapart. 2023. "Inhibitory Effects of Caulerpa racemosa, Ulva intestinalis, and Lobophora challengeriae on Tyrosinase Activity and α-MSH-Induced Melanogenesis in B16F10 Melanoma Cells" Life 13, no. 4: 934. https://doi.org/10.3390/life13040934
APA StyleChoosuwan, P., Praiboon, J., Boonpisuttinant, K., Klomjit, A., Muangmai, N., Ruangchuay, R., & Chirapart, A. (2023). Inhibitory Effects of Caulerpa racemosa, Ulva intestinalis, and Lobophora challengeriae on Tyrosinase Activity and α-MSH-Induced Melanogenesis in B16F10 Melanoma Cells. Life, 13(4), 934. https://doi.org/10.3390/life13040934