Altitude Modifies the Effect of Parity on Birth Weight/Length Ratio: A Study Comprising 2,057,702 Newborns between 1984 and 2020 in Austria
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Francis, J.H.; Permezel, M.; Davey, M.A. Perinatal mortality by birthweight centile. Aust. N. Z. J. Obstet. Gynaecol. 2014, 54, 354–359. [Google Scholar] [PubMed]
- Prinz, N.; Putri, R.R.; Reinehr, T.; Danielsson, P.; Weghuber, D.; Norman, M.; Rochow, N.; Marcus, C.; Holl, R.W.; Hagman, E. The association between perinatal factors and cardiometabolic risk factors in children and adolescents with overweight or obesity: A retrospective two-cohort study. PLoS Med. 2023, 20, e1004165. [Google Scholar] [CrossRef] [PubMed]
- Richards, M. Birth weight and cognitive function in the British 1946 birth cohort: Longitudinal population based study. BMJ 2001, 322, 199–203. [Google Scholar] [PubMed] [Green Version]
- Nordman, H.; Jääskeläinen, J.; Voutilainen, R. Birth Size as a Determinant of Cardiometabolic Risk Factors in Children. Horm. Res. Paediatr. 2020, 93, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Mu, M.; Ye, S.; Bai, M.-J.; Liu, G.-L.; Tong, Y.; Wang, S.-F.; Sheng, J. Birth Weight and Subsequent Risk of Asthma: A Systematic Review and Meta-Analysis. Heart Lung Circ. 2014, 23, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, R.P.; Naik, G.; Choudhary, T.S.; Chowdhury, R.; Taneja, S.; Bhandari, N.; Martines, J.C.; Bahl, R.; Bhan, M.K. Cognitive and motor outcomes in children born low birth weight: A systematic review and meta-analysis of studies from South Asia. BMC Pediatr. 2019, 19, 35. [Google Scholar]
- Hassen, T.A.; Chojenta, C.; Egan, N.; Loxton, D. The association between birth weight and proxy-reported health-related quality of life among children aged 5–10 years old: A linked data analysis. BMC Pediatr. 2021, 21, 408. [Google Scholar] [CrossRef] [PubMed]
- Garces, A.; Perez, W.; Harrison, M.S.; Hwang, K.S.; Nolen, T.L.; Goldenberg, R.L.; Patel, A.B.; Hibberd, P.L.; Lokangaka, A.; Tshefu, A.; et al. Association of parity with birthweight and neonatal death in five sites: The Global Network’s Maternal Newborn Health Registry study. Reprod. Health 2020, 17, 182. [Google Scholar] [CrossRef]
- Spracklen, C.N.; Ryckman, K.K.; Harland, K.; Saftlas, A.F. Effects of smoking and preeclampsia on birth weight for gestational age. J. Matern. Fetal Neonatal Med. 2015, 28, 679–684. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Nasrullah, F.D.; Jaleel, R. Frequency and risk factors of low birth weight in term pregnancy. Pak. J. Med. Sci. 1969, 32, 138–142. [Google Scholar]
- Jensen, G.M.; Moore, L.G. The effect of high altitude and other risk factors on birthweight: Independent or interactive effects? Am. J. Public Health 1997, 87, 1003–1007. [Google Scholar] [PubMed] [Green Version]
- Klebermass-Schrehof, K.; Waldhoer, T.; Yang, L. The Effect of Altitude on Birthweight/Length Ratio: A Population-Based Study Over 36 Years in an Altitude Range from Sea Level to 1700 m. High Alt. Med. Biol. 2022, 23, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Helbich-Poschacher, V.; Cao, C.; Klebermass-Schrehof, K.; Waldhoer, T. Maternal altitude and risk of low birthweight: A systematic review and meta-analyses. Placenta 2020, 101, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Ertl, R.; Waldhoer, T.; Yang, L. Moderate altitude impacts birth weight: 30 years retrospective sibling analyses using record linkage data. Pediatr. Res. 2019, 86, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Colson, A.; Sonveaux, P.; Debiève, F.; Sferruzzi-Perri, A.N. Adaptations of the human placenta to hypoxia: Opportunities for interventions in fetal growth restriction. Hum. Reprod. Update 2021, 27, 531–569. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.G.; Shriver, M.; Bemis, L.; Hickler, B.; Wilson, M.; Brutsaert, T.; Parra, E.; Vargas, E. Maternal Adaptation to High-altitude Pregnancy: An Experiment of Nature—A Review. Placenta 2004, 25, S60–S71. [Google Scholar] [PubMed]
- Williams, A.M.; Levine, B.D.; Stembridge, M. A change of heart: Mechanisms of cardiac adaptation to acute and chronic hypoxia. J. Physiol. 2022, 600, 4089–4104. [Google Scholar] [CrossRef] [PubMed]
- Krampl, E.; Lees, C.; Bland, J.M.; Espinoza Dorado, J.; Moscoso, G.; Campbell, S. Fetal biometry at 4300 m compared to sea level in Peru: Fetal biometry at high altitude. Ultrasound Obstet. Gynecol. 2000, 16, 9–18. [Google Scholar] [CrossRef]
- Murray, A.J. Oxygen delivery and fetal-placental growth: Beyond a question of supply and demand? Placenta 2012, 33, e16–e22. [Google Scholar] [CrossRef]
- Shah, P.S. Parity and low birth weight and preterm birth: A systematic review and meta-analyses. Acta Obstet. Gynecol. Scand. 2010, 89, 862–875. [Google Scholar] [CrossRef]
- Hinkle, S.N.; Albert, P.S.; Mendola, P.; Sjaarda, L.A.; Yeung, E.; Boghossian, N.S.; Laughon, S.K. The Association between Parity and Birthweight in a Longitudinal Consecutive Pregnancy Cohort: Parity and birthweight in consecutive pregnancies. Paediatr. Perinat. Epidemiol. 2014, 28, 106–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sha, T.; Gao, X.; Chen, C.; Li, L.; He, Q.; Wu, X.; Cheng, G.; Tian, Q.; Yang, F.; Yan, Y. Associations of Pre-Pregnancy BMI, Gestational Weight Gain and Maternal Parity with the Trajectory of Weight in Early Childhood: A Prospective Cohort Study. Int. J. Environ. Res. Public Health 2019, 16, 1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalid, M.E.M.; Ahmed, H.S.; Osman, O.M.; Al Hashem, F.H. The Relationship of Birth Weight, Body Shape and Body Composition at Birth to Altitude in Saudi Arabia. Int. J. Morphol. 2016, 34, 1109–1116. [Google Scholar] [CrossRef] [Green Version]
- Zimna, A.; Kurpisz, M. Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies. BioMed Res. Int. 2015, 2015, 549412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Befani, C.; Liakos, P. The role of hypoxia-inducible factor-2 alpha in angiogenesis. J. Cell. Physiol. 2018, 233, 9087–9098. [Google Scholar] [CrossRef] [PubMed]
- Pringle, K.G.; Kind, K.L.; Sferruzzi-Perri, A.N.; Thompson, J.G.; Roberts, C.T. Beyond oxygen: Complex regulation and activity of hypoxia inducible factors in pregnancy. Hum. Reprod. Update 2010, 16, 415–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhandari, S.; Dolma, P.; Mukerji, M.; Prasher, B.; Montgomery, H.; Kular, D.; Jain, V.; Dadhwal, V.; Williams, D.J.; Bhattacharyaa, A.; et al. Population history and genome wide association studies of birth weight in a native high altitude Ladakhi population. PLoS ONE 2022, 17, e0269671. [Google Scholar] [CrossRef]
- Wilcox, M.A.; Chang, A.M.Z.; Johnson, I.R. The effects of parity on birthweight using successive pregnancies. Acta Obstet. Et Gynecol. Scand. 1996, 75, 459–463. [Google Scholar] [CrossRef]
- Bohn, C.; Vogel, M.; Poulain, T.; Spielau, U.; Hilbert, C.; Kiess, W.; Körner, A. Birth weight increases with birth order despite decreasing maternal pregnancy weight gain. Acta Paediatr. 2021, 110, 1218–1224. [Google Scholar] [CrossRef]
- Hermanussen, M.; Scheffler, C. Secular trends in gestational weight gain and parity on birth weight: An editorial. Acta Paediatr. 2021, 110, 1094–1096. [Google Scholar] [CrossRef]
- Gassner, U.K. Ueber die Veränderungen des Körpergewichtes bei Schwangeren, Gebärenden und Wöchnerinnen; Dr. v. A. Th. Engelhardt: Louisville, KY, USA, 1861; Volume 19. [Google Scholar]
- Benacerraf, B.R.; Shipp, T.D.; Lyons, J.G.; Bromley, B. Width of the Normal Uterine Cavity in Premenopausal Women and Effect of Parity. Obstet. Gynecol. 2010, 116, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Flatley, C.; Sole-Navais, P.; Vaudel, M.; Helgeland, Ø.; Modzelewska, D.; Johansson, S.; Jacobsson, B.; Njølstad, P. Placental weight centiles adjusted for age, parity and fetal sex. Placenta 2022, 117, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Goldman-Wohl, D.; Gamliel, M.; Mandelboim, O.; Yagel, S. Learning from experience: Cellular and molecular bases for improved outcome in subsequent pregnancies. Am. J. Obstet. Gynecol. 2019, 221, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Khong, T.Y.; Adema, E.D.; Erwich, J.J.H.M. On an Anatomical Basis for the Increase in Birth Weight in Second and Subsequent Born Children. Placenta 2003, 24, 348–353. [Google Scholar] [CrossRef]
- Gamliel, M.; Goldman-Wohl, D.; Isaacson, B.; Gur, C.; Stein, N.; Yamin, R.; Berger, M.; Grunewald, M.; Keshet, E.; Rais, Y.; et al. Trained Memory of Human Uterine NK Cells Enhances Their Function in Subsequent Pregnancies. Immunity 2018, 48, 951–962.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knöfler, M.; Haider, S.; Saleh, L.; Pollheimer, J.; Gamage, T.K.J.B.; James, J. Human placenta and trophoblast development: Key molecular mechanisms and model systems. Cell. Mol. Life Sci. 2019, 76, 3479–3496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAuliffe, F.; Kametas, N.; Krampl, E.; Ernsting, J.; Nicolaides, K. Blood gases in pregnancy at sea level and at high altitude. BJOG Int. J. Obstet. Gynaecol. 2001, 108, 980–985. [Google Scholar] [CrossRef] [PubMed]
- Palmer, S.K.; Moore, L.G.; Young, D.A.; Cregger, B.; Berman, J.C.; Zamudio, S. Altered blood pressure course during normal pregnancy and increased preeclampsia at high altitude (3100 m) in Colorado. Am. J. Obstet. Gynecol. 1999, 180, 1161–1168. [Google Scholar] [CrossRef]
- Burtscher, M. Effects of Living at Higher Altitudes on Mortality: A Narrative Review. Aging Dis. 2014, 5, 274–280. [Google Scholar] [CrossRef]
- Baban, A.; Olivini, N.; Cantarutti, N.; Calì, F.; Vitello, C.; Valentini, D.; Adorisio, R.; Calcagni, G.; Alesi, V.; Di Mambro, C.; et al. Differences in morbidity and mortality in Down syndrome are related to the type of congenital heart defect. Am. J. Med. Genet. 2020, 182, 1342–1350. [Google Scholar] [CrossRef]
- Bernabe-Ortiz, A.; Carrillo-Larco, R.M. Urbanization, Altitude and Cardiovascular Risk. Glob. Heart 2022, 17, 42. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karner, E.; Muin, D.A.; Klebermass-Schrehof, K.; Waldhoer, T.; Yang, L. Altitude Modifies the Effect of Parity on Birth Weight/Length Ratio: A Study Comprising 2,057,702 Newborns between 1984 and 2020 in Austria. Life 2023, 13, 1718. https://doi.org/10.3390/life13081718
Karner E, Muin DA, Klebermass-Schrehof K, Waldhoer T, Yang L. Altitude Modifies the Effect of Parity on Birth Weight/Length Ratio: A Study Comprising 2,057,702 Newborns between 1984 and 2020 in Austria. Life. 2023; 13(8):1718. https://doi.org/10.3390/life13081718
Chicago/Turabian StyleKarner, Eva, Dana A. Muin, Katrin Klebermass-Schrehof, Thomas Waldhoer, and Lin Yang. 2023. "Altitude Modifies the Effect of Parity on Birth Weight/Length Ratio: A Study Comprising 2,057,702 Newborns between 1984 and 2020 in Austria" Life 13, no. 8: 1718. https://doi.org/10.3390/life13081718
APA StyleKarner, E., Muin, D. A., Klebermass-Schrehof, K., Waldhoer, T., & Yang, L. (2023). Altitude Modifies the Effect of Parity on Birth Weight/Length Ratio: A Study Comprising 2,057,702 Newborns between 1984 and 2020 in Austria. Life, 13(8), 1718. https://doi.org/10.3390/life13081718