Predicting Dominant Genotypes in Norovirus Seasons in Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Epidemiological Data
2.2. Sequence Data
2.3. Prediction Models
2.4. Data Analysis
3. Results
3.1. Dominant Genotypes in GI
3.2. Dominant Genotypes in GII
4. Discussion
4.1. Dominant Genotypes in HuNoV Seasons in Japan
4.2. Predicting Dominant Genotypes in HuNoV Seasons in Japan
4.3. Implications for the Development of HuNoV Vaccines
4.4. Future Directions in Predicting Dominant Genotypes
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vinje, J.; Estes, M.K.; Esteves, P.; Green, K.Y.; Katayama, K.; Knowles, N.J.; L’Homme, Y.; Martella, V.; Vennema, H.; White, P.A.; et al. ICTV virus taxonomy profile: Caliciviridae. J. Gen. Virol. 2019, 100, 1469–1470. [Google Scholar] [CrossRef] [PubMed]
- Prasad, B.V.V.; Hardy, M.E.; Dokland, T.; Bella, J.; Rossmann, M.G.; Estes, M.K. X-ray crystallographic structure of the Norwalk virus capsid. Science 1999, 286, 287–290. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Wang, M.; Wang, K.; Estes, M.K. Sequence and genomic organization of Norwalk virus. Virology 1993, 195, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Lambden, P.R.; Caul, E.O.; Ashley, C.R.; Clarke, I.N. Sequence and genome organization of a human small round-structured (Norwalk-like) virus. Science 1993, 259, 516–519. [Google Scholar] [CrossRef] [PubMed]
- Lindesmith, L.; Moe, C.; Marionneau, S.; Ruvoen, N.; Jiang, X.I.; Lindblad, L.; Stewart, P.; LePendu, J.; Baric, R. Human susceptibility and resistance to Norwalk virus infection. Nat. Med. 2003, 9, 548–553. [Google Scholar] [CrossRef]
- van Loben Sels, J.M.; Green, K.Y. The antigenic topology of norovirus as defined by B and T cell epitope mapping: Implications for universal vaccines and therapeutics. Viruses 2019, 11, 432. [Google Scholar] [CrossRef] [Green Version]
- Ford-Siltz, L.A.; Tohma, K.; Parra, G.I. Understanding the relationship between norovirus diversity and immunity. Gut Microbes. 2021, 13, 1900994. [Google Scholar] [CrossRef]
- Kroneman, A.; Vega, E.; Vennema, H.; Vinje, J.; White, P.A.; Hansman, G.; Green, K.; Martella, V.; Katayama, K.; Koopmans, M. Proposal for a unified norovirus nomenclature and genotyping. Arch. Virol. 2013, 158, 2059–2068. [Google Scholar] [CrossRef] [Green Version]
- Zheng, D.-P.; Ando, T.; Fankhauser, R.L.; Beard, R.S.; Glass, R.I.; Monroe, S.S. Norovirus classification and proposed strain nomenclature. Virology 2006, 346, 312–323. [Google Scholar] [CrossRef] [Green Version]
- Chhabra, P.; de Graaf, M.; Parra, G.I.; Chan, M.C.-W.; Green, K.; Martella, V.; Wang, Q.; White, P.A.; Katayama, K.; Vennema, H.; et al. Updated classification of norovirus genogroups and genotypes. J. Gen. Virol. 2019, 100, 1393–1406. [Google Scholar] [CrossRef]
- Katayama, K.; Shirato-Horikoshi, H.; Kojima, S.; Kageyama, T.; Oka, T.; Hoshino, F.B.; Fukushi, S.; Shinohara, M.; Uchida, K.; Suzuki, Y.; et al. Phylogenetic analysis of the complete genome of 18 Norwalk-like viruses. Virology 2002, 299, 225–239. [Google Scholar] [CrossRef] [Green Version]
- Bull, R.A.; Tanaka, M.M.; White, P.A. Norovirus recombination. J. Gen. Virol. 2007, 88, 3347–3359. [Google Scholar] [CrossRef]
- Lopman, B. Global Burden of Norovirus and Prospects for Vaccine Development; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2015. [Google Scholar]
- Pires, S.M.; Fischer-Walker, C.L.; Lanata, C.F.; Devleesschauwer, B.; Hall, A.J.; Kirk, M.D.; Duarte, A.S.R.; Black, R.E.; Angulo, F.J. Aetiology-specific estimates of the global and regional incidence and mortality of diarrhoeal diseases commonly transmitted through food. PLoS ONE 2015, 10, e0142927. [Google Scholar] [CrossRef]
- Ahmed, S.M.; Hall, A.J.; Robinson, A.E.; Verhoef, L.; Premkumar, P.; Parashar, U.D.; Koopmans, M.; Lopman, B.A. Global prevalence of norovirus in cases of gastroenteritis: A systematic review and meta-analysis. Lancet Infect. Dis. 2014, 14, 725–730. [Google Scholar] [CrossRef] [Green Version]
- Giersing, B.K.; Vekemans, J.; Nava, S.; Kaslow, D.C.; Moorthy, V.; WHO Product Development for Vaccines Advisory Committee. Report from the World Health Organization’s third Product Development for Vaccines Advisory Committee (PDVAC) meeting, Geneva, 8–10th June 2016. Vaccine 2019, 37, 7315–7327. [Google Scholar] [CrossRef]
- Netzler, N.E.; Tuipulotu, D.E.; White, P.A. Norovirus antivirals: Where are we now? Med. Res. Rev. 2019, 39, 860–886. [Google Scholar] [CrossRef]
- Cortes-Penfield, N.W.; Ramani, S.; Estes, M.K.; Atmar, R.L. Prospects and challenges in the development of a norovirus vaccine. Clin. Ther. 2017, 39, 1537–1549. [Google Scholar] [CrossRef] [Green Version]
- Esposito, S.; Principi, N. Norovirus vaccine: Priorities for future research and development. Front. Immunol. 2020, 11, 1383. [Google Scholar] [CrossRef]
- Tan, M. Norovirus vaccines: Current clinical development and challenges. Pathogens 2021, 10, 1641. [Google Scholar] [CrossRef]
- Thongprachum, A.; Khamrin, P.; Maneekarn, N.; Hayakawa, S.; Ushijima, H. Epidemiology of gastroenteritis viruses in Japan: Prevalence, seasonality, and outbreak. J. Med. Virol. 2016, 88, 551–570. [Google Scholar] [CrossRef]
- Becker-Dreps, S.; Brewer-Jensen, P.D.; Gonzalez, F.; Reyes, Y.; Mallory, M.L.; Gutiérrez, L.; Vielot, N.A.; Diez-Valcarce, M.; Vinje, J.; Baric, R.S.; et al. Preexisting heterotypic ligand-blocking antibody does not protect against genogroup II norovirus episodes in young children. J. Pediatr. Infect. Dis. Soc. 2022, 11, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Doan, Y.H.; Kimura, H.; Shinomiya, H.; Shirabe, K.; Katayama, K. Predicting genotype compositions in norovirus seasons in Japan. Microbiol. Immunol. 2016, 60, 418–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruis, C.; Lindesmith, L.C.; Mallory, M.L.; Brewer-Jensen, P.D.; Bryant, J.M.; Costantini, V.; Monit, C.; Vinje, J.; Baric, R.S.; Goldstein, R.A.; et al. Preadaptation of pandemic GII.4 noroviruses in unsampled virus reservoirs years before emergence. Virus Evol. 2020, 6, veaa067. [Google Scholar] [CrossRef] [PubMed]
- Mahar, J.E.; Bok, K.; Green, K.Y.; Kirkwood, C.D. The importance of intergenic recombination in norovirus GII.3 evolution. J. Virol. 2013, 87, 3687–3698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parra, G.I. Emergence of norovirus strains: A tale of two genes. Virus Evol. 2019, 5, vez048. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, Y. Effect of recombinations on changes in genotype proportions between norovirus seasons in Japan. Meta Gene 2021, 29, 100934. [Google Scholar] [CrossRef]
- Mathijs, E.; Stals, A.; Baert, L.; Botteldoorn, N.; Denayer, S.; Mauroy, A.; Scipioni, A.; Daube, G.; Dierick, K.; Herman, L.; et al. A review of known and hypothetical transmission routes for noroviruses. Food Environ. Virol. 2012, 4, 131–152. [Google Scholar] [CrossRef]
- Suzuki, Y.; Doan, Y.H.; Kimura, H.; Shinomiya, H.; Shirabe, K.; Katayama, K. Predicting directions of changes in genotype proportions between norovirus seasons in Japan. Front. Microbiol. 2019, 10, 116. [Google Scholar] [CrossRef]
- Kroneman, A.; Vennema, H.; Deforche, K.; Avoort, H.V.; Penaranda, S.; Oberste, M.S.; Koopmans, V.J. An automated genotyping tool for enteroviruses and noroviruses. J. Clin. Virol. 2011, 51, 121–125. [Google Scholar] [CrossRef]
- Luksza, M.; Lassig, M. A predictive fitness model for influenza. Nature 2014, 507, 57–61. [Google Scholar] [CrossRef]
- Lindesmith, L.C.; Donaldson, E.F.; Baric, R.S. Norovirus GII.4 strain antigenic variation. J. Virol. 2011, 85, 231–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parrino, T.A.; Schreiber, D.; Trier, J.; Kapikian, A.; Blacklow, N. Clinical immunity in acute gastroenteritis caused by Norwalk agent. N. Engl. J. Med. 1977, 297, 86–89. [Google Scholar] [CrossRef]
- Johnson, P.C.; Mathewson, J.J.; DuPont, H.L.; Greenberg, H.B. Multiple challenge study of host susceptibility to Norwalk gastroenteritis in US adults. J. Infect. Dis. 1990, 161, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Simmons, K.; Gambhir, M.; Leon, J.; Lopman, B. Duration of immunity to norovirus gastroenteritis. Emerg. Infect. Dis. 2013, 19, 1260–1267. [Google Scholar] [CrossRef] [PubMed]
- Tomita, M.; Hashimoto, K.; Takahashi, K.; Matsuzaki, Y.; Matsushima, R.; Saito, K.; Yugi, K.; Miyoshi, F.; Nakano, H.; Tanida, S.; et al. The E-CELL project: Towards integrative simulation of cellular processes. N. Gener. Comput. 2000, 18, 1–12. [Google Scholar] [CrossRef]
- Anderson, R.M.; May, R.M. Infectious Diseases of Humans; Dynamics and Control; Oxford University Press: Oxford, UK, 1991. [Google Scholar]
- Farahmand, M.; Moghoofei, M.; Dorost, A.; Shoja, Z.; Ghorbani, S.; Kiani, S.J.; Khales, P.; Esteghamati, A.; Sayyahfar, S.; Jafarzadeh, M.; et al. Global prevalence and genotype distribution of norovirus infection in children with gastroenteritis: A meta-analysis on 6 years of research from 2015 to 2020. Rev. Med. Virol. 2022, 32, e2237. [Google Scholar] [CrossRef]
- Parra, G.I.; Squires, R.B.; Karangwa, C.K.; Johnson, J.A.; Lepore, C.J.; Sosnovtsev, S.V.; Green, K.Y. Static and evolving norovirus genotypes: Implications for epidemiology and immunity. PLoS Pathog. 2017, 13, e1006136. [Google Scholar] [CrossRef] [Green Version]
- Stone, V.M.; Hankaniemi, M.M.; Laitinen, O.H.; Sioofy-Khojine, A.B.; Lin, A.; Diaz Lozano, I.M.; Mazur, M.A.; Marjomaki, V.; Lore, K.; Hyoty, H.; et al. A hexavalent Coxsackievirus B vaccine is highly immunogenic and has a strong protective capacity in mice and nonhuman primates. Sci. Adv. 2020, 6, eaaz2433. [Google Scholar] [CrossRef]
- Moro, P.L.; Arana, J.; Marquez, P.L.; Ng, C.; Barash, F.; Hibbs, B.F.; Cano, M. Is there any harm in administering extra-doses of vaccine to a person? Excess doses of vaccine reported to the Vaccine Adverse Event Reporting System (VAERS), 2007–2017. Vaccine 2019, 37, 3730–3734. [Google Scholar] [CrossRef]
- Suzuki, Y. Estimating antigenic distances between GII.4 human norovirus strains. Gene Rep. 2022, 26, 101492. [Google Scholar] [CrossRef]
- Chhabra, P.; Rouhani, S.; Browne, H.; Yori, P.P.; Salas, M.S.; Olortegui, M.P.; Moulton, L.H.; Kosek, M.N.; Vinje, J. Homotypic and heterotypic protection and risk of reinfection following natural norovirus infection in a highly endemic setting. Clin. Infect. Dis. 2020, 72, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Lindesmith, L.C.; Boshier, F.A.T.; Brewer-Jensen, P.D.; Roy, S.; Costantini, V.; Mallory, M.L.; Zweigart, M.; May, S.R.; Conrad, H.; O’Reilly, K.M.; et al. Immune imprinting drives human norovirus potential for global spread. mBio 2022, 13, e0186122. [Google Scholar] [CrossRef]
- Lindesmith, L.C.; Brewer-Jensen, P.D.; Mallory, M.L.; Zweigart, M.R.; May, S.R.; Kelly, D.; Williams, R.; Becker-Dreps, S.; Bucardo, F.; Allen, D.J.; et al. Antigenic site immunodominance redirection following repeat variant exposure. Viruses 2022, 14, 1293. [Google Scholar] [CrossRef]
- Kobayashi, M.; Yoshizumi, S.; Kogawa, S.; Takahashi, T.; Ueki, Y.; Shinohara, M.; Mizukoshi, F.; Tsukagoshi, H.; Sasaki, Y.; Suzuki, R.; et al. Molecular evolution of the capsid gene in norovirus genogroup I. Sci. Rep. 2015, 5, 13806. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, M.; Matsushima, Y.; Motoya, T.; Sakon, N.; Shigemoto, N.; Okamoto-Nakagawa, R.; Nishimura, K.; Yamashita, Y.; Kuroda, M.; Saruki, N.; et al. Molecular evolution of the capsid gene in human norovirus genogroup II. Sci. Rep. 2016, 6, 29400. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, Y. Predictability of antigenic evolution for H3N2 human influenza A virus. Genes Genet. Syst. 2013, 88, 225–232. [Google Scholar] [CrossRef] [Green Version]
Observed | ||||
---|---|---|---|---|
Model | Predicted | Dominant | Non-dominant | Total |
Null | Dominant | 11 | 15 | 26 |
Non-dominant | 15 | 24 | 39 | |
Total | 26 | 39 | 65 | |
Fitness (d = 0) | Dominant | 12 | 14 | 26 |
Non-dominant | 14 | 25 | 39 | |
Total | 26 | 39 | 65 | |
Fitness (d = 1) | Dominant | 11 | 15 | 26 |
Non-dominant | 15 | 24 | 39 | |
Total | 26 | 39 | 65 | |
Fitness (d = 0–10) 1 | Dominant | 22 | 21 | 43 |
Non-dominant | 4 | 18 | 22 | |
Total | 26 | 39 | 65 |
Observed | ||||
---|---|---|---|---|
Model | Predicted | Dominant | Non-dominant | Total |
Null | Dominant | 18 | 8 | 26 |
Non-dominant | 8 | 31 | 39 | |
Total | 26 | 39 | 65 | |
Fitness (d = 0) | Dominant | 19 | 7 | 26 |
Non-dominant | 7 | 32 | 39 | |
Total | 26 | 39 | 65 | |
Fitness (d = 1) | Dominant | 18 | 8 | 26 |
Non-dominant | 8 | 31 | 39 | |
Total | 26 | 39 | 65 | |
Fitness (d = 0–10) 1 | Dominant | 21 | 15 | 36 |
Non-dominant | 5 | 24 | 29 | |
Total | 26 | 39 | 65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, Y. Predicting Dominant Genotypes in Norovirus Seasons in Japan. Life 2023, 13, 1634. https://doi.org/10.3390/life13081634
Suzuki Y. Predicting Dominant Genotypes in Norovirus Seasons in Japan. Life. 2023; 13(8):1634. https://doi.org/10.3390/life13081634
Chicago/Turabian StyleSuzuki, Yoshiyuki. 2023. "Predicting Dominant Genotypes in Norovirus Seasons in Japan" Life 13, no. 8: 1634. https://doi.org/10.3390/life13081634
APA StyleSuzuki, Y. (2023). Predicting Dominant Genotypes in Norovirus Seasons in Japan. Life, 13(8), 1634. https://doi.org/10.3390/life13081634