Role of Perilesional Sampling of Patients Undergoing Fusion Prostate Biopsies
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mottet, N.; Bellmunt, J.; Bolla, M.; Briers, E.; Cumberbatch, M.G.; De Santis, M.; Fossati, N.; Gross, T.; Henry, A.M.; Joniau, S.; et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2017, 71, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.R.; Ansbro, B.; Shah, P.V.; Aguiar, J.A.; Li, E.V.; Rich, J.M.; Mahenthiran, A.K.; Moataz, S.A.S.; Keeter, M.-K.; Mai, Q.; et al. Real-world use of MRI for risk stratification prior to prostate biopsy. Prostate Cancer Prostatic Dis. 2022, 26, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Kuru, T.H.; Saeb-Parsy, K.; Cantiani, A.; Frey, J.; Lombardo, R.; Serrao, E.; Gaziev, G.; Koo, B.; Roethke, M.; Gnanapragasam, V.; et al. Evolution of repeat prostate biopsy strategies incorporating transperineal and MRI-TRUS fusion techniques. World J. Urol. 2014, 32, 945–950. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, P.-F.; Li, P.-I.; Lin, W.-C.; Chang, H.; Chang, C.-H.; Wu, H.-C.; Chang, Y.-H.; Wang, Y.-D.; Huang, W.-C.; Huang, C.-P. Learning Curve of Transperineal MRI/US Fusion Prostate Biopsy: 4-Year Experience. Life 2023, 13, 638. [Google Scholar] [CrossRef]
- Newman, T.H.; Stroman, L.; Hadjipavlou, M.; Haque, A.; Rusere, J.; Chan, K.; Ioannides, D.; Di Benedetto, A.; Pinczes, T.; Popert, R.; et al. EXIT from TRansrectal prostate biopsies (TREXIT): Sepsis rates of transrectal biopsy with rectal swab culture guided antimicrobials versus freehand transperineal biopsy. Prostate Cancer Prostatic Dis. 2021, 25, 283–287. [Google Scholar] [CrossRef]
- Lee, A.Y.M.; Chen, K.; Tan, Y.G.; Lee, H.J.; Shutchaidat, V.; Fook-Chong, S.; Cheng, C.W.S.; Ho, H.S.S.; Yuen, J.S.P.; Ngo, N.T.; et al. Reducing the number of systematic biopsy cores in the era of MRI targeted biopsy—Implications on clinically-significant prostate cancer detection and relevance to focal therapy planning. Prostate Cancer Prostatic Dis. 2022, 25, 720–726. [Google Scholar] [CrossRef]
- Ahn, H.; Hwang, S.I.; Kim, T.M.; Lee, H.J.; Choe, G.; Hong, S.K.; Byun, S.-S.; Lee, H. Diagnostic value of multiparametric MRI in detecting residual or recurrent prostate cancer after high-intensity focused ultrasound. Prostate Cancer Prostatic Dis. 2022, 26, 360–366. [Google Scholar] [CrossRef]
- Iacob, R.; Stoicescu, E.-R.; Cerbu, S.; Manolescu, D.-L.; Bardan, R.; Cumpănaş, A. Could Biparametric MRI Replace Multiparametric MRI in the Management of Prostate Cancer? Life 2023, 13, 465. [Google Scholar] [CrossRef]
- Oerther, B.; Engel, H.; Bamberg, F.; Sigle, A.; Gratzke, C.; Benndorf, M. Cancer detection rates of the PI-RADSv2.1 assessment categories: Systematic review and meta-analysis on lesion level and patient level. Prostate Cancer Prostatic Dis. 2022, 25, 256–263. [Google Scholar] [CrossRef]
- Hagens, M.J.; Noordzij, M.A.; Mazel, J.W.; Jager, A.; Boellaard, T.N.; Tielbeek, J.A.; Henebiens, M.; Schoots, I.G.; van Leeuwen, P.J.; van der Poel, H.G.; et al. An Magnetic Resonance Imaging-directed Targeted-plus-perilesional Biopsy Approach for Prostate Cancer Diagnosis: “Less Is More”. Eur. Urol. Open Sci. 2022, 43, 68–73. [Google Scholar] [CrossRef]
- Cauni, V.M.; Stanescu, D.; Tanase, F.; Mihai, B.; Persu, C. Magnetic resonance/ultrasound fusion targeted biopsy of the prostate can be improved by adding systematic biopsy. Med. Ultrason. 2021, 23, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Beetz, N.L.; Dräger, F.; Hamm, C.A.; Shnayien, S.; Rudolph, M.M.; Froböse, K.; Elezkurtaj, S.; Haas, M.; Asbach, P.; Hamm, B.; et al. MRI-targeted biopsy cores from prostate index lesions: Assessment and prediction of the number needed. Prostate Cancer Prostatic Dis. 2022, 2022, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Brisbane, W.G.; Priester, A.M.; Ballon, J.; Kwan, L.; Delfin, M.K.; Felker, E.R.; Sisk, A.E.; Hu, J.C.; Marks, L.S. Targeted Prostate Biopsy: Umbra, Penumbra, and Value of Perilesional Sampling. Eur. Urol. 2022, 82, 303–310. [Google Scholar] [CrossRef]
- Noujeim, J.-P.; Belahsen, Y.; Lefebvre, Y.; Lemort, M.; Deforche, M.; Sirtaine, N.; Martin, R.; Roumeguère, T.; Peltier, A.; Diamand, R. Optimizing multiparametric magnetic resonance imaging-targeted biopsy and detection of clinically significant prostate cancer: The role of perilesional sampling. Prostate Cancer Prostatic Dis. 2022, 2022, 1–6. [Google Scholar] [CrossRef]
- Trucchi, A.; De Nunzio, C.; Mariani, S.; Palleschi, G.; Miano, L.; Tubaro, A. Local anesthesia reduces pain associated with transrectal prostatic biopsy: A prospective randomized study. Urol. Int. 2005, 74, 209–213. [Google Scholar] [CrossRef]
- De Nunzio, C.; Pastore, A.L.; Lombardo, R.; Simone, G.; Leonardo, C.; Mastroianni, R.; Collura, D.; Muto, G.; Gallucci, M.; Carbone, A.; et al. The new Epstein Gleason score classification significantly reduces upgrading in prostate cancer patients. Eur. J. Surg. Oncol. 2018, 44, 835–839. [Google Scholar] [CrossRef]
- Epstein, J.I.; Zelefsky, M.J.; Sjoberg, D.D.; Nelson, J.B.; Egevad, L.; Magi-Galluzzi, C.; Vickers, A.J.; Parwani, A.V.; Reuter, V.E.; Fine, S.W.; et al. A Contemporary Prostate Cancer Grading System: A Validated Alternative to the Gleason Score. Eur. Urol. 2016, 69, 428–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Nunzio, C.; Lombardo, R.; Presicce, F.; Bellangino, M.; Agro, E.F.; Gambrosier, M.B.; Trucchi, A.; Petta, S.; Tubaro, A. Transrectal-ultrasound prostatic biopsy preparation: Rectal enema vs. mechanical bowel preparation. Cent. Eur. J. Urol. 2015, 68, 223–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, P.K.-F.; Shen, X.; Wang, G.; Ho, C.-L.; Leung, C.-H.; Ng, C.-F.; Choi, K.-S.; Teoh, J.Y.-C. Enhancement of prostate cancer diagnosis by machine learning techniques: An algorithm development and validation study. Prostate Cancer Prostatic Dis. 2021, 25, 672–676. [Google Scholar] [CrossRef]
- Visser, W.C.H.; de Jong, H.; Steyaert, S.; Melchers, W.J.G.; Mulders, P.F.A.; Schalken, J.A. Clinical use of the mRNA urinary biomarker SelectMDx test for prostate cancer. Prostate Cancer Prostatic Dis. 2022, 25, 583–589. [Google Scholar] [CrossRef]
- Brassetti, A.; Lombardo, R.; Emiliozzi, P.; Cardi, A.; Antonio, D.V.; Antonio, I.; Aldo, S.; Tommaso, R.; Alberto, P.; Gianluca, D. Prostate-specific Antigen Density Is a Good Predictor of Upstaging and Upgrading, According to the New Grading System: The Keys We Are Seeking May Be Already in Our Pocket. Urology 2018, 111, 129–135. [Google Scholar] [CrossRef]
- Rouvière, O.; Puech, P.; Renard-Penna, R.; Claudon, M.; Roy, C.; Mège-Lechevallier, F.; Decaussin-Petrucci, M.; Dubreuil-Chambardel, M.; Magaud, L.; Remontet, L.; et al. Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): A prospective, multicentre, paired diagnostic study. Lancet Oncol. 2019, 20, 100–109. [Google Scholar] [CrossRef]
- Preisser, F.; Theissen, L.; Wenzel, M.; Humke, C.; Bodelle, B.; Köllermann, J.; Kluth, L.; Banek, S.; Becker, A.; Roos, F.; et al. Performance of Combined Magnetic Resonance Imaging/Ultrasound Fusion-guided and Systematic Biopsy of the Prostate in Biopsy-naïve Patients and Patients with Prior Biopsies. Eur. Urol. Focus 2021, 7, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Diamand, R.; Hollans, M.; Lefebvre, Y.; Sirtaine, N.; Limani, K.; Hawaux, E.; Zahr, R.A.; Mattlet, A.; Albisinni, S.; Roumeguère, T.; et al. The role of perilesional and multiparametric resonance imaging-targeted biopsies to reduce the risk of upgrading at radical prostatectomy pathology: A retrospective monocentric study. Urol. Oncol. Semin. Orig. Investig. 2022, 40, e11–e192. [Google Scholar] [CrossRef]
- Frisbie, J.W.; Van Besien, A.J.; Lee, A.; Xu, L.; Wang, S.; Choksi, A.; Afzal, M.A.; Naslund, M.J.; Lane, B.; Wong, J.; et al. PSA density is complementary to prostate MP-MRI PI-RADS scoring system for risk stratification of clinically significant prostate cancer. Prostate Cancer Prostatic Dis. 2022, 26, 347–352. [Google Scholar] [CrossRef]
- Eng, S.E.; Basasie, B.; Lam, A.; Semmes, O.J.; Troyer, D.A.; Clarke, G.D.; Sunnapwar, A.G.; Leach, R.J.; Johnson-Pais, T.L.; Sokoll, L.J.; et al. Prospective comparison of restriction spectrum imaging and non-invasive biomarkers to predict upgrading on active surveillance prostate biopsy. Prostate Cancer Prostatic Dis. 2022, 2022, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Giganti, F.; Allen, C.; Emberton, M.; Moore, C.M.; Kasivisvanathan, V. Prostate Imaging Quality (PI-QUAL): A New Quality Control Scoring System for Multiparametric Magnetic Resonance Imaging of the Prostate from the PRECISION trial. Eur. Urol. Oncol. 2020, 3, 615–619. [Google Scholar] [CrossRef] [PubMed]
- Park, K.J.; Choi, S.H.; Lee, J.S.; Kim, J.K.; Kim, M.-H. Interreader Agreement with Prostate Imaging Reporting and Data System Version 2 for Prostate Cancer Detection: A Systematic Review and Meta-Analysis. J. Urol. 2020, 204, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Brembilla, G.; Dell’oglio, P.; Stabile, A.; Damascelli, A.; Brunetti, L.; Ravelli, S.; Cristel, G.; Schiani, E.; Venturini, E.; Grippaldi, D.; et al. Interreader variability in prostate MRI reporting using Prostate Imaging Reporting and Data System version 2.1. Eur. Radiol. 2020, 30, 3383–3392. [Google Scholar] [CrossRef]
- Pradere, B.; Veeratterapillay, R.; Dimitropoulos, K.; Yuan, Y.; Omar, M.I.; MacLennan, S.; Cai, T.; Bruyère, F.; Bartoletti, R.; Köves, B.; et al. Nonantibiotic Strategies for the Prevention of Infectious Complications following Prostate Biopsy: A Systematic Review and Meta-Analysis. J. Urol. 2021, 205, 653–663. [Google Scholar] [CrossRef]
- Chiu, P.K.-F.; Chan, C.-H.; Yee, C.-H.; Lau, S.-Y.; Teoh, J.Y.-C.; Wong, H.-F.; Lo, K.-L.; Yuen, T.-Y.; Hung, H.-Y.; Cho, C.C.-M.; et al. Transperineal Targeted Microwave Ablation (TMA) of localized prostate cancer guided by MRI-Ultrasound fusion and organ-based tracking: A pilot study. Prostate Cancer Prostatic Dis. 2022, 2022, 1–7. [Google Scholar] [CrossRef]
- Ren, S.; Wang, D. Re: Can fewer transperineal systematic biopsy cores have the same prostate cancer detection rate as of magnetic resonance imaging/ultrasound fusion biopsy? Prostate Cancer Prostatic Dis. 2022, 26, 432. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Qin, Z.; Cai, H.; Zhang, C.; Li, X.; Xu, W.; Wang, J.; Xu, Z.; Yu, B.; Xu, T.; et al. Comparison between transrectal and transperineal prostate biopsy for detection of prostate cancer: A meta-analysis and trial sequential analysis. Oncotarget 2017, 8, 23322–23336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, H.; Song, S.H.; Lee, S.E.; Song, K.-H.; Lee, S. A prospective randomized trial of povidone-iodine suppository before transrectal ultrasonography-guided prostate biopsy. Medicine 2019, 98, e14854. [Google Scholar] [CrossRef] [PubMed]
- Loeb, S.; Vellekoop, A.; Ahmed, H.U.; Catto, J.; Emberton, M.; Nam, R.; Rosario, D.J.; Scattoni, V.; Lotan, Y. Systematic Review of Complications of Prostate Biopsy. Eur. Urol. 2013, 64, 876–892. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Wang, W.; Lin, T.; Zhang, Q.; Zhao, X.; Lian, H.; Guo, H. Comparison of the complications of traditional 12 cores transrectal prostate biopsy with image fusion guided transperineal prostate biopsy. BMC Urol. 2016, 16, 68. [Google Scholar] [CrossRef] [Green Version]
- De Nunzio, C.; Presicce, F.; Lombardo, R.; Trucchi, A.; Bellangino, M.; Tubaro, A.; Moja, E. Patient centred care for the medical treatment of lower urinary tract symptoms in patients with benign prostatic obstruction: A key point to improve patients’—A systematic review. BMC Urol. 2018, 18, 62. [Google Scholar] [CrossRef] [PubMed]
- Westhoff, N.; Ernst, R.; Kowalewski, K.-F.; Derigs, F.; Neuberger, M.; Nörenberg, D.; Popovic, Z.V.; Ritter, M.; Michel, M.S.; von Hardenberg, J. Medium-term Oncological Efficacy and Patient-reported Outcomes After Focal High-intensity Focused Ultrasound: The FOXPRO Trial. Eur. Urol. Focus 2022, 9, 283–290. [Google Scholar] [CrossRef]
- Kato, T.; Hirama, H.; Mitsuzuka, K.; Maruyama, S.; Sasaki, H.; Saito, T.; Matsumoto, R.; Sakamoto, S.; Sakai, Y.; Fukuhara, H.; et al. Reclassification prediction of first-year protocol biopsy on active surveillance of prostate cancer by p2PSA-related parameters: From PRIAS-JAPAN. Prostate Cancer Prostatic Dis. 2021, 25, 666–671. [Google Scholar] [CrossRef]
- Foley, R.W.; Maweni, R.M.; Gorman, L.; Murphy, K.; Lundon, D.J.; Durkan, G.; Power, R.; O’Brien, F.; O’Malley, K.J.; Galvin, D.J.; et al. European Randomised Study of Screening for Prostate Cancer (ERSPC) risk calculators significantly outperform the Prostate Cancer Prevention Trial (PCPT) 2.0 in the prediction of prostate cancer: A multi-institutional study. BJU Int. 2016, 118, 706–713. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, M.R.; Li, E.V.; Kumar, S.K.S.R.; Busza, A.; Lin, J.S.; Mahenthiran, A.K.; Aguiar, J.A.; Shah, P.V.; Ansbro, B.; Rich, J.M.; et al. Optimizing detection of clinically significant prostate cancer through nomograms incorporating mri, clinical features, and advanced serum biomarkers in biopsy naïve men. Prostate Cancer Prostatic Dis. 2023, 2023, 1–8. [Google Scholar] [CrossRef] [PubMed]
- De Nunzio, C.; Lombardo, R.; Tema, G.; Cancrini, F.; Russo, G.I.; Chacon, R.; Garcia-Cruz, E.; Ribal, M.J.; Morgia, G.; Alcaraz, A.; et al. Mobile phone apps for the prediction of prostate cancer: External validation of the Coral and Rotterdam apps. Eur. J. Surg. Oncol. 2019, 45, 471–476. [Google Scholar] [CrossRef] [PubMed]
- De Nunzio, C.; Lombardo, R.; Tema, G.; Alkhatatbeh, H.; Gandaglia, G.; Briganti, A.; Tubaro, A. External validation of Chun, PCPT, ERSPC, Kawakami, and Karakiewicz nomograms in the prediction of prostate cancer: A single center cohort-study. Urol. Oncol. Semin. Orig. Investig. 2018, 36, 364.e1–364.e7. [Google Scholar] [CrossRef]
- Checcucci, E.; Rosati, S.; De Cillis, S.; Vagni, M.; Giordano, N.; Piana, A.; Granato, S.; Amparore, D.; De Luca, S.; Fiori, C.; et al. Artificial intelligence for target prostate biopsy outcomes prediction the potential application of fuzzy logic. Prostate Cancer Prostatic Dis. 2021, 25, 359–362. [Google Scholar] [CrossRef]
- Morozov, A.; Taratkin, M.; Bazarkin, A.; Rivas, J.G.; Puliatti, S.; Checcucci, E.; Belenchon, I.R.; Kowalewski, K.-F.; Shpikina, A.; Singla, N.; et al. A systematic review and meta-analysis of artificial intelligence diagnostic accuracy in prostate cancer histology identification and grading. Prostate Cancer Prostatic Dis. 2023, 2023, 1–12. [Google Scholar] [CrossRef]
- Arslan, S. Exploring the Potential of Chat GPT in Personalized Obesity Treatment. Ann. Biomed. Eng. 2023, 51, 1887–1888. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.S. Role of Chat GPT in Public Health. Ann. Biomed. Eng. 2023, 51, 868–869. [Google Scholar] [CrossRef] [PubMed]
- Dell’Oglio, P.; Karnes, R.J.; Gandaglia, G.; Fossati, N.; Stabile, A.; Moschini, M.; Cucchiara, V.; Zaffuto, E.; Karakiewicz, P.I.; Suardi, N.; et al. The New Prostate Cancer Grading System Does Not Improve Prediction of Clinical Recurrence After Radical Prostatectomy: Results of a Large, Two-Center Validation Study. Prostate 2017, 77, 263–273. [Google Scholar] [CrossRef]
- Eloy, C.; Marques, A.; Pinto, J.; Pinheiro, J.; Campelos, S.; Curado, M.; Vale, J.; Polónia, A. Artificial intelligence-assisted cancer diagnosis improves the efficiency of pathologists in prostatic biopsies. Virchows Arch. 2023, 482, 595–604. [Google Scholar] [CrossRef]
- Qiu, D.-X.; Li, J.; Zhang, J.-W.; Chen, M.-F.; Gao, X.-M.; Tang, Y.-X.; Zhang, Y.; Yi, X.-P.; Yin, H.-L.; Gan, Y.; et al. Dual-tracer PET/CT-targeted, mpMRI-targeted, systematic biopsy, and combined biopsy for the diagnosis of prostate cancer: A pilot study. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2821–2832. [Google Scholar] [CrossRef]
Patients | 262 |
Age (years) | 70 (64/76); 70 ± 7.8 |
PSA (ng/mL) | 6.8 (4.3/10.5); 8.2 ± 6.4 |
BMI (Kg/m2) | 26.5 (23.9/29); 26.4 ± 4.4 |
PSAdensity (ng/mll/cc) | 0.14 (0.1/0.2); 0.9 ± 3.4 |
Prostate Volume (cc) | 52 (36/67.7); 58.7 ± 34.6 |
Systematic Cores | 12 (12/12); 12 ± 0 |
Targeted Cores | 3(3/6); 4.3 ± 1 |
Perilesional cores | 3(3/6); 4.5 ± 0.8 |
PIRADS TARGET 1 | 262 |
3 | 99/262: 38% |
4 | 128/262: 49% |
5 | 34/262: 13% |
PIRADS TARGET 2 | 66 |
3 | 20/66: 30% |
4 | 32/66: 49% |
5 | 14/66: 21% |
ISUP Grade | |
0 | 148/262: 57% |
1 | 13/262: 7% |
2 | 16/262: 6% |
3 | 21/262: 8% |
4 | 21/262: 8% |
5 | 37/262: 14% |
Technique | Cancer | Clinically Significant Cancer |
---|---|---|
Systematic + Target + Peri-target | 43.5% (114/262) | 35% (92/262) |
Systematic Biopsies | 35.9% (94/262) | 30.5% (80/262) |
Systematic + Target | 40.5% (106/262) | 35% (92/262) |
Target + Peri-target | 32.8% (86/262) | 29% (76/262) |
Target | 29% (76/262) | 26% (68/262) |
Missed csCancer | Missed nsCancer | Diagnosed csCancer | Diagnosed nsCancer | |
---|---|---|---|---|
Systematic Biopsies | 10/92 (11%) | 8/20 (80%) | 82/92 (89%) | 12/20 (60%) |
Systematic + Target | 2/92 (2%) | 4/20 (20%) | 90/92 (98%) | 16/20 (80%) |
Target + Peri-target | 18/92 (20%) | 8/20 (40%) | 74/92 (80%) | 12/20 (60%) |
Target | 22/92 (24%) | 14/20 (70%) | 70/92 (76%) | 6/20 (30%) |
Total | 92 | 20 | 92 | 20 |
Missed csCancer | Missed nsCancer | Diagnosed csCancer | Diagnosed nsCancer | |
---|---|---|---|---|
Systematic Biopsies | 10/90 (11%) | 6/16 (37%) | 80/90 (89%) | 10/16 (63%) |
Systematic + Target | 2/90 (2%) | 2/16 (13%) | 88/90 (98%) | 14/16 (87%) |
Target + Peri-target | 8/90 (9%) | 6/16 (37%) | 82/90 (91%) | 10/16 (63%) |
Target | 14/90 (16%) | 10/16 (62%) | 76/90 (84%) | 6/16 (38%) |
Total | 90 | 16 | 90 | 20 |
Missed csCancer | Missed nsCancer | Diagnosed csCancer | Diagnosed nsCancer | |
---|---|---|---|---|
Systematic Biopsies | 0/20 (0%) | 1/5 (20%) | 20/20 (100%) | 4/5 (80%) |
Systematic + Target | 0/20 (0%) | 0/5 (13%) | 20/20 (100%) | 5/5 (100%) |
Target + Peri-target | 2/20 (10%) | 2/5 (40%) | 18/20 (90%) | 3/5 (60%) |
Target | 2/20 (10%) | 2/5 (40%) | 18/20 (90%) | 3/5 (60%) |
Total | 20 | 5 | 20 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lombardo, R.; Tema, G.; Nacchia, A.; Mancini, E.; Franco, S.; Zammitti, F.; Franco, A.; Cash, H.; Gravina, C.; Guidotti, A.; et al. Role of Perilesional Sampling of Patients Undergoing Fusion Prostate Biopsies. Life 2023, 13, 1719. https://doi.org/10.3390/life13081719
Lombardo R, Tema G, Nacchia A, Mancini E, Franco S, Zammitti F, Franco A, Cash H, Gravina C, Guidotti A, et al. Role of Perilesional Sampling of Patients Undergoing Fusion Prostate Biopsies. Life. 2023; 13(8):1719. https://doi.org/10.3390/life13081719
Chicago/Turabian StyleLombardo, Riccardo, Giorgia Tema, Antonio Nacchia, Elisa Mancini, Sara Franco, Filippo Zammitti, Antonio Franco, Hannes Cash, Carmen Gravina, Alessio Guidotti, and et al. 2023. "Role of Perilesional Sampling of Patients Undergoing Fusion Prostate Biopsies" Life 13, no. 8: 1719. https://doi.org/10.3390/life13081719
APA StyleLombardo, R., Tema, G., Nacchia, A., Mancini, E., Franco, S., Zammitti, F., Franco, A., Cash, H., Gravina, C., Guidotti, A., Gallo, G., Ghezzo, N., Cicione, A., Tubaro, A., Autorino, R., & De Nunzio, C. (2023). Role of Perilesional Sampling of Patients Undergoing Fusion Prostate Biopsies. Life, 13(8), 1719. https://doi.org/10.3390/life13081719