Risk of Infections Secondary to the Use of Targeted Therapies in Hematological Malignancies
Abstract
:1. Introduction
2. Monoclonal Antibodies
2.1. Anti-CD20 Monoclonal Antibodies
2.2. CD38-Directed Agents and Risk of Infection
2.3. CD52-Directed Agents
2.4. CD19 Targeted Agents
3. Bispecific T-Cell Engagers (BiTE)
4. Bruton’s Tyrosine Kinase (BTK) Inhibitors
5. Phosphoinositide 3-Kinase (PI3K) Inhibitors
6. Janus-Associated Kinase (JAK) Inhibitors
7. B-Cell Lymphoma 2 (BCL-2) Inhibitors
8. Other Novel Agents
9. Impact of Targeted Therapies on SARS-CoV-2 Infections
10. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruiz-Camps, I.; Aguilar-Company, J. Risk of infection associated with targeted therapies for solid organ and hematological malignancies. Ther. Adv. Infect. Dis. 2021, 8, 2049936121989548. [Google Scholar] [CrossRef]
- Goldman, J.D.; Robinson, P.C.; Uldrick, T.S.; Ljungman, P. COVID-19 in immunocompromised populations: Implications for prognosis and repurposing of immunotherapies. J. Immunother. Cancer 2021, 9, e002630. [Google Scholar] [CrossRef]
- Jakobsen, N.A.; Vyas, P. From genomics to targeted treatment in haematological malignancies: A focus on acute myeloid leukaemia. Clin. Med. 2018, 18, s47–s53. [Google Scholar] [CrossRef]
- Bedard, P.L.; Hyman, D.M.; Davids, M.S.; Siu, L.L. Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet 2020, 395, 1078–1088. [Google Scholar] [CrossRef]
- Desai, A.; Yan, Y.; Gerson, S.L. Concise reviews: Cancer stem cell targeted therapies: Toward clinical success. Stem Cells Transl. Med. 2019, 8, 75–81. [Google Scholar] [CrossRef]
- Allegrezza, M.J.; Conejo-Garcia, J.R. Targeted therapy and immunosuppression in the tumor microenvironment. Trends Cancer 2017, 3, 19–27. [Google Scholar] [CrossRef]
- Bechman, K.; Galloway, J.B.; Winthrop, K.L. Small-molecule protein kinases inhibitors and the risk of fungal infections. Curr. Fungal Infect. Rep. 2019, 13, 229–243. [Google Scholar] [CrossRef]
- Teh, B.W.; Tam, C.S.; Handunnetti, S.; Worth, L.J.; Slavin, M.A. Infections in patients with chronic lymphocytic leukaemia: Mitigating risk in the era of targeted therapies. Blood Rev. 2018, 32, 499–507. [Google Scholar] [CrossRef]
- Davis, J.S.; Ferreira, D.; Paige, E.; Gedye, C.; Boyle, M. Infectious Complications of Biological and Small Molecule Targeted Immunomodulatory Therapies. Clin. Microbiol. Rev. 2020, 33, e00035-19. [Google Scholar] [CrossRef]
- Tau, N.; Shargian-Alon, L.; Reich, S.; Paul, M.; Gafter-Gvili, A.; Shepshelovich, D.; Yahav, D. Reporting infections in clinical trials of patients with haematological malignancies. Clin. Microbiol. Infect. 2019, 25, 1494–1500. [Google Scholar] [CrossRef]
- Cohen, S.B.; Emery, P.; Greenwald, M.W.; Dougados, M.; Furie, R.A.; Genovese, M.C.; Keystone, E.C.; Loveless, J.E.; Burmester, G.-R.; Cravets, M.W.; et al. Rituximab for rheumatoid arthritis refractory to anti–tumor necrosis factor therapy: Results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum. 2006, 54, 2793–2806. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, S.; Harputluoglu, H.; Kilickap, S.; Dede, D.S.; Dizdar, O.; Altundag, K.; Barista, I. Rituximab-related viral infections in lymphoma patients. Leuk. Lymphoma 2007, 48, 1307–1312. [Google Scholar] [CrossRef] [PubMed]
- Byrd, J.C.; Brown, J.R.; O’Brien, S.; Barrientos, J.C.; Kay, N.E.; Reddy, N.M.; Coutre, S.; Tam, C.S.; Mulligan, S.P.; Jaeger, U.; et al. Ibrutinib versus Ofatumumab in Previously Treated Chronic Lymphoid Leukemia. N. Engl. J. Med. 2014, 371, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, A.; Chanan-Khan, A.; Weisel, K.; Nooka, A.K.; Masszi, T.; Beksac, M.; Spicka, I.; Hungria, V.; Munder, M.; Mateos, M.V.; et al. Daratumumab, Bortezomib, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2016, 375, 754–766. [Google Scholar] [CrossRef]
- Drgona, L.; Gudiol, C.; Lanini, S.; Salzberger, B.; Ippolito, G.; Mikulska, M. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: An infectious diseases perspective (Agents targeting lymphoid or myeloid cells surface antigens [II]: CD22, CD30, CD33, CD38, CD40, SLAMF-7 and CCR4). Clin. Microbiol. Infect. 2018, 24 (Suppl. 2), S83–S94. [Google Scholar] [CrossRef]
- Stilgenbauer, S.; Zenz, T.; Winkler, D.; Bühler, A.; Schlenk, R.F.; Groner, S.; Busch, R.; Hensel, M.; Dührsen, U.; Finke, J.; et al. Subcutaneous Alemtuzumab in Fludarabine-Refractory Chronic Lymphocytic Leukemia: Clinical Results and Prognostic Marker Analyses From the CLL2H Study of the German Chronic Lymphocytic Leukemia Study Group. J. Clin. Oncol. 2009, 27, 3994–4001. [Google Scholar] [CrossRef]
- Agius, M.A.; Klodowska-Duda, G.; Maciejowski, M.; Potemkowski, A.; Li, J.; Patra, K.; Wesley, J.; Madani, S.; Barron, G.; Katz, E.; et al. Safety and tolerability of inebilizumab (MEDI-551), an anti-CD19 monoclonal antibody, in patients with relapsing forms of multiple sclerosis: Results from a phase 1 randomised, placebo-controlled, escalating intravenous and subcutaneous dose study. Mult. Scler. J. 2019, 25, 235–245. [Google Scholar] [CrossRef]
- Kantarjian, H.M.; Stein, A.S.; Bargou, R.C.; Garcia, C.G.; Larson, R.A.; Stelljes, M.; Gökbuget, N.; Zugmaier, G.; Benjamin, J.E.; Zhang, A.; et al. Blinatumomab treatment of older adults with relapsed/refractory B-precursor acute lymphoblastic leukemia: Results from 2 phase 2 studies. Cancer 2016, 122, 2178–2185. [Google Scholar] [CrossRef]
- Parmar, S.; Patel, K.; Pinilla-Ibarz, J. Ibrutinib (imbruvica): A novel targeted therapy for chronic lymphocytic leukemia. Pharm. Ther. 2014, 39, 483–519. [Google Scholar]
- Marchesini, G.; Nadali, G.; Facchinelli, D.; Candoni, A.; Cattaneo, C.; Laurenti, L.; Fanci, R.; Farina, F.; Lessi, F.; Visentin, A.; et al. Infections in patients with lymphoproliferative diseases treated with targeted agents: SEIFEM multicentric retrospective study. Br. J. Haematol. 2021, 193, 316–324. [Google Scholar] [CrossRef]
- Vannucchi, A.M.; Kiladjian, J.J.; Griesshammer, M.; Masszi, T.; Durrant, S.; Passamonti, F.; Harrison, C.N.; Pane, F.; Zachee, P.; Mesa, R.; et al. Ruxolitinib versus Standard Therapy for the Treatment of Polycythemia Vera. N. Engl. J. Med. 2015, 372, 426–435. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Pratz, K.W.; Letai, A.; Jonas, B.A.; Wei, A.H.; Thirman, M.; Arellano, M.; Frattini, M.G.; Kantarjian, H.; Popovic, R.; et al. Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: A non-randomised, open-label, phase 1b study. Lancet Oncol. 2018, 19, 216–228. [Google Scholar] [CrossRef]
- Lu, R.-M.; Hwang, Y.-C.; Liu, I.-J.; Lee, C.-C.; Tsai, H.-Z.; Li, H.-J.; Wu, H.-C. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 2020, 27, 1. [Google Scholar] [CrossRef]
- Monoclonal Antibodies. In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012.
- Kaplon, H.; Chenoweth, A.; Crescioli, S.; Reichert, J.M. Antibodies to watch in 2022. mAbs 2022, 14, 2014296. [Google Scholar] [CrossRef]
- Scheen, A.J. International classification of various types of monoclonal antibodies. Rev. Med. Liege 2009, 64, 44–247. [Google Scholar]
- Harding, F.A.; Stickler, M.M.; Razo, J.; DuBridge, R.B. The immunogenicity of humanized and fully human antibodies: Residual immunogenicity resides in the CDR regions. mAbs 2010, 2, 256–265. [Google Scholar] [CrossRef]
- Mayrhofer, P.; Kunert, R. Nomenclature of humanized mAbs: Early concepts, current challenges and future perspectives. Hum. Antibodies 2017, 27, 37–51. [Google Scholar] [CrossRef]
- Payandeh, Z.; Bahrami, A.A.; Hoseinpoor, R.; Mortazavi, Y.; Rajabibazl, M.; Rahimpour, A.; Taromchi, A.H.; Khalil, S. The applications of anti-CD20 antibodies to treat various B cells disorders. Biomed. Pharmacother. 2019, 109, 2415–2426. [Google Scholar] [CrossRef]
- Sellebjerg, F.; Blinkenberg, M.; Sorensen, P.S. Anti-CD20 monoclonal antibodies for relapsing and progressive multiple sclerosis. CNS Drugs 2020, 34, 269–280. [Google Scholar] [CrossRef]
- Marchesi, F.; Pimpinelli, F.; Giannarelli, D.; Ronchetti, L.; Papa, E.; Falcucci, P.; Pontone, M.; Di Domenico, E.G.; di Martino, S.; Laquintana, V.; et al. Impact of anti-CD20 monoclonal antibodies on serologic response to BNT162b2 vaccine in B-cell Non-Hodgkin’s lymphomas. Leukemia 2022, 36, 588–590. [Google Scholar] [CrossRef]
- Shah, K.; Cragg, M.; Leandro, M.; Reddy, V. Anti-CD20 monoclonal antibodies in Systemic Lupus Erythematosus. Biologicals 2021, 69, 1–14. [Google Scholar] [CrossRef]
- Singh, V.; Gupta, D.; Almasan, A. Development of Novel Anti-Cd20 Monoclonal Antibodies and Modulation in Cd20 Levels on Cell Surface: Looking to Improve Immunotherapy Response. J. Cancer Sci. Ther. 2015, 7, 347–358. [Google Scholar] [CrossRef]
- Cooper, N.; Arnold, D.M. The effect of rituximab on humoral and cell mediated immunity and infection in the treatment of autoimmune diseases. Br. J. Haematol. 2010, 149, 3–13. [Google Scholar] [CrossRef]
- Madanchi, N.; Bitzan, M.; Takano, T. Rituximab in minimal change disease: Mechanisms of action and hypotheses for future studies. Can. J. Kidney Health Dis. 2017, 4, 2054358117698667. [Google Scholar] [CrossRef]
- Lund, F.E.; Randall, T.D. Effector and regulatory B cells: Modulators of CD4+ T cell immunity. Nat. Rev. Immunol. 2010, 10, 236–247. [Google Scholar] [CrossRef]
- Casan, J.M.L.; Wong, J.; Northcott, M.J.; Opat, S. Anti-CD20 monoclonal antibodies: Reviewing a revolution. Hum. Vaccines Immunother. 2018, 14, 2820–2841. [Google Scholar] [CrossRef]
- Kater, A.P.; Seymour, J.F.; Hillmen, P.; Eichhorst, B.; Langerak, A.W.; Owen, C.; Verdugo, M.; Wu, J.; Punnoose, E.A.; Jiang, Y.; et al. Fixed Duration of Venetoclax-Rituximab in Relapsed/Refractory Chronic Lymphocytic Leukemia Eradicates Minimal Residual Disease and Prolongs Survival: Post-Treatment Follow-Up of the MURANO Phase III Study. J. Clin. Oncol. 2019, 34, 269–277. [Google Scholar] [CrossRef]
- Luo, C.; Wu, G.; Huang, X.; Ma, Y.; Zhang, Y.; Song, Q.; Xie, M.; Sun, Y.; Huang, Y.; Huang, Z.; et al. Efficacy and safety of new anti-CD20 monoclonal antibodies versus rituximab for induction therapy of CD20+ B-cell non-Hodgkin lymphomas: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Seymour, J.F.; Kipps, T.J.; Eichhorst, B.F.; D’rozario, J.; Owen, C.J.; Assouline, S.; Lamanna, N.; Robak, T.; de la Serna, J.; Jaeger, U.; et al. Enduring undetectable MRD and updated outcomes in relapsed/refractory CLL after fixed-duration venetoclax-rituximab. Blood 2022, 140, 839–850. [Google Scholar] [CrossRef]
- Brogan, P.; Yeung, R.S.M.; Cleary, G.; Rangaraj, S.; Kasapcopur, O.; Hersh, A.O.; Li, S.; Paripovic, D.; Schikler, K.; Zeft, A.; et al. Phase IIa Global Study Evaluating Rituximab for the Treatment of Pediatric Patients with Granulomatosis with Polyangiitis or Microscopic Polyangiitis. Arthritis Rheumatol. 2022, 74, 124–133. [Google Scholar] [CrossRef]
- Tavakolpour, S.; Alesaeidi, S.; Darvishi, M.; GhasemiAdl, M.; Darabi-Monadi, S.; Akhlaghdoust, M.; Behjati, S.E.; Jafarieh, A. A comprehensive review of rituximab therapy in rheumatoid arthritis patients. Clin. Rheumatol. 2019, 38, 2977–2994. [Google Scholar] [CrossRef] [PubMed]
- Wise, L.M.; Stohl, W. Belimumab and rituximab in systemic lupus erythematosus: A tale of two B cell-targeting agents. Front. Med. 2020, 7, 303. [Google Scholar] [CrossRef] [PubMed]
- Zonozi, R.; Wallace, Z.S.; Laliberte, K.; Huizenga, N.R.; Rosenthal, J.M.; Rhee, E.P.; Cortazar, F.B.; Niles, J.L. Incidence, Clinical Features, and Outcomes of Late-Onset Neutropenia From Rituximab for Autoimmune Disease. Arthritis Rheumatol. 2021, 73, 347–354. [Google Scholar] [CrossRef]
- Shimony, S.; Bar-Sever, E.; Berger, T.; Itchaki, G.; Gurion, R.; Yeshurun, M.; Lahav, M.; Raanani, P.; Wolach, O. Late onset neutropenia after rituximab and obinutuzumab treatment—Characteristics of a class-effect toxicity. Leuk. Lymphoma 2021, 62, 2921–2927. [Google Scholar] [CrossRef]
- Tesfa, D.; Sander, B.; Lindkvist, H.; Nilsson, C.; Kimby, E.; Hägglund, H.; Wahlin, B.E.; Klimkowska, M.; Palmblad, J. The role of BAFF and G-CSF for rituximab-induced late-onset neutropenia (LON) in lymphomas. Med. Oncol. 2021, 38, 70. [Google Scholar] [CrossRef] [PubMed]
- Smulski, C.R.; Eibel, H. BAFF and BAFF-Receptor in B Cell Selection and Survival. Front. Immunol. 2018, 9, 2285. [Google Scholar] [CrossRef] [PubMed]
- Scapini, P.; Bazzoni, F.; Cassatella, M.A. Regulation of B-cell-activating factor (BAFF)/B lymphocyte stimulator (BLyS) expression in human neutrophils. Immunol. Lett. 2008, 116, 1. [Google Scholar] [CrossRef]
- Tesfa, D.; Gelius, T.; Sander, B.; Kimby, E.; Fadeel, B.; Palmblad, J.; Hägglund, H. Late-onset neutropenia associated with rituximab therapy: Evidence for a maturation arrest at the (pro) myelocyte stage of granulopoiesis. Med. Oncol. 2008, 25, 374–379. [Google Scholar] [CrossRef]
- Kridin, K.; Ahmed, A.R. Post-rituximab immunoglobulin M (IgM) hypogammaglobulinemia. Autoimmun. Rev. 2020, 19, 102466. [Google Scholar] [CrossRef] [PubMed]
- Tieu, J.; Smith, R.M.; Gopaluni, S.; Kumararatne, D.S.; McClure, M.; Manson, A.; Houghton, S.; Jayne, D.R. Rituximab associated hypogammaglobulinemia in autoimmune disease. Front. Immunol. 2021, 12, 671503. [Google Scholar] [CrossRef] [PubMed]
- Casulo, C.; Maragulia, J.; Zelenetz, A.D. Incidence of Hypogammaglobulinemia in Patients Receiving Rituximab and the Use of Intravenous Immunoglobulin for Recurrent Infections. Clin. Lymphoma Myeloma Leuk. 2013, 13, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Arnold, D.M.; Dentali, F.; Crowther, M.A.; Meyer, R.M.; Cook, R.J.; Sigouin, C.; Fraser, G.A.; Lim, W.; Kelton, J.G. Systematic Review: Efficacy and Safety of Rituximab for Adults with Idiopathic Thrombocytopenic Purpura. Ann. Intern. Med. 2007, 146, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Eichhorst, B.; Fink, A.M.; Busch, R.; Kovacs, G.; Maurer, C.; Lange, E.; Köppler, H.; Kiehl, M.G.; Soekler, M.; Schlag, R.; et al. Frontline Chemoimmunotherapy with Fludarabine (F), Cyclophosphamide (C), and Rituximab (R) (FCR) Shows Superior Efficacy in Comparison to Bendamustine (B) and Rituximab (BR) in Previously Untreated and Physically Fit Patients (pts) with Advanced Chronic Lymphocytic Leukemia (CLL): Final Analysis of an International, Randomized Study of the German CLL Study Group (GCLLSG) (CLL10 Study). Blood 2014, 124, 19. [Google Scholar] [CrossRef]
- Walker, A.R.; Kleiner, A.; Rich, L.; Conners, C.; Fisher, R.I.; Anolik, J.; Friedberg, J.W. Profound Hypogammaglobulinemia 7 Years after Treatment for Indolent Lymphoma. Cancer Investig. 2008, 26, 431–433. [Google Scholar] [CrossRef]
- Van Oers, M.H.; Van Glabbeke, M.; Giurgea, L.; Klasa, R.; Marcus, R.E.; Wolf, M.; Kimby, E.; Veer, M.V.T.; Vranovsky, A.; Holte, H.; et al. Rituximab Maintenance Treatment of Relapsed/Resistant Follicular Non-Hodgkin’s Lymphoma: Long-Term Outcome of the EORTC 20981 Phase III Randomized Intergroup Study. J. Clin. Oncol. 2010, 28, 2853–2858. [Google Scholar] [CrossRef]
- Moulis, G.; Lapeyre-Mestre, M.; Palmaro, A.; Sailler, L. Infections in non-splenectomized persistent or chronic primary immune thrombocytopenia adults: Risk factors and vaccination effect. J. Thromb. Haemost. 2017, 15, 785–791. [Google Scholar] [CrossRef]
- Marignani, M.; Mangone, M.; Cox, M.C.; Angeletti, S.; Veggia, B.; Ferrari, A.; di Fonzo, M.; Begini, P.; Gigante, E.; Laverde, G.; et al. HCV-positive status and hepatitis flares in patients with B-cell non-Hodgkin’s lymphoma treated with rituximab-containing regimens. Dig. Liver Dis. 2011, 43, 139–142. [Google Scholar] [CrossRef]
- Jiang, X.; Mei, X.; Feng, D.; Wang, X. Prophylaxis and treatment of Pneumocystis jiroveci pneumonia in lymphoma patients subjected to rituximab-contained therapy: A systemic review and meta-analysis. PLoS ONE 2015, 10, e0122171. [Google Scholar] [CrossRef] [PubMed]
- Barreto, J.N.; Ice, L.L.; Thompson, C.A.; Tosh, P.K.; Osmon, D.R.; Dierkhising, R.A.; Plevak, M.F.; Limper, A.H. Low incidence of pneumocystis pneumonia utilizing PCR-based diagnosis in patients with B-cell lymphoma receiving rituximab-containing combination chemotherapy. Am. J. Hematol. 2016, 91, 1113–1117. [Google Scholar] [CrossRef]
- Maertens, J.; Cesaro, S.; Maschmeyer, G.; Einsele, H.; Donnelly, J.P.; Alanio, A.; Hauser, P.M.; Lagrou, K.; Melchers, W.J.G.; Helweg-Larsen, J.; et al. ECIL guidelines for preventing Pneumocystis jirovecii pneumonia in patients with haematological malignancies and stem cell transplant recipients. J. Antimicrob. Chemother. 2016, 71, 2397–2404. [Google Scholar] [CrossRef]
- Cheson, B.D.; Leonard, J.P. Monoclonal Antibody Therapy for B-Cell Non-Hodgkin’s Lymphoma. N. Engl. J. Med. 2008, 359, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Goede, V.; Fischer, K.; Busch, R.; Engelke, A.; Eichhorst, B.; Wendtner, C.M.; Chagorova, T.; de la Serna, J.; Dilhuydy, M.-S.; Illmer, T.; et al. Obinutuzumab plus Chlorambucil in Patients with CLL and Coexisting Conditions. N. Engl. J. Med. 2014, 370, 1101–1110. [Google Scholar] [CrossRef]
- Cinar, O.K.; Marlais, M.; Al Obaidi, M.; Cheng, I.L.; Tullus, K.; Brogan, P.; Moraitis, E. Ofatumumab use in juvenile systemic lupus erythematosus: A single centre experience. Lupus 2020, 30, 527–530. [Google Scholar] [CrossRef] [PubMed]
- Florou, D.; Katsara, M.; Feehan, J.; Dardiotis, E.; Apostolopoulos, V. Anti-CD20 Agents for Multiple Sclerosis: Spotlight on Ocrelizumab and Ofatumumab. Brain Sci. 2020, 10, 758. [Google Scholar] [CrossRef] [PubMed]
- Davids, M.S.; Kuss, B.J.; Hillmen, P.; Montillo, M.; Moreno, C.; Essell, J.; Lamanna, N.; Nagy, Z.; Tam, C.S.; Stilgenbauer, S.; et al. Efficacy and Safety of Duvelisib Following Disease Progression on Ofatumumab in Patients with Relapsed/Refractory CLL or SLL in the DUO Crossover Extension Study. Clin. Cancer Res. 2020, 26, 2096–2103. [Google Scholar] [CrossRef] [PubMed]
- Desikan, S.P.; Keating, M.J.; Ferrajoli, A.; Jain, N.; Ohanian, M.; Pemmaraju, N.; DiNardo, C.D.; Konopleva, M.; Kadia, T.M.; O’Brien, S.; et al. Early Treatment with Ofatumumab in Patients with High-Risk CLL. Blood 2022, 140, 9876–9878. [Google Scholar] [CrossRef]
- Luan, C.; Chen, B. Clinical application of obinutuzumab for treating chronic lymphocytic leukemia. Drug Des. Dev. Ther. 2019, 13, 2899–2909. [Google Scholar] [CrossRef]
- Al-Sawaf, O.; Zhang, C.; Tandon, M.; Sinha, A.; Fink, A.M.; Robrecht, S.; Samoylova, O.; Liberati, A.M.; Pinilla-Ibarz, J.; Opat, S.; et al. Venetoclax plus obinutuzumab versus chlorambucil plus obinutuzumab for previously untreated chronic lymphocytic leukaemia (CLL14): Follow-up results from a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2020, 21, 1188–1200. [Google Scholar] [CrossRef]
- Kawasaki, N.; Yamashita-Kashima, Y.; Fujimura, T.; Yoshiura, S.; Harada, N.; Kondoh, O.; Yoshimura, Y. Resistance to obinutuzumab-induced antibody-dependent cellular cytotoxicity caused by abnormal Fas signaling is overcome by combination therapies. Mol. Biol. Rep. 2022, 49, 4421–4433. [Google Scholar] [CrossRef]
- Marcus, R.; Davies, A.; Ando, K.; Klapper, W.; Opat, S.; Owen, C.; Phillips, E.; Sangha, R.; Schlag, R.; Seymour, J.F.; et al. Obinutuzumab for the First-Line Treatment of Follicular Lymphoma. N. Engl. J. Med. 2017, 377, 1331–1344. [Google Scholar] [CrossRef]
- Jelínek, T.; Mihályová, J.; Hájek, R. CD38 targeted treatment for multiple myeloma. Vnitr. Lek. 2018, 64, 939–948. [Google Scholar] [CrossRef]
- Overdijk, M.B.; Verploegen, S.; Bögels, M.; Van Egmond, M.; Van Bueren, J.J.L.; Mutis, T.; Groen, R.; Breij, E.; Martens, A.C.M.; Bleeker, W.K.; et al. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. mAbs 2015, 7, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, M.A.; Oriol, A.; Nahi, H.; San-Miguel, J.; Bahlis, N.J.; Usmani, S.Z.; Rabin, N.; Orlowski, R.Z.; Komarnicki, M.; Suzuki, K.; et al. Daratumumab, Lenalidomide, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2016, 375, 1319–1331. [Google Scholar] [CrossRef] [PubMed]
- Spencer, A.U.; Lentzsch, S.; Weisel, K.; Avet-Loiseau, H.; Mark, T.M.; Spicka, I.; Masszi, T.; Lauri, B.; Levin, M.-D.; Bosi, A.; et al. Daratumumab plus bortezomib and dexamethasone versus bortezomib and dexamethasone in relapsed or refractory multiple myeloma: Updated analysis of CASTOR. Haematologica 2018, 103, 2079–2087. [Google Scholar] [CrossRef]
- Bahlis, N.J.; Dimopoulos, M.A.; White, D.J.; Benboubker, L.; Cook, G.; Leiba, M.; Ho, P.J.; Kim, K.; Takezako, N.; Moreau, P.; et al. Daratumumab plus lenalidomide and dexamethasone in relapsed/refractory multiple myeloma: Extended follow-up of POLLUX, a randomized, open-label, phase 3 study. Leukemia 2020, 34, 1875–1884. [Google Scholar] [CrossRef] [PubMed]
- Ruck, T.; Bittner, S.; Wiendl, H.; Meuth, S.G. Alemtuzumab in Multiple Sclerosis: Mechanism of Action and Beyond. Int. J. Mol. Sci. 2015, 16, 16414–16439. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Richards, S.; Surks, H.K.; Jacobs, A.; Panzara, M.A. Clinical pharmacology of alemtuzumab, an anti-CD52 immunomodulator, in multiple sclerosis. Clin. Exp. Immunol. 2018, 194, 295–314. [Google Scholar] [CrossRef]
- Rolla, S.; De Mercanti, S.F.; Bardina, V.; Maglione, A.; Taverna, D.; Novelli, F.; Cocco, E.; Vladic, A.; Habek, M.; Adamec, I.; et al. Long-Term Effects of Alemtuzumab on CD4+ Lymphocytes in Multiple Sclerosis Patients: A 72-Month Follow-Up. Front. Immunol. 2022, 13, 818325. [Google Scholar] [CrossRef]
- Rasmussen, T.A.; McMahon, J.; Chang, J.J.; Symons, J.; Roche, M.; Dantanarayana, A.; Okoye, A.; Hiener, B.; Palmer, S.; Lee, W.S.; et al. Impact of alemtuzumab on HIV persistence in an HIV-infected individual on antiretroviral therapy with Sezary syndrome. AIDS 2017, 31, 1839–1845. [Google Scholar] [CrossRef]
- Tsai, Y.-F.; Hsu, C.-M.; Hsiao, H.-H. Management of Hepatitis B Virus Reactivation in Malignant Lymphoma Prior to Immunosuppressive Treatment. J. Pers. Med. 2021, 11, 267. [Google Scholar] [CrossRef]
- Iannitto, E.; Minardi, V.; Calvaruso, G.; Mulè, A.; Ammatuna, E.; Trapani, R.D.; Ferraro, D.; Abbadessa, V.; Craxi, A.; Stefano, R.D. Hepatitis B virus reactivation and alemtuzumab therapy. Eur. J. Haematol. 2005, 74, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.A.; Coles, A.J.; Arnold, D.L.; Confavreux, C.; Fox, E.J.; Hartung, H.-P.; Havrdova, E.; Selmaj, K.W.; Weiner, H.L.; Fisher, E.; et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: A randomised controlled phase 3 trial. Lancet 2012, 380, 1819–1828. [Google Scholar] [CrossRef]
- Poh, C.; Shustov, A.; Huang, I.J.; Gopal, A.K.; Smith, S.D. Efficacy of Short-Duration Alemtuzumab in T-Cell Large Granular Lymphocytic Leukemia: Potential for a Response-Adapted Strategy. Blood 2022, 140, 6561–6562. [Google Scholar] [CrossRef]
- Roex, M.C.; Wijnands, C.; Veld, S.A.; van Egmond, E.; Bogers, L.; Zwaginga, J.J.; Netelenbos, T.; Borne, P.A.V.D.; Veelken, H.; Halkes, C.J.; et al. Effect of alemtuzumab-based T-cell depletion on graft compositional change in vitro and immune reconstitution early after allogeneic stem cell transplantation. Cytotherapy 2021, 23, 46–56. [Google Scholar] [CrossRef]
- O’Brien, S.; Ravandi, F.; Riehl, T.; Wierda, W.; Huang, X.; Tarrand, J.; O’Neal, B.; Kantarjian, H.; Keating, M. Valganciclovir prevents cytomegalovirus reactivation in patients receiving alemtuzumab-based therapy. Blood 2008, 111, 1816–1819. [Google Scholar] [CrossRef]
- Kim, S.J.; Moon, J.H.; Kim, H.; Kim, J.S.; Hwang, Y.Y.; Intragumtornchai, T.; Issaragrisil, S.; Kwak, J.Y.; Lee, J.J.; Won, J.H.; et al. Non-bacterial infections in Asian patients treated with alemtuzumab: A retrospective study of the Asian Lymphoma Study Group. Leuk. Lymphoma 2012, 53, 1515–1524. [Google Scholar] [CrossRef]
- Bosch, W.; Poowanawittayakom, N.; Chaikriangkrai, K.; Mendez, J.; Hellinger, W.; Gonwa, T.; Krishna, M.; Pungpapong, S. Tuberculous hepatitis in renal transplant recipients following alemtuzumab induction therapy. Transpl. Infect. Dis. 2013, 15, E33–E39. [Google Scholar] [CrossRef] [PubMed]
- Wray, S.; Havrdova, E.; Snydman, D.R.; Arnold, D.L.; Cohen, J.A.; Coles, A.J.; Hartung, H.-P.; Selmaj, K.W.; Weiner, H.L.; Daizadeh, N.; et al. Infection risk with alemtuzumab decreases over time: Pooled analysis of 6-year data from the CAMMS223, CARE-MS I, and CARE-MS II studies and the CAMMS03409 extension study. Mult. Scler. J. 2019, 25, 1605–1617. [Google Scholar] [CrossRef] [PubMed]
- Sermer, D.; Elavalakanar, P.; Abramson, J.S.; Palomba, M.L.; Salles, G.; Arnason, J. Targeting CD19 for diffuse large B cell lymphoma in the era of CARs: Other modes of transportation. Blood Rev. 2023, 57, 101002. [Google Scholar] [CrossRef] [PubMed]
- Topp, M.S.; Kufer, P.; Gökbuget, N.; Goebeler, M.; Klinger, M.; Neumann, S.; Horst, H.-A.; Raff, T.; Viardot, A.; Schmid, M.; et al. Targeted Therapy with the T-Cell–Engaging Antibody Blinatumomab of Chemotherapy-Refractory Minimal Residual Disease in B-Lineage Acute Lymphoblastic Leukemia Patients Results in High Response Rate and Prolonged Leukemia-Free Survival. J. Clin. Oncol. 2011, 29, 2493–2498. [Google Scholar] [CrossRef]
- Watkins, M.P.; Bartlett, N.L. CD19-targeted immunotherapies for treatment of patients with non-Hodgkin B-cell lymphomas. Expert Opin. Investig. Drugs 2018, 27, 601–611. [Google Scholar] [CrossRef]
- Zinzani, P.L.; Minotti, G. Anti-CD19 monoclonal antibodies for the treatment of relapsed or refractory B-cell malignancies: A narrative review with focus on diffuse large B-cell lymphoma. J. Cancer Res. Clin. Oncol. 2022, 148, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Mikulska, M.; Lanini, S.; Gudiol, C.; Drgona, L.; Ippolito, G.; Fernández-Ruiz, M.; Salzberger, B. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: An infectious diseases perspective (Agents targeting lymphoid cells surface antigens [I]: CD19, CD20 and CD52). Clin. Microbiol. Infect. 2018, 24 (Suppl. 2), S71–S82. [Google Scholar] [CrossRef] [PubMed]
- Frampton, J.E. Inebilizumab: First Approval. Drugs 2020, 80, 1259–1264. [Google Scholar] [CrossRef]
- Davis, J.A.; Shockley, A.; Glode, A.E. Newly approved anti-CD19 monoclonal antibodies for the treatment of relapsed or refractory diffuse large B-cell lymphoma. J. Oncol. Pharm. Pract. 2022, 28, 686–690. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Fu, J.; Zhang, M.; Liu, D. Blinatumomab: A bispecific T cell engager (BiTE) antibody against CD19/CD3 for refractory acute lymphoid leukemia. J. Hematol. Oncol. 2015, 8, 104. [Google Scholar] [CrossRef]
- Golay, J.; D’amico, A.; Borleri, G.; Bonzi, M.; Valgardsdottir, R.; Alzani, R.; Cribioli, S.; Albanese, C.; Pesenti, E.; Finazzi, M.C.; et al. A Novel Method Using Blinatumomab for Efficient, Clinical-Grade Expansion of Polyclonal T Cells for Adoptive Immunotherapy. J. Immunol. 2014, 193, 4739–4747. [Google Scholar] [CrossRef]
- Zugmaier, G.; Topp, M.S.; Alekar, S.; Viardot, A.; Horst, H.-A.; Neumann, S.; Stelljes, M.; Bargou, R.C.; Goebeler, M.; Wessiepe, D.; et al. Long-term follow-up of serum immunoglobulin levels in blinatumomab-treated patients with minimal residual disease-positive B-precursor acute lymphoblastic leukemia. Blood Cancer J. 2014, 4, e244. [Google Scholar] [CrossRef]
- Kantarjian, H.; Stein, A.; Gökbuget, N.; Fielding, A.K.; Schuh, A.C.; Ribera, J.-M.; Wei, A.; Dombret, H.; Foà, R.; Bassan, R.; et al. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2017, 376, 836–847. [Google Scholar] [CrossRef]
- Shimada, A. Hematological malignancies and molecular targeting therapy. Eur. J. Pharmacol. 2019, 862, 172641. [Google Scholar] [CrossRef]
- Long, M.; Beckwith, K.; Do, P.; Mundy, B.L.; Gordon, A.; Lehman, A.M.; Maddocks, K.J.; Cheney, C.; Jones, J.A.; Flynn, J.M.; et al. Ibrutinib treatment improves T cell number and function in CLL patients. J. Clin. Investig. 2017, 127, 3052–3064. [Google Scholar] [CrossRef]
- Parmar, K.; Thein, K.; Tijani, L.; Ball, S. Pb1876: Acalabrutinib Related Infectious Complications-a Systematic Review and Meta-Analysis of Phase Iii Rct. Hemasphere 2022, 6, 1756–1757. [Google Scholar] [CrossRef]
- Trotman, J.; Opat, S.; Gottlieb, D.; Simpson, D.; Marlton, P.; Cull, G.; Munoz, J.; Tedeschi, A.; Roberts, A.W.; Seymour, J.F.; et al. Zanubrutinib for the treatment of patients with Waldenström macroglobulinemia: 3 years of follow-up. Blood 2020, 136, 2027–2037. [Google Scholar] [CrossRef] [PubMed]
- Tillman, B.F.; Pauff, J.M.; Satyanarayana, G.; Talbott, M.; Warner, J.L. Systematic review of infectious events with the Bruton tyrosine kinase inhibitor ibrutinib in the treatment of hematologic malignancies. Eur. J. Haematol. 2018, 100, 325–334. [Google Scholar] [CrossRef]
- Yang, J.; Nie, J.; Ma, X.; Wei, Y.; Peng, Y.; Wei, X. Targeting PI3K in cancer: Mechanisms and advances in clinical trials. Mol. Cancer 2019, 18, 26. [Google Scholar] [CrossRef] [PubMed]
- Fruman, D.A.; Chiu, H.; Hopkins, B.D.; Bagrodia, S.; Cantley, L.C.; Abraham, R.T.; Fruman, D.A.; Chiu, H.; Hopkins, B.D.; Bagrodia, S.; et al. The PI3K Pathway in Human Disease. Cell 2017, 170, 605–635. [Google Scholar] [CrossRef]
- Benjamin, D.J.; Prasad, V. PI3K inhibitors in haematological malignancies. Lancet Oncol. 2022, 23, e362–e363. [Google Scholar] [CrossRef]
- Zirlik, K.; Veelken, H. Idelalisib. In Small Molecules in Hematology; Martens, U.M., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 243–264. [Google Scholar] [CrossRef]
- Cuneo, A.; Barosi, G.; Danesi, R.; Fagiuoli, S.; Ghia, P.; Marzano, A.; Montillo, M.; Poletti, V.; Viale, P.; Zinzani, P.L. Management of adverse events associated with idelalisib treatment in chronic lymphocytic leukemia and follicular lymphoma: A multidisciplinary position paper. Hematol. Oncol. 2019, 37, 3–14. [Google Scholar] [CrossRef]
- Furman, R.R.; Sharman, J.P.; Coutre, S.E.; Cheson, B.D.; Pagel, J.M.; Hillmen, P.; Barrientos, J.C.; Zelenetz, A.D.; Kipps, T.J.; Flinn, I.; et al. Idelalisib and Rituximab in Relapsed Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2014, 370, 997–1007. [Google Scholar] [CrossRef]
- Zelenetz, A.D.; Barrientos, J.C.; Brown, J.R.; Coiffier, B.; Delgado, J.; Egyed, M.; Ghia, P.; Illés, Á.; Jurczak, W.; Marlton, P.; et al. Idelalisib or placebo in combination with bendamustine and rituximab in patients with relapsed or refractory chronic lymphocytic leukaemia: Interim results from a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2017, 18, 297–311. [Google Scholar] [CrossRef]
- Jones, J.A.; Robak, T.; Brown, J.R.; Awan, F.T.; Badoux, X.; Coutre, S.; Loscertales, J.; Taylor, K.; Vandenberghe, E.; Wach, M.; et al. Efficacy and safety of idelalisib in combination with ofatumumab for previously treated chronic lymphocytic leukaemia: An open-label, randomised phase 3 trial. Lancet Haematol. 2017, 4, e114–e126. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.R.; Furman, R.R.; Flinn, I.; Coutre, S.E.; Wagner-Johnston, N.D.; Kahl, B.S.; Spurgeon, S.E.F.; Benson, D.M.; Peterman, S.; Johnson, D.M. Final Results of a Phase I Study of Idelalisib (GSE1101) a Selective Inhibitor of PI3Kδ, in Patients with Relapsed or Refractory CLL; American Society of Clinical Oncology: Alexandria, VA, USA, 2013. [Google Scholar]
- Tanase, A.D.; Colita, A.; Craciun, O.G.; Lipan, L.; Varady, Z.; Stefan, L.; Ranete, A.; Pasca, S.; Bumbea, H.; Andreescu, M.; et al. Allogeneic Stem Cell Transplantation for Adult T-Cell Leukemia/Lymphoma—Romanian Experience. J. Clin. Med. 2020, 9, 2417. [Google Scholar] [CrossRef] [PubMed]
- Bird, S.T.; Tian, F.; Flowers, N.; Przepiorka, D.; Wang, R.; Jung, T.-H.; Kessler, Z.; Woods, C.; Kim, B.; Miller, B.W.; et al. Idelalisib for Treatment of Relapsed Follicular Lymphoma and Chronic Lymphocytic Leukemia: A Comparison of Treatment Outcomes in Clinical Trial Participants vs Medicare Beneficiaries. JAMA Oncol. 2020, 6, 248–254. [Google Scholar] [CrossRef]
- Cheah, C.Y.; Fowler, N.H. Idelalisib in the management of lymphoma. Blood 2016, 128, 331–336. [Google Scholar] [CrossRef]
- Senkevitch, E.; Durum, S. The promise of Janus kinase inhibitors in the treatment of hematological malignancies. Cytokine 2017, 98, 33–41. [Google Scholar] [CrossRef]
- Ajayi, S.; Becker, H.; Reinhardt, H.; Engelhardt, M.; Zeiser, R.; von Bubnoff, N.; Wäsch, R. Ruxolitinib. Small Mol. Hematol. 2018, 212, 119–132. [Google Scholar] [CrossRef]
- Verstovsek, S.; Mesa, R.A.; Gotlib, J.; Gupta, V.; DiPersio, J.F.; Catalano, J.V.; Deininger, M.W.N.; Miller, C.B.; Silver, R.T.; Talpaz, M. Long-term treatment with ruxolitinib for patients with myelofibrosis: 5-year update from the randomized, double-blind, placebo-controlled, phase 3 COMFORT-I trial. J. Hematol. Oncol. 2017, 10, 1–14. [Google Scholar] [CrossRef]
- Lussana, F.; Cattaneo, M.; Rambaldi, A.; Squizzato, A. Ruxolitinib-associated infections: A systematic review and meta-analysis. Am. J. Hematol. 2018, 93, 339–347. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Witwit, H.; Cubitt, B.; de la Torre, J.C. Inhibitors of Anti-apoptotic Bcl-2 Family Proteins Exhibit Potent and Broad-Spectrum Anti-mammarenavirus Activity via Cell Cycle Arrest at G0/G1 Phase. J. Virol. 2021, 95, e0139921. [Google Scholar] [CrossRef] [PubMed]
- Mastalier, B.; Deaconescu, V.; Drăghici, W.E.; Popp, C.; Zurac, S.; Balea, M.; Tevet, M.; Botezatu, C. Multiple Intestinal Lymphoma. Rom. J. Intern. Med. 2015, 53, 75–80. [Google Scholar] [CrossRef]
- Davids, M.S.; Hallek, M.; Wierda, W.; Roberts, A.W.; Stilgenbauer, S.; Jones, J.A.; Gerecitano, J.F.; Kim, S.Y.; Potluri, J.; Busman, T.; et al. Comprehensive Safety Analysis of Venetoclax Monotherapy for Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia. Clin. Cancer Res. 2018, 24, 4371–4379. [Google Scholar] [CrossRef]
- Lee, R.; Cho, S.-Y.; Lee, D.-G.; Choi, H.; Park, S.; Cho, B.-S.; Kim, Y.-J.; Kim, H.-J. Infections of Venetoclax-Based Chemotherapy in Acute Myeloid Leukemia: Rationale for Proper Antimicrobial Prophylaxis. Cancers 2021, 13, 6285. [Google Scholar] [CrossRef] [PubMed]
- DiNardo, C.D.; Rausch, C.R.; Benton, C.; Kadia, T.; Jain, N.; Pemmaraju, N.; Daver, N.; Covert, W.; Marx, K.R.; Mace, M.; et al. Clinical experience with the BCL2-inhibitor venetoclax in combination therapy for relapsed and refractory acute myeloid leukemia and related myeloid malignancies. Am. J. Hematol. 2018, 93, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Nademanee, A.; Sureda, A.; Stiff, P.; Holowiecki, J.; Abidi, M.; Hunder, N.; Pecsok, M.; Uttarwar, M.; Purevjal, I.; Sweetenham, J. Safety Analysis of Brentuximab Vedotin from the Phase III Aethera Trial in Hodgkin Lymphoma in the Post-Transplant Consolidation Setting. Biol. Blood Marrow Transplant. 2018, 24, 2354–2359. [Google Scholar] [CrossRef]
- Pro, B.; Advani, R.; Brice, P.; Bartlett, N.L.; Rosenblatt, J.D.; Illidge, T.; Matous, J.; Ramchandren, R.; Fanale, M.; Connors, J.M.; et al. Brentuximab Vedotin (SGN-35) in Patients with Relapsed or Refractory Systemic Anaplastic Large-Cell Lymphoma: Results of a Phase II Study. J. Clin. Oncol. 2012, 30, 2190–2196. [Google Scholar] [CrossRef] [PubMed]
- Kantarjian, H.M.; DeAngelo, D.J.; Stelljes, M.; Martinelli, G.; Liedtke, M.; Stock, W.; Gökbuget, N.; O’Brien, S.; Wang, K.; Wang, T.; et al. Inotuzumab Ozogamicin versus Standard Therapy for Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2016, 375, 740–753. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.H.; Kim, S.J.; Kim, W.S. Brentuximab vedotin: Clinical updates and practical guidance. Blood Res. 2017, 52, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Tudesq, J.-J.; Vincent, L.; Lebrun, J.; Hicheri, Y.; Gabellier, L.; Busetto, T.; Merle, C.; Fegueux, N.; Ceballos, P.; Quittet, P.; et al. Cytomegalovirus Infection with Retinitis After Brentuximab Vedotin Treatment for CD30+ Lymphoma. Open Forum Infect. Dis. 2017, 4, ofx091. [Google Scholar] [CrossRef] [PubMed]
- Dahl, J.; Marx, K.; Jabbour, E. Inotuzumab ozogamicin in the treatment of acute lymphoblastic leukemia. Expert Rev. Hematol. 2016, 9, 329–334. [Google Scholar] [CrossRef]
- Kazi, J.U.; Rönnstrand, L. FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications. Physiol. Rev. 2019, 99, 1433–1466. [Google Scholar] [CrossRef]
- Egbuna, C.; Patrick-Iwuanyanwu, K.C.; Onyeike, E.N.; Khan, J.; Alshehri, B. FMS-like tyrosine kinase-3 (FLT3) inhibitors with better binding affinity and ADMET properties than sorafenib and gilteritinib against acute myeloid leukemia: In silico studies. J. Biomol. Struct. Dyn. 2022, 40, 12248–12259. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; He, S.; Yu, L. Clinical Benefits and Safety of FMS-Like Tyrosine Kinase 3 Inhibitors in Various Treatment Stages of Acute Myeloid Leukemia: A Systematic Review, Meta-Analysis, and Network Meta-Analysis. Front. Oncol. 2021, 11, 686013. [Google Scholar] [CrossRef]
- Buclin, T.; Thoma, Y.; Widmer, N.; André, P.; Guidi, M.; Csajka, C.; Decosterd, L. The Steps to Therapeutic Drug Monitoring: A Structured Approach Illustrated with Imatinib. Front. Pharmacol. 2020, 11, 177. [Google Scholar] [CrossRef]
- Kalmanti, L.; Saussele, S.; Lauseker, M.; Müller, M.C.; Dietz, C.T.; Heinrich, L.; Hanfstein, B.; Proetel, U.; Fabarius, A.; Krause, S.W.; et al. Safety and efficacy of imatinib in CML over a period of 10 years: Data from the randomized CML-study IV. Leukemia 2015, 29, 1123–1132. [Google Scholar] [CrossRef] [PubMed]
- McMurry, H.; Fletcher, L.; Traer, E. IDH Inhibitors in AML—Promise and Pitfalls. Curr. Hematol. Malign-Rep. 2021, 16, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Stein, E.M.; Fathi, A.T.; DiNardo, C.D.; Pollyea, D.A.; Roboz, G.J.; Collins, R.; Sekeres, M.A.; Stone, R.M.; Attar, E.C.; Frattini, M.G.; et al. Enasidenib in patients with mutant IDH2 myelodysplastic syndromes: A phase 1 subgroup analysis of the multicentre, AG221-C-001 trial. Lancet Haematol. 2020, 7, e309–e319. [Google Scholar] [CrossRef]
- Younes, A.; Brody, J.; Carpio, C.; Lopez-Guillermo, A.; Ben-Yehuda, D.; Ferhanoglu, B.; Nagler, A.; Ozcan, M.; Avivi, I.; Bosch, F.; et al. Safety and activity of ibrutinib in combination with nivolumab in patients with relapsed non-Hodgkin lymphoma or chronic lymphocytic leukaemia: A phase 1/2a study. Lancet Haematol. 2019, 6, e67–e78. [Google Scholar] [CrossRef]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef]
- Abramson, J.S.; Palomba, M.L.; Gordon, L.I.; Lunning, M.A.; Wang, M.; Arnason, J.; Mehta, A.; Purev, E.; Maloney, D.G.; Andreadis, C.; et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): A multicentre seamless design study. Lancet 2020, 396, 839–852. [Google Scholar] [CrossRef]
- Hsu, F.J.; Caspar, C.B.; Czerwinski, D.; Kwak, L.; Liles, T.M.; Syrengelas, A.; Taidi-Laskowski, B.; Levy, R. Tumor-Specific Idiotype Vaccines in the Treatment of Patients with B-Cell Lymphoma—Long-Term Results of a Clinical Trial. Blood 1997, 89, 3129–3135. [Google Scholar] [CrossRef]
- Schuster, S.J.; Neelapu, S.S.; Gause, B.L.; Janik, J.E.; Muggia, F.; Gockerman, J.P.; Winter, J.N.; Flowers, C.R.; Nikcevich, D.A.; Sotomayor, E.M.; et al. Vaccination with Patient-Specific Tumor-Derived Antigen in First Remission Improves Disease-Free Survival in Follicular Lymphoma. J. Clin. Oncol. 2011, 29, 2787–2794. [Google Scholar] [CrossRef] [PubMed]
- Mato, A.R.; Roeker, L.E.; Lamanna, N.; Allan, J.N.; Leslie, L.; Pagel, J.M.; Patel, K.; Osterborg, A.; Wojenski, D.; Kamdar, M.; et al. Outcomes of COVID-19 in patients with CLL: A multicenter international experience. Blood 2020, 136, 1134–1143. [Google Scholar] [CrossRef] [PubMed]
- Scarfò, L.; Chatzikonstantinou, T.; Rigolin, G.M.; Quaresmini, G.; Motta, M.; Vitale, C.; Garcia-Marco, J.A.; Hernández-Rivas, J.Á.; Mirás, F.; Baile, M.; et al. COVID-19 severity and mortality in patients with chronic lymphocytic leukemia: A joint study by ERIC, the European Research Initiative on CLL, and CLL Campus. Leukemia 2020, 34, 2354–2363. [Google Scholar] [CrossRef] [PubMed]
- Coutre, S.E.; Barnett, C.; Osiyemi, O.; Hoda, D.; Ramgopal, M.; Fort, A.C.; Qaqish, R.; Hu, Y.; Ninomoto, J.; Alami, N.N.; et al. Ibrutinib for Hospitalized Adults with Severe Coronavirus Disease 2019 Infection: Results of the Randomized, Double-Blind, Placebo-Controlled iNSPIRE Study. Open Forum Infect. Dis. 2022, 9, ofac104. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Freeman, J.A.; Holland, J.; Solterbeck, A.; Naidu, K.; Soosapilla, A.; Downe, P.; Tang, C.; Kerridge, I.; Wallman, L.; et al. COVID-19 vaccine failure in chronic lymphocytic leukaemia and monoclonal B-lymphocytosis; humoural and cellular immunity. Br. J. Haematol. 2022, 197, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Parry, H.; McIlroy, G.; Bruton, R.; Ali, M.; Stephens, C.; Damery, S.; Otter, A.; McSkeane, T.; Rolfe, H.; Faustini, S.; et al. Antibody responses after first and second COVID-19 vaccination in patients with chronic lymphocytic leukaemia. Blood Cancer J. 2021, 11, 136. [Google Scholar] [CrossRef] [PubMed]
- Herishanu, Y.; Rahav, G.; Levi, S.; Braester, A.; Itchaki, G.; Bairey, O.; Dally, N.; Shvidel, L.; Ziv-Baran, T.; Polliack, A.; et al. Efficacy of a third BNT162b2 mRNA COVID-19 vaccine dose in patients with CLL who failed standard 2-dose vaccination. Blood 2022, 139, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Blixt, L.; Bogdanovic, G.; Buggert, M.; Gao, Y.; Hober, S.; Healy, K.; Johansson, H.; Kjellander, C.; Mravinacova, S.; Muschiol, S.; et al. COVID-19 in patients with chronic lymphocytic leukemia: Clinical outcome and B- and T-cell immunity during 13 months in consecutive patients. Leukemia 2022, 36, 476–481. [Google Scholar] [CrossRef]
Therapeutic Intervention | Drugs | Mode of Action | Approved Indication | Risk of Infection |
---|---|---|---|---|
CD20-targeted therapy | Rituximab, obinutuzumab, ofatumumab | Complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity | Non-Hodgkin’s lymphoma (NHL) and chronic lymphocytic leukemia (CLL) | Rituximab treatment can result in severe infections, including upper respiratory tract infections, sinusitis, nasopharyngitis, urinary tract infections, and bronchitis [11,12]. Viral infection with hepatitis B, cytomegalovirus infection, and the varicella-zoster virus has been observed in rituximab-treated patients [13]. |
CD38-targeted therapy | Daratumumab | Complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity | Multiple myeloma | Most infections with daratumumab are of mild severity (grade 1 or 2) [14]. Patients undergoing daratumumab therapy are prone to varicella-zoster virus (VZV) infection [15]. |
CD52-targeted therapy | Alemtuzumab | Complement-dependent cytolysis (CDC) and antibody-dependent cellular cytotoxicity | Chronic lymphatic leukemia | Alemtuzumab leads to grade 3/4 neutropenia, thrombocytopenia, non-cytomegalovirus, cytomegalovirus infections, and anemia in chronic lymphocytic leukemia (CLL) patients [16]. |
CD19-targeted therapy | Inebilizumab | Modulates B-cell receptor (BCR)-dependent and independent signaling pathways | Acute lymphocytic leukemia | Inebilizumab-related infections include nasopharyngitis, upper respiratory tract infection, urinary tract infections, and hypertension [17]. |
Bispecific T-cell engagers (BiTE) | Blinatumomab | It crosslinks CD3 on T-cells with CD19 antigen on B-cells, consequently resulting in the activation of T-cells and proliferation of cytolytic proteins to eliminate CD19-positive B-cells | Refractory acute lymphoid leukemia | The likelihood of serum IgG levels returning to normal is very bleak after blinatumomab treatment [18]. |
Kinase inhibitors | Ibrutinib, acalabrutinib, zanubrutinib | Inhibit Bruton tyrosine kinase (BTK) | Mantle cell lymphoma, chronic lymphocytic leukemia, Waldenström macroglobulinemia | Ibrutinib use is correlated with various infections, such as diarrhea, upper respiratory tract infections, pyrexia, pneumonia, musculoskeletal pain, and atrial fibrillation. Hematological AEs include thrombocytopenia, neutropenia, and anemia [19]. |
Phosphoinositide 3-kinase (PI3K) inhibitors | Idelalisib, duvelisib, copanlisib | Inhibition of PI3K pathways | Chronic lymphocytic leukemia (CLL) and follicular lymphoma (FL) | Following idelalisisb, almost 32.1% (36/112) of patients experienced one or more infections. Viral infections/reactivations were observed in 61.5% (16/26) of patients with a major share of CMV infection [20]. |
Janus-associated kinase (JAK) inhibitors | Ruxolitinib | Inhibitor of Janus-associated kinases (JAKs) | Polycythemia vera | Ruxolitinib treatment was associated with grade 3/4 anemia and thrombocytopenia in 2% and 5% of participants, respectively, whereas corresponding percentages were 0% and 4% in standard therapy [21]. |
BCL-2 | Venetoclax | Selective inhibitors of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) | Chronic lymphocytic leukemia, acute myeloid leukemia | Venetoclax use has been associated with severe adverse events including sepsis, bacteremia, lung infection, and respiratory problems, which are observed within 30 days of the first venetoclax treatment [22]. |
Class of Therapy | Agent | Severe Infection (Grade 3/4) | Neutropenia | Immune Response | Reference |
---|---|---|---|---|---|
Anti-CD20 monoclonal antibodies | Rituximab | 5.2% [11] | Late onset of neutropenia | Hypogammaglobulinemia | [45,50] |
Ofatumumab | 54% | Yes | Present | [13,66] | |
Obinutuzumab | 11 to 14% | Yes | Present | [63] | |
CD38-directed agent | Daratumumab | 8% (grade 3 only) | Prolonged neutropenia | NK cell activation and degranulation | [14] |
CD52-directed agent | Alemtuzumab | 29% (grade 3), 8% (grade 4) | Present | Early hyper-repopulation of B-cells | [16] |
CD19-targeted agent | Inebilizumab | Mostly grade 1 or 2 | Rare | Selective depletion of CD19-positive B-cells | [17] |
Bispecific T-cell engagers (BiTE) | Blinatumomab | 9.5% | Present | Hypogammaglobinemia for over a year | [99] |
Bruton’s tyrosine kinase (BTK) inhibitors | Ibrutinib | 35% | Present | Prolonged treatment with ibrutinib restores humoral immunity | [19] |
Zanubrutinib | 58.4% | Present | Hampers the cytotoxic activity of NK cells | [104] | |
Phosphoinositide 3-kinase (PI3K) inhibitors | Idelalisib | 34% | Febrile neutropenia | Impairs cell adhesion, leading to transient lymphocytosis | [113] |
Janus-associated kinase (JAK) inhibitors | Ruxolitinib | 2–5% | Present | Alterations of DC function | [21] |
B-cell lymphoma 2 (BCL-2) inhibitors | Venetoclax | 15% | Present | Rapid apoptosis of CLL cells | [124] |
CD30 directed agents | Brentuximab, vedotin | 39% | Neutropenia | BV-induced peripheral neurotoxicity | [127,128] |
CD22-directed agents | Inotuzumab, ozogamicin | 11% | Present | Unclear | [129] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andreescu, M. Risk of Infections Secondary to the Use of Targeted Therapies in Hematological Malignancies. Life 2023, 13, 1272. https://doi.org/10.3390/life13061272
Andreescu M. Risk of Infections Secondary to the Use of Targeted Therapies in Hematological Malignancies. Life. 2023; 13(6):1272. https://doi.org/10.3390/life13061272
Chicago/Turabian StyleAndreescu, Mihaela. 2023. "Risk of Infections Secondary to the Use of Targeted Therapies in Hematological Malignancies" Life 13, no. 6: 1272. https://doi.org/10.3390/life13061272
APA StyleAndreescu, M. (2023). Risk of Infections Secondary to the Use of Targeted Therapies in Hematological Malignancies. Life, 13(6), 1272. https://doi.org/10.3390/life13061272