Aptasensors Are Conjectured as Promising ALT and AST Diagnostic Tools for the Early Diagnosis of Acute Liver Injury
Abstract
:1. Introduction
1.1. Evaluation and Outcome of Hypothesis: ALT and AST Biosensors/Aptasensors as Self-Health and Liver Function Monitors
1.2. Consequences of Hypothesis and Discussion: Aptasensors as Rapid Point-of-Care Detection of ALT/AST and Self-Health Monitor
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bartosch, B. Hepatitis B and C Viruses and Hepatocellular Carcinoma. Viruses 2010, 2, 1504–1509. [Google Scholar] [CrossRef] [PubMed]
- Ringehan, M.; McKeating, J.A.; Protzer, U. Viral Hepatitis and Liver Cancer. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160274. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.R.; Flamm, S.L.; Di Bisceglie, A.M.; Bodenheimer, H.C. Public Policy Committee of the American Association for the Study of Liver Disease Serum Activity of Alanine Aminotransferase (ALT) as an Indicator of Health and Disease. Hepatology 2008, 47, 1363–1370. [Google Scholar] [CrossRef] [PubMed]
- McGill, M.R. The Past and Present of Serum Aminotransferases and the Future of Liver Injury Biomarkers. EXCLI J. 2016, 15, 817. [Google Scholar] [PubMed]
- Huang, X.-J.; Choi, Y.-K.; Im, H.-S.; Yarimaga, O.; Yoon, E.; Kim, H.-S. Aspartate Aminotransferase (AST/GOT) and Alanine Aminotransferase (ALT/GPT) Detection Techniques. Sensors 2006, 6, 756–782. [Google Scholar] [CrossRef]
- Noviana, E.; Ozer, T.; Carrell, C.S.; Link, J.S.; McMahon, C.; Jang, I.; Henry, C.S. Microfluidic Paper-Based Analytical Devices: From Design to Applications. Chem. Rev. 2021, 121, 11835–11885. [Google Scholar] [CrossRef]
- Pollock, N.R.; Rolland, J.P.; Kumar, S.; Beattie, P.D.; Jain, S.; Noubary, F.; Wong, V.L.; Pohlmann, R.A.; Ryan, U.S.; Whitesides, G.M. A Paper-Based Multiplexed Transaminase Test for Low-Cost, Point-of-Care Liver Function Testing. Sci. Transl. Med. 2012, 4, 152ra129. [Google Scholar] [CrossRef]
- Citartan, M.; Tang, T.-H. Recent Developments of Aptasensors Expedient for Point-of-Care (POC) Diagnostics. Talanta 2019, 199, 556–566. [Google Scholar] [CrossRef]
- Hock, B. Antibodies for Immunosensors a Review. Anal. Chim. Acta 1997, 347, 177–186. [Google Scholar] [CrossRef]
- Odeh, F.; Nsairat, H.; Alshaer, W.; Ismail, M.A.; Esawi, E.; Qaqish, B.; Bawab, A.A.; Ismail, S.I. Aptamers Chemistry: Chemical Modifications and Conjugation Strategies. Molecules 2019, 25, 3. [Google Scholar] [CrossRef]
- Hermann, T.; Patel, D.J. Adaptive Recognition by Nucleic Acid Aptamers. Science 2000, 287, 820–825. [Google Scholar] [CrossRef] [PubMed]
- Ng, A.; Chinnappan, R.; Eissa, S.; Liu, H.; Tlili, C.; Zourob, M. Selection, Characterization, and Biosensing Application of High Affinity Congener-Specific Microcystin-Targeting Aptamers. Environ. Sci. Technol. 2012, 46, 10697–10703. [Google Scholar] [CrossRef] [PubMed]
- Chinnappan, R.; Rahamn, A.A.; AlZabn, R.; Kamath, S.; Lopata, A.L.; Abu-Salah, K.M.; Zourob, M. Aptameric Biosensor for the Sensitive Detection of Major Shrimp Allergen, Tropomyosin. Food Chem. 2020, 314, 126133. [Google Scholar] [CrossRef] [PubMed]
- Aljohani, M.M.; Chinnappan, R.; Eissa, S.; Alsager, O.A.; Weber, K.; Cialla-May, D.; Popp, J.; Zourob, M. In Vitro Selection of Specific DNA Aptamers Against the Anti-Coagulant Dabigatran Etexilate. Sci. Rep. 2018, 8, 13290. [Google Scholar] [CrossRef]
- Eissa, S.; Siddiqua, A.; Chinnappan, R.; Zourob, M. Electrochemical SELEX Technique for the Selection of DNA Aptamers against the Small Molecule 11-Deoxycortisol. ACS Appl. Bio Mater. 2019, 2, 2624–2632. [Google Scholar] [CrossRef]
- Chinnappan, R.; AlAmer, S.; Eissa, S.; Rahamn, A.A.; Abu Salah, K.M.; Zourob, M. Fluorometric Graphene Oxide-Based Detection of Salmonella Enteritis Using a Truncated DNA Aptamer. Microchim. Acta 2017, 185, 61. [Google Scholar] [CrossRef]
- Siatka, C.; Duc, A.-C.; Hanzek, A. High-Specificity Nucleic Acid Aptamers for Detection of Ovarian Cancer Protein Biomarkers: Application in Diagnostics. Aptamers 2021, 5, 7–14. [Google Scholar]
- Crevillen, A.G.; Mayorga-Martinez, C.C.; Zelenka, J.; Rimpelová, S.; Ruml, T.; Pumera, M. 3D-Printed Transmembrane Glycoprotein Cancer Biomarker Aptasensor. Appl. Mater. Today 2021, 24, 101153. [Google Scholar] [CrossRef]
- Díaz-Fernández, A.; Lorenzo-Gómez, R.; Miranda-Castro, R.; de-los-Santos-Álvarez, N.; Lobo-Castañón, M.J. Electrochemical Aptasensors for Cancer Diagnosis in Biological Fluids—A Review. Anal. Chim. Acta 2020, 1124, 1–19. [Google Scholar] [CrossRef]
- Dhiman, A.; Kalra, P.; Bansal, V.; Bruno, J.G.; Sharma, T.K. Aptamer-Based Point-of-Care Diagnostic Platforms. Sens. Actuators B Chem. 2017, 246, 535–553. [Google Scholar] [CrossRef]
- Huang, R.; Xi, Z.; Deng, Y.; He, N. Fluorescence Based Aptasensors for the Determination of Hepatitis B Virus e Antigen. Sci. Rep. 2016, 6, 31103. [Google Scholar] [CrossRef]
- Wang, T.; Chen, L.; Chikkanna, A.; Chen, S.; Brusius, I.; Sbuh, N.; Veedu, R.N. Development of Nucleic Acid Aptamer-Based Lateral Flow Assays: A Robust Platform for Cost-Effective Point-of-Care Diagnosis. Theranostics 2021, 11, 5174. [Google Scholar] [CrossRef] [PubMed]
- Gening, L.V.; Klincheva, S.A.; Reshetnjak, A.; Grollman, A.P.; Miller, H. RNA Aptamers Selected against DNA Polymerase β Inhibit the Polymerase Activities of DNA Polymerases β and κ. Nucleic Acids Res. 2006, 34, 2579–2586. [Google Scholar] [CrossRef]
- Lakhin, A.; Tarantul, V.; Gening, L. Aptamers: Problems, Solutions and Prospects. Acta Nat. Aнглoязычнaя Bepcия 2013, 5, 34–43. [Google Scholar] [CrossRef]
- Liu, Y.; Kuan, C.-T.; Mi, J.; Zhang, X.; Clary, B.M.; Bigner, D.D.; Sullenger, B.A. Aptamers Selected against the Unglycosylated EGFRvIII Ectodomain and Delivered Intracellularly Reduce Membrane-Bound EGFRvIII and Induce Apoptosis. Biol. Chem. 2009, 390, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Raddatz, M.L.; Dolf, A.; Endl, E.; Knolle, P.; Famulok, M.; Mayer, G. Enrichment of Cell-targeting and Population-specific Aptamers by Fluorescence-activated Cell Sorting. Angew. Chem. Int. Ed. 2008, 47, 5190–5193. [Google Scholar] [CrossRef] [PubMed]
- Kunii, T.; Ogura, S.; Mie, M.; Kobatake, E. Selection of DNA Aptamers Recognizing Small Cell Lung Cancer Using Living Cell-SELEX. Analyst 2011, 136, 1310–1312. [Google Scholar] [CrossRef]
- Adachi, T.; Nakamura, Y. Aptamers: A Review of Their Chemical Properties and Modifications for Therapeutic Application. Molecules 2019, 24, 4229. [Google Scholar] [CrossRef]
- Ni, S.; Yao, H.; Wang, L.; Lu, J.; Jiang, F.; Lu, A.; Zhang, G. Chemical Modifications of Nucleic Acid Aptamers for Therapeutic Purposes. Int. J. Mol. Sci. 2017, 18, 1683. [Google Scholar] [CrossRef]
- Bhardwaj, T.; Kumar Sharma, T. Aptasensors for Full Body Health Checkup. Biosens. Bioelectron. X 2022, 11, 100199. [Google Scholar] [CrossRef]
- Bunyarataphan, S.; Dharakul, T.; Fucharoen, S.; Paiboonsukwong, K.; Japrung, D. Glycated Albumin Measurement Using an Electrochemical Aptasensor for Screening and Monitoring of Diabetes Mellitus. Electroanalysis 2019, 31, 2254–2261. [Google Scholar] [CrossRef]
- Matharu, Z.; Patel, D.; Gao, Y.; Haque, A.; Zhou, Q.; Revzin, A. Detecting Transforming Growth Factor-β Release from Liver Cells Using an Aptasensor Integrated with Microfluidics. Anal. Chem. 2014, 86, 8865–8872. [Google Scholar] [CrossRef]
- Sun, H.; Wang, N.; Zhang, L.; Meng, H.; Li, Z. Aptamer-Based Sensors for Thrombin Detection Application. Chemosensors 2022, 10, 255. [Google Scholar] [CrossRef]
- Liu, G.; Gurung, A.S.; Qiu, W. Lateral Flow Aptasensor for Simultaneous Detection of Platelet-Derived Growth Factor-BB (PDGF-BB) and Thrombin. Molecules 2019, 24, 756. [Google Scholar] [CrossRef]
- Paraíso, L.F.; Paula, L.; Franco, D.L.; Madurro, J.M.; Brito-Madurro, A.G. Bioelectrochemical Detection of Alanine Aminotransferase for Molecular Diagnostic of the Liver Disease. Int. J. Electrochem. Sci. 2014, 9, 1286–1297. [Google Scholar]
- Xuan, G.S.; Oh, S.W.; Choi, E.Y. Development of an Electrochemical Immunosensor for Alanine Aminotransferase. Biosens. Bioelectron. 2003, 19, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.; Wu, M.; Cai, X.; Tu, Y. A Nano-Functionalized Real-Time Electrochemiluminescent Biosensor for Alanine Transaminase Assay. Sci. China Chem. 2011, 54, 816–821. [Google Scholar] [CrossRef]
- Song, M.-J.; Yun, D.-H.; Hong, S.-I. An Electrochemical Biosensor Array for Rapid Detection of Alanine Aminotransferase and Aspartate Aminotransferase. Biosci. Biotechnol. Biochem. 2009, 73, 474–478. [Google Scholar] [CrossRef]
- Hsueh, C.-J.; Wang, J.H.; Dai, L.; Liu, C.-C. Determination of Alanine Aminotransferase with an Electrochemical Nano Ir-C Biosensor for the Screening of Liver Diseases. Biosensors 2011, 1, 107–117. [Google Scholar] [CrossRef]
- Lai, W.; Shi, Y.; Zhong, J.; Zhou, X.; Yang, Y.; Chen, Z.; Zhang, C. A Dry Chemistry-Based Electrochemiluminescence Device for Point-of-Care Testing of Alanine Transaminase. Talanta 2023, 256, 124287. [Google Scholar] [CrossRef]
- Tian, D.; Xiang, W.; Wang, H.; Jiang, W.; Li, T.; Yang, M. Optical Assay Using B-Doped Core–Shell Fe@BC Nanozyme for Determination of Alanine Aminotransferase. Microchim. Acta 2022, 189, 147. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.D.; Song, S.Y.; Lee, J.H.; Lee, D.S.; Yoon, H.C. Multienzyme-Modified Biosensing Surface for the Electrochemical Analysis of Aspartate Transaminase and Alanine Transaminase in Human Plasma. Anal. Bioanal. Chem. 2011, 400, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, C.-J.; Wang, J.H.; Dai, L.; Liu, C.-C. Development of an Electrochemical-Based Aspartate Aminotransferase Nanoparticle Ir-C Biosensor for Screening of Liver Diseases. Biosensors 2012, 2, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Her, J.-L.; Pan, T.-M.; Lin, W.-Y.; Wang, K.-S.; Li, L.-J. Label-Free Detection of Alanine Aminotransferase Using a Graphene Field-Effect Biosensor. Sens. Actuators B Chem. 2013, 182, 396–400. [Google Scholar] [CrossRef]
- Wu, J.; Park, J.P.; Dooley, K.; Cropek, D.M.; West, A.C.; Banta, S. Rapid Development of New Protein Biosensors Utilizing Peptides Obtained via Phage Display. PLoS ONE 2011, 6, e24948. [Google Scholar] [CrossRef] [PubMed]
- Jamal, M.; Worsfold, O.; McCormac, T.; Dempsey, E. A Stable and Selective Electrochemical Biosensor for the Liver Enzyme Alanine Aminotransferase (ALT). Biosens. Bioelectron. 2009, 24, 2926–2930. [Google Scholar] [CrossRef]
- Thuy, T.N.T.; Tseng, T.T.-C. A Micro-Platinum Wire Biosensor for Fast and Selective Detection of Alanine Aminotransferase. Sensors 2016, 16, 767. [Google Scholar] [CrossRef]
- Wang, Z.; Singh, R.; Marques, C.; Jha, R.; Zhang, B.; Kumar, S. Taper-in-Taper Fiber Structure-Based LSPR Sensor for Alanine Aminotransferase Detection. Opt. Express 2021, 29, 43793–43810. [Google Scholar] [CrossRef]
- Samy, M.A.; Abdel-Tawab, M.A.-H.; Abdel-Ghani, N.T.; El Nashar, R.M. Application of Molecularly Imprinted Microelectrode as a Promising Point-of-Care Biosensor for Alanine Aminotransferase Enzyme. Chemosensors 2023, 11, 262. [Google Scholar] [CrossRef]
- Liu, X.; Mei, X.; Yang, J.; Li, Y. Hydrogel-Involved Colorimetric Platforms Based on Layered Double Oxide Nanozymes for Point-of-Care Detection of Liver-Related Biomarkers. ACS Appl. Mater. Interfaces 2022, 14, 6985–6993. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, Z.; Xi, X.; Cao, T.; Wen, W.; Zhang, X.; Wang, S. An Aptamer-Based Hook-Effect-Recognizable Three-Line Lateral Flow Biosensor for Rapid Detection of Thrombin. Biosens. Bioelectron. 2019, 133, 177–182. [Google Scholar] [CrossRef] [PubMed]
Analyte | Detection Method | Material Used | Detection Range | LOD | Ref |
---|---|---|---|---|---|
ALT | Chronoamperometric | Membrane-coated immunosensors/self-assembled monolayer mediator-coated gold electrode | 10 ng/mL–100 µg/mL | 10 ng/mL | [36] |
ALT | Dry-Chemistry Electrochemiluminescence | DC-ECL chip/detection layer (baseplate, electrode pad, and carrier pad) | 5–50 U/L | 1.702 U/L | [40] |
ALT | Colorimetric | B-doped core–shell Fe@BC nanozyme | 10–1000 | 4 U/L | [41] |
AST | Electrochemical | Multilayered enzyme electrode by LBL technique | 7.5–720 U/L in PBS 30–240 U/L in human plasma | 13.9 U/L 20 U/L | [42] |
AST | Electrochemical | Catalytic iridium nanoparticles dispersed on carbon paste | 0–250 U/L | 25.3 U/L | [43] |
ALT | Electrochemical | Glutamate oxidase-modified platinum electrode | 10–1000 U/L | 3.29 U/L | [46] |
ALT | Amperometric | Perm-selective polymer layers modified and glutamate oxidase immobilized micro-platinum wire microelectrode | 10 to 900 U/L | 8.48 U/L | [47] |
ALT | LSPR | MoS2-NPs/CeO2-NPs | 10–1000 U/L | 10.61 U/L | [48] |
ALT | Electrochemical | Microelectrode based on a molecularly imprinted pyruvate oxidase enzyme | 25–700 U/L | 2.97 U/L | [49] |
AST/ALT | Hydrogel-Colorimetric | Au-decorated CoAl-layered double oxide (Au/LDO) | - | 15 U/L (ALT) 10 U/L (AST) | [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chinnappan, R.; Mir, T.A.; Alsalameh, S.; Makhzoum, T.; Adeeb, S.; Al-Kattan, K.; Yaqinuddin, A. Aptasensors Are Conjectured as Promising ALT and AST Diagnostic Tools for the Early Diagnosis of Acute Liver Injury. Life 2023, 13, 1273. https://doi.org/10.3390/life13061273
Chinnappan R, Mir TA, Alsalameh S, Makhzoum T, Adeeb S, Al-Kattan K, Yaqinuddin A. Aptasensors Are Conjectured as Promising ALT and AST Diagnostic Tools for the Early Diagnosis of Acute Liver Injury. Life. 2023; 13(6):1273. https://doi.org/10.3390/life13061273
Chicago/Turabian StyleChinnappan, Raja, Tanveer Ahmad Mir, Sulaiman Alsalameh, Tariq Makhzoum, Salma Adeeb, Khaled Al-Kattan, and Ahmed Yaqinuddin. 2023. "Aptasensors Are Conjectured as Promising ALT and AST Diagnostic Tools for the Early Diagnosis of Acute Liver Injury" Life 13, no. 6: 1273. https://doi.org/10.3390/life13061273
APA StyleChinnappan, R., Mir, T. A., Alsalameh, S., Makhzoum, T., Adeeb, S., Al-Kattan, K., & Yaqinuddin, A. (2023). Aptasensors Are Conjectured as Promising ALT and AST Diagnostic Tools for the Early Diagnosis of Acute Liver Injury. Life, 13(6), 1273. https://doi.org/10.3390/life13061273