DHX37 and NR5A1 Variants Identified in Patients with 46,XY Partial Gonadal Dysgenesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients Description
2.2. Methods
2.2.1. Sequencing
2.2.2. Whole Exome Sequencing Analysis
2.2.3. In Silico Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, P.A.; Houk, C.P.; Ahmed, S.F.; Hughes, I.A. Consensus Statement on Management of Intersex Disorders. Pediatrics 2006, 118, 488–500. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.A.; Nordenström, A.; Houk, C.P.; Ahmed, S.F.; Auchus, R.; Baratz, A.; Baratz Dalke, K.; Liao, L.-M.; Lin-Su, K.; Looijenga, L.H.J., 3rd; et al. Global Disorders of Sex Development Update since 2006: Perceptions, Approach and Care. Horm. Res. Paediatr. 2016, 85, 158–180. [Google Scholar] [CrossRef] [PubMed]
- Bashamboo, A.; McElreavey, K. Mechanism of Sex Determination in Humans: Insights from Disorders of Sex Development. Sex. Dev. 2016, 10, 313–325. [Google Scholar] [CrossRef]
- Berkovitz, G.D.; Seeherunvong, T. Abnormalities of gonadal differentiation. Baillieres Clin. Endocrinol. Metab. 1998, 12, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Gomes, N.L.; Chetty, T.; Jorgensen, A.; Mitchell, R.T. Disorders of Sex Development—Novel Regulators, Impacts on Fertility, and Options for Fertility Preservation. Int. J. Mol. Sci. 2020, 21, 2282. [Google Scholar] [CrossRef]
- McElreavey, K.; Pailhoux, E.; Bashamboo, A. DHX37 and 46,XY DSD: A New Ribosomopathy? Sex. Dev. 2022, 16, 194–206. [Google Scholar] [CrossRef]
- Elamo, H.P.; Virtanen, H.E.; Toppari, J. Genetics of cryptorchidism and testicular regression. Best Pr. Res. Clin. Endocrinol. Metab. 2022, 36, 101619. [Google Scholar] [CrossRef]
- Heksch, R.A.; Matheson, M.A.; Tishelman, A.C.; Swartz, J.M.; Jayanthi, V.R.; Diamond, D.A.; Harrison, C.J.; Chan, Y.M.; Nahata, L. Testicular Regression Syndrome: Practice Variation in Diagnosis and Management. Endocr Pract. 2019, 25, 779–786. [Google Scholar] [CrossRef]
- Aynsley-Green, A.; Zachmann, M.; Illig, R.; Rampini, S.; Prader, A. Congenital bilateral anorchia in childhood: A clinical, endocrine and therapeutic evaluation of twenty-one cases. Clin. Endocrinol. 1976, 5, 381–391. [Google Scholar] [CrossRef]
- Rosenberg, C.; Mustacchi, Z.; Braz, A.; Arnhold, I.J.; Chu, T.H.; Carnevale, J.; Frota-Pessoa, O. Testicular regression in a patient with virilized female phenotype. Am. J. Med. Genet 1984, 19, 183–188. [Google Scholar] [CrossRef]
- McElreavey, K.; Jorgensen, A.; Eozenou, C.; Merel, T.; Bignon-Topalovic, J.; Tan, D.S.; Houzelstein, D.; Buonocore, F.; Warr, N.; Kay, R.G.G.; et al. Pathogenic variants in the DEAH-box RNA helicase DHX37 are a frequent cause of 46,XY gonadal dysgenesis and 46,XY testicular regression syndrome. Genet. Med. 2019, 22, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Rocha, V.B.C.; Guerra-Júnior, G.; Marques-de-Faria, A.P.; de Mello, M.P.; Maciel-Guerra, A.T. Complete gonadal dysgenesis in clinical practice: The 46,XY karyotype accounts for more than one third of cases. Fertil. Steril. 2011, 96, 1431–1434. [Google Scholar] [CrossRef]
- Hawkins, J.; Taylor, A.; Goodfellow, P.; Migeon, C.; Smith, K.; Berkovitzt, G. Evidence for Increased Prevalence of SRY Mutations in XY Females with Complete Rather than Partial Gonadal Dysgenesis. Am. J. Hum. Genet 1992, 51, 979–984. [Google Scholar] [PubMed]
- Tagliarini, E.B.; Assumpção, J.G.; Scolfaro, M.R.; Mello, M.P.d.; Maciel-Guerra, A.T.; Guerra Júnior, G.; Hackel, C. Mutations in SRY and WT1 genes required for gonadal development are not responsible for XY partial gonadal dysgenesis. Braz. J. Med. Biol. Res. 2005, 38, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Arboleda, V.A.; Sandberg, D.E.; Vilain, E. DSDs: Genetics, underlying pathologies and psychosexual differentiation. Nat. Rev. Endocrinol. 2014, 10, 603–615. [Google Scholar] [CrossRef]
- Baxter, R.M.; Arboleda, V.A.; Lee, H.; Barseghyan, H.; Adam, M.P.; Fechner, P.Y.; Bargman, R.; Keegan, C.; Travers, S.; Schelley, S.; et al. Exome sequencing for the diagnosis of 46,XY disorders of sex development. J. Clin. Endocrinol. Metab. 2015, 100, E333–E344. [Google Scholar] [CrossRef]
- Achermann, J.C.; Ito, M.; Ito, M.; Hindmarsh, P.C.; Jameson, J.L. A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat. Genet 1999, 22, 125–126. [Google Scholar] [CrossRef]
- Achermann, J.C.; Ozisik, G.; Ito, M.; Orun, U.A.; Harmanci, K.; Gurakan, B.; Jameson, J.L. Gonadal determination and adrenal development are regulated by the orphan nuclear receptor steroidogenic factor-1, in a dose-dependent manner. J. Clin. Endocrinol. Metab. 2002, 87, 1829–1833. [Google Scholar] [CrossRef]
- Buonocore, F.; Clifford-Mobley, O.; King, T.F.J.; Striglioni, N.; Man, E.; Suntharalingham, J.P.; del Valle, I.; Lin, L.; Lagos, C.F.; Rumsby, G.; et al. Next-Generation Sequencing Reveals Novel Genetic Variants (SRY, DMRT1, NR5A1, DHH, DHX37) in Adults With 46,XY DSD. J. Endocr. Soc. 2019, 3, 2341–2360. [Google Scholar] [CrossRef]
- Fabbri-Scallet, H.; Sousa, L.M.; Maciel-Guerra, A.T.; Guerra-Júnior, G.; Mello, M.P. Mutation update for the NR5A1 gene involved in DSD and infertility. Hum. Mutat. 2019, 41, 58–68. [Google Scholar] [CrossRef]
- Globa, E.; Zelinska, N.; Shcherbak, Y.; Bignon-Topalovic, J.; Bashamboo, A.; McElreavey, K. Disorders of Sex Development in a Large Ukrainian Cohort: Clinical Diversity and Genetic Findings. Front. Endocrinol. 2022, 13, 810782. [Google Scholar] [CrossRef] [PubMed]
- Parker, K.L.; Rice, D.A.; Lala, D.S.; Ikeda, Y.; Luo, X.; Wong, M.; Bakke, M.; Zhao, L.; Frigeri, C.; Hanley, A.N.; et al. Steroidogenic Factor 1: An Essential Mediator of Endocrine Development. Recent Prog. Horm. Res. 2002, 57, 19–36. [Google Scholar] [CrossRef]
- Camats, N.; Fernández-Cancio, M.; Audí, L.; Schaller, A.; Flück, C.E. Broad phenotypes in heterozygous NR5A1 46,XY patients with a disorder of sex development: An oligogenic origin? Eur. J. Hum. Genet. 2018, 26, 1329–1338. [Google Scholar] [CrossRef]
- Fabbri-Scallet, H.; Werner, R.; Guaragna, M.S.; de Andrade, J.G.R.; Maciel-Guerra, A.T.; Hornig, N.C.; Hiort, O.; Guerra-Júnior, G.; de Mello, M.P. Can Non-Coding NR5A1 Gene Variants Explain Phenotypes of Disorders of Sex Development? Sex. Dev. 2022, 16, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Flück, C.E.; Audí, L.; Fernández-Cancio, M.; Sauter, K.-S.; Martinez de LaPiscina, I.; Castaño, L.; Esteva, I.; Camats, N. Broad Phenotypes of Disorders/Differences of Sex Development in MAMLD1 Patients Through Oligogenic Disease. Front. Genet. 2019, 10, 746. [Google Scholar] [CrossRef] [PubMed]
- da Silva, T.E.; Gomes, N.L.; Lerário, A.M.; Keegan, C.E.; Nishi, M.Y.; Carvalho, F.M.; Vilain, E.; Barseghyan, H.; Martinez-Aguayo, A.; Forclaz, M.V.; et al. Genetic Evidence of the Association of DEAH-Box Helicase 37 Defects With 46,XY Gonadal Dysgenesis Spectrum. J. Clin. Endocrinol. Metab. 2019, 104, 5923–5934. [Google Scholar] [CrossRef] [PubMed]
- Karaca, E.; Harel, T.; Pehlivan, D.; Jhangiani, S.N.; Gambin, T.; Coban Akdemir, Z.; Gonzaga-Jauregui, C.; Erdin, S.; Bayram, Y.; Campbell, I.M.; et al. Genes that Affect Brain Structure and Function Identified by Rare Variant Analyses of Mendelian Neurologic Disease. Neuron 2015, 88, 499–513. [Google Scholar] [CrossRef] [PubMed]
- Paine, I.; Posey, J.E.; Grochowski, C.M.; Jhangiani, S.N.; Rosenheck, S.; Kleyner, R.; Marmorale, T.; Yoon, M.; Wang, K.; Robison, R.; et al. Paralog Studies Augment Gene Discovery: DDX and DHX Genes. Am. J. Hum. Genet. 2019, 105, 302–316. [Google Scholar] [CrossRef]
- Bleichert, F.; Baserga, S.J. The Long Unwinding Road of RNA Helicases. Mol. Cell 2007, 27, 339–352. [Google Scholar] [CrossRef]
- Choudhury, P.; Hackert, P.; Memet, I.; Sloan, K.E.; Bohnsack, M.T. The human RNA helicase DHX37 is required for release of the U3 snoRNP from pre-ribosomal particles. RNA Biol. 2019, 16, 54–68. [Google Scholar] [CrossRef]
- Maciel-Guerra, A.T.; Guerra-Júnior, G. Menino Ou Menina? Os Distúrbios da Diferenciação do Sexo; Appris Editora e Livraria Eireli-ME: Curitiba, Brasil, 2019; Volumes 1 and 2. [Google Scholar]
- Gomes, N.L.; Batista, R.L.; Nishi, M.Y.; Lerário, A.M.; Silva, T.E.; de Moraes Narcizo, A.; Benedetti, A.F.F.; de Assis Funari, M.F.; Faria Junior, J.A.; Moraes, D.R.; et al. Contribution of Clinical and Genetic Approaches for Diagnosing 209 Index Cases with 46,XY Differences of Sex Development. J. Clin. Endocrinol. Metab. 2022, 107, 1797–1806. [Google Scholar] [CrossRef] [PubMed]
- Zidoune, H.; Martinerie, L.; Tan, D.S.; Askari, M.; Rezgoune, D.; Ladjouze, A.; Boukri, A.; Benelmadani, Y.; Sifi, K.; Abadi, N.; et al. Expanding DSD Phenotypes Associated with Variants in the DEAH-Box RNA Helicase DHX37. Sex. Dev. 2021, 15, 244–252. [Google Scholar] [CrossRef]
- Lek, M.; Karczewski, K.J.; Minikel, E.V.; Samocha, K.E.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.H.; Ware, J.S.; Hill, A.J.; Cummings, B.B.; et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016, 536, 285–291. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Walbott, H.; Mouffok, S.; Capeyrou, R.; Lebaron, S.; Humbert, O.; van Tilbeurgh, H.; Henry, Y.; Leulliot, N. Prp43p contains a processive helicase structural architecture with a specific regulatory domain. EMBO J. 2010, 29, 2194–2204. [Google Scholar] [CrossRef]
- Shen, X.; Song, S.; Li, C.; Zhang, J. Synonymous mutations in representative yeast genes are mostly strongly non-neutral. Nature 2022, 606, 725–731. [Google Scholar] [CrossRef] [PubMed]
Clinical and Laboratorial Data | Patient 1 | Patient 2 | Patient 3 | Patient 4 |
---|---|---|---|---|
Sex of rearing | Male | Female | Male | Male |
Karyotype | 46,XY | 46,XY | 46,XY | 46,XY |
Age at 1st evaluation | 1 month | 17 years | 0.5 month | 12 years |
Diagnosis | PGD | PGD | PGD | PGD |
Prader | 5 | 2 | 4 | 4 |
EMS | 8 | 0 | 6 | 8 |
EGS | 8.5 | 1 | 9 | 10 |
Uterus | - | - | - | - |
Gonadal position | Inguinal/Inguinal | Abdominal/Abdominal | Labioscrotal/Labioscrotal | Labioscrotal/Labioscrotal |
Gonadal histology | DT/DT | DT/streak | DT/DT | DT/DT |
LH (IU/L) | 2.7 | 13.9 | 7.5 | 2.8 |
LH Reference range | 0.6–3.5 | 0.6–8.5 | 0.6–3.5 | 0.6–8.5 |
FSH (IU/L) | 12.4 | 72.1 | 11.8 | 20.7 |
FSH Reference range | 0.5–4.5 | 0.5–9.5 | 0.5–4.5 | 0.5–9.5 |
T (ng/dL) | 154 | 70 | 108 | 20 |
T Reference range | 100–300 | 100–750 | 100–300 | 100–750 |
Patient | Gene | Nucleotide/Amino Acid Alteration | SNP ID | Allele Frequency/Allele Count * | In Silico Prediction Tools | Inheritance | ||||
---|---|---|---|---|---|---|---|---|---|---|
ACMG Guidelines | CADD Score | Mutation Taster | PolyPhen | SIFT | ||||||
1 | DHX37 | c.923G>A/ p.Arg308Gln | rs1384892917 | 0.00006490 1/1 | Pathogenic | 33 | Disease causing | Probably damaging | Deleterious | Mother: WT Father: NA |
2 | DHX37 | c.1399C>G/ p.Leu467Val | rs149331610 | 0.0002952 1/38 | VUS | 22.2 | Disease causing | Probably damaging | Deleterious | Maternal |
NR5A1 | c.288_304del/ p.(Met98Glyfs*45) | NA | NA | - | NA | - | - | - | Paternal | |
3 | DHX37 | c.2995G>A/ p.Val999Met | rs148710712 | 0.002316 2/54 | Likely Benign | 24.8 | Disease causing | Probably damaging | Deleterious | Paternal |
NR5A1 | c.11C>A/ p.(Ser4*) | NA | NA | - | 37 | - | - | - | de novo | |
4 | DHX37 | c.2995G>A/ p.Val999Met | rs148710712 | 0.002316 2/54 | Likely Benign | 24.8 | Disease causing | Probably damaging | Deleterious | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, F.R.; Mazzola, T.N.; de Mello, M.P.; Francese-Santos, A.P.; Lemos-Marini, S.H.V.d.; Maciel-Guerra, A.T.; Hiort, O.; Werner, R.; Guerra-Junior, G.; Fabbri-Scallet, H. DHX37 and NR5A1 Variants Identified in Patients with 46,XY Partial Gonadal Dysgenesis. Life 2023, 13, 1093. https://doi.org/10.3390/life13051093
de Oliveira FR, Mazzola TN, de Mello MP, Francese-Santos AP, Lemos-Marini SHVd, Maciel-Guerra AT, Hiort O, Werner R, Guerra-Junior G, Fabbri-Scallet H. DHX37 and NR5A1 Variants Identified in Patients with 46,XY Partial Gonadal Dysgenesis. Life. 2023; 13(5):1093. https://doi.org/10.3390/life13051093
Chicago/Turabian Stylede Oliveira, Felipe Rodrigues, Taís Nitsch Mazzola, Maricilda Palandi de Mello, Ana Paula Francese-Santos, Sofia Helena V. de Lemos-Marini, Andrea Trevas Maciel-Guerra, Olaf Hiort, Ralf Werner, Gil Guerra-Junior, and Helena Fabbri-Scallet. 2023. "DHX37 and NR5A1 Variants Identified in Patients with 46,XY Partial Gonadal Dysgenesis" Life 13, no. 5: 1093. https://doi.org/10.3390/life13051093
APA Stylede Oliveira, F. R., Mazzola, T. N., de Mello, M. P., Francese-Santos, A. P., Lemos-Marini, S. H. V. d., Maciel-Guerra, A. T., Hiort, O., Werner, R., Guerra-Junior, G., & Fabbri-Scallet, H. (2023). DHX37 and NR5A1 Variants Identified in Patients with 46,XY Partial Gonadal Dysgenesis. Life, 13(5), 1093. https://doi.org/10.3390/life13051093