The Potential Role of Salivary NT-proBNP in Heart Failure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Study Procedures
2.3. Saliva Sample Collection
2.4. Statistical Analysis
3. Results
3.1. Comparison of Obese vs. Hypertensive vs. Chronic HF Patients
3.2. Comparison of Chronic HF vs. Acute Decompensated HF Patients
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726, Erratum in Eur. Heart J. 2021, 42, 4901. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2022, 79, e263–e421, Erratum in J. Am. Coll. Cardiol. 2023, 81, 1551. [Google Scholar] [CrossRef]
- Rammos, A.; Bechlioulis, A.; Kalogeras, P.; Tripoliti, E.E.; Goletsis, Y.; Kalivi, A.; Blathra, E.; Salvo, P.; Trivella, M.G.; Lomonaco, T.; et al. Salivary Biomarkers for Diagnosis and Therapy Monitoring in Patients with Heart Failure. A Systematic Review. Diagnostics 2021, 11, 824. [Google Scholar] [CrossRef] [PubMed]
- Bellagambi, F.G.; Lomonaco, T.; Salvo, P.; Vivaldi, F.; Hangouët, M.; Ghimenti, S.; Biagini, D.; Di Francesco, F.; Fuoco, R.; Errachid, A. Saliva sampling: Methods and devices. An overview. Trends Anal. Chem. 2020, 124, 115781. [Google Scholar] [CrossRef]
- Pittman, T.W.; Decsi, D.B.; Punyadeera, C.; Henry, C.S. Saliva-based microfluidic point-of-care diagnostic. Theranostics 2023, 13, 1091–1108. [Google Scholar] [CrossRef]
- Diesch, T.; Filippi, C.; Fritschi, N.; Filippi, A.; Ritz, N. Cytokines in saliva as biomarkers of oral and systemic oncological or infectious diseases: A systematic review. Cytokine 2021, 143, 155506. [Google Scholar] [CrossRef]
- Pietiäinen, M.; Liljestrand, J.M.; Akhi, R.; Buhlin, K.; Johansson, A.; Paju, S.; Salminen, A.; Mäntylä, P.; Sinisalo, J.; Tjäderhane, L.; et al. Saliva and Serum Immune Responses in Apical Periodontitis. J. Clin. Med. 2019, 8, 889. [Google Scholar] [CrossRef] [PubMed]
- Rahim, M.A.; Rahim, Z.H.; Ahmad, W.A.; Hashim, O.H. Can Saliva Proteins Be Used to Predict the Onset of Acute Myocardial Infarction among High-Risk Patients? Int. J. Med. Sci. 2015, 12, 329–335. [Google Scholar] [CrossRef]
- Bahbah, E.I.; Noehammer, C.; Pulverer, W.; Jung, M.; Weinhaeusel, A. Salivary biomarkers in cardiovascular disease: An insight into the current evidence. FEBS J. 2021, 288, 6392–6405. [Google Scholar] [CrossRef]
- Abdul Rehman, S.; Khurshid, Z.; Hussain Niazi, F.; Naseem, M.; Al Waddani, H.; Sahibzada, H.A.; Sannam Khan, R. Role of Salivary Biomarkers in Detection of Cardiovascular Diseases (CVD). Proteomes 2017, 5, 21. [Google Scholar] [CrossRef]
- Floriano, P.N.; Christodoulides, N.; Miller, C.S.; Ebersole, J.L.; Spertus, J.; Rose, B.G.; Kinane, D.F.; Novak, M.J.; Steinhubl, S.; Acosta, S.; et al. Use of saliva-based nano-biochip tests for acute myocardial infarction at the point of care: A feasibility study. Clin. Chem. 2009, 55, 1530–1538. [Google Scholar] [CrossRef]
- Gohel, V.; Jones, J.A.; Wehler, C.J. Salivary biomarkers and cardiovascular disease: A systematic review. Clin. Chem. Lab. Med. 2018, 56, 1432–1442. [Google Scholar] [CrossRef]
- Miller, C.S.; Foley, J.D., III; Floriano, P.N.; Christodoulides, N.; Ebersole, J.L.; Campbell, C.L.; Bailey, A.L.; Rose, B.G.; Kinane, D.F.; Novak, M.J.; et al. Utility of salivary biomarkers for demonstrating acute myocardial infarction. J. Dent. Res. 2014, 93, 72S–79S. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Karunathilaka, N.; Senanayake, S.; Subramaniam, V.N.; Chan, W.; Kostner, K.; Fraser, J.; Atherton, J.J.; Punyadeera, C. The potential prognostic utility of salivary galectin-3 concentrations in heart failure. Clin. Res. Cardiol. 2020, 109, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Dekker, R.L.; Lennie, T.A.; Moser, D.K.; Miller, C.S.; Ebersole, J.L.; Chung, M.L.; Campbell, C.L.; Bailey, A.; Tovar, E.G. Salivary Biomarkers, Oral Inflammation, and Functional Status in Patients With Heart Failure. Biol. Res. Nurs. 2017, 19, 153–161. [Google Scholar] [CrossRef]
- Bellagambi, F.G.; Petersen, C.; Salvo, P.; Ghimenti, S.; Franzini, M.; Biagini, D.; Hangouët, M.; Trivella, M.G.; Di Francesco, F.; Paolicchi, A.; et al. Determination and stability of N-terminal pro-brain natriuretic peptide in saliva samples for monitoring heart failure. Sci. Rep. 2021, 11, 13088. [Google Scholar] [CrossRef]
- Denver, R.; Tzanidis, A.; Martin, P.; Krum, H. Salivary Endothelin Concentrations in the Assessment of Chronic Heart Failure. Lancet 2000, 355, 468–469. [Google Scholar] [CrossRef]
- Alhurani, A.S.; Dekker, R.; Tovar, E.; Bailey, A.; Lennie, T.A.; Randall, D.C.; Moser, D.K. Examination of the Potential Association of Stress with Morbidity and Mortality Outcomes in Patient with Heart Failure. SAGE Open Med. 2014, 2, 2050312114552093. [Google Scholar] [CrossRef]
- Hammer, F.; Deutschbein, T.; Marx, A.; Güder, G.; Michalski, R.; Ertl, G.; Allolio, B.; Angermann, C.E.; Stork, S.; Fassnacht, M. High Evening Salivary Cortisol Is an Independent Predictor of Increased Mortality Risk in Patients with Systolic Heart Failure. Int. J. Cardiol. 2016, 203, 69–73. [Google Scholar] [CrossRef]
- Jekell, A.; Hossain, A.; Alehagen, U.; Dahlström, U.; Rosén, A. Elevated Circulating Levels of Thioredoxin and Stress in Chronic Heart Failure. Eur. J. Heart Fail. 2004, 6, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Joharimoghadam, A.; Tajdini, M.; Bozorgi, A. Salivary B-type natriuretic peptide: A new method for heart failure diagnosis and follow-up. Kardiol. Pol. (Pol. Heart J.). 2017, 75, 71–77. [Google Scholar] [CrossRef]
- Foo, J.Y.Y.; Wan, Y.; Kostner, K.; Arivalagan, A.; Atherton, J.; Cooper-White, J.; Dimeski, G.; Punyadeera, C. NT-ProBNP levels in saliva and its clinical relevance to heart failure. PLoS ONE 2012, 7, e48452. [Google Scholar] [CrossRef]
- Semenov, A.G.; Tamm, N.N.; Seferian, K.R.; Postnikov, A.B.; Karpova, N.S.; Serebryanaya, D.V.; Koshkina, E.V.; Krasnoselsky, M.I.; Katrukha, A.G. Processing of pro-B-type natriuretic peptide: Furin and corin as candidate convertases. Clin. Chem. 2010, 56, 1166–1176. [Google Scholar] [CrossRef] [PubMed]
- Basak, A.; Ernst, B.; Brewer, D.; Seidah, N.G.; Munzer, J.S.; Lazure, C.; Lajoie, G.A. Histidine-rich human salivary peptides are inhibitors of proprotein convertases furin and PC7 but act as substrates for PC1. J. Pept. Res. 1997, 49, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Rohde, L.E.; Zimerman, A.; Vaduganathan, M.; Claggett, B.L.; Packer, M.; Desai, A.S.; Zile, M.; Rouleau, J.; Swedberg, K.; Lefkowitz, M.; et al. Associations Between New York Heart Association Classification, Objective Measures, and Long-term Prognosis in Mild Heart Failure: A Secondary Analysis of the PARADIGM-HF Trial. JAMA Cardiol. 2023, 8, 150–158. [Google Scholar] [CrossRef]
- Ferreira, J.P.; Metra, M.; Anker, S.D.; Dickstein, K.; Lang, C.C.; Ng, L.; Samani, N.J.; Cleland, J.G.; van Veldhuisen, D.J.; Voors, A.A.; et al. Clinical correlates and outcome associated with changes in 6-minute walking distance in patients with heart failure: Findings from the BIOSTAT-CHF study. Eur. J. Heart Fail. 2019, 21, 218–226. [Google Scholar] [CrossRef]
- Iorgulescu, G. Saliva between normal and pathological. Important factors in determining systemic and oral health. J. Med. Life 2009, 2, 303–307. [Google Scholar] [PubMed]
- Khan, R.S.; Khurshid, Z.; Yahya Ibrahim Asiri, F. Advancing Point-of-Care (PoC) Testing Using Human Saliva as Liquid Biopsy. Diagnostics 2017, 7, 39. [Google Scholar] [CrossRef]
- Bayés-Genís, A. The circulating NTproBNP level, a new biomarker for the diagnosis of heart failure in patients with acute shortness of breath. Rev. Esp. Cardiol. 2005, 58, 1142–1144. [Google Scholar] [CrossRef]
- Kaufman, E.; Lamster, I.B. The diagnostic applications of saliva—A review. Crit. Rev. Oral. Biol. Med. 2002, 13, 197–212. [Google Scholar] [CrossRef]
- Zhang, C.Z.; Cheng, X.Q.; Li, J.Y.; Zhang, P.; Yi, P.; Xu, X.; Zhou, X.D. Saliva in the diagnosis of diseases. Int. J. Oral. Sci. 2016, 8, 133–137. [Google Scholar] [CrossRef]
- White, A.G.; Gordon, H.; Leiter, L. Studies in Edema. II. The Effect of Congestive Heart Failure on Saliva Electrolyte Concentrations. J. Clin. Investig. 1950, 11, 1445–1447. [Google Scholar] [CrossRef] [PubMed]
- Tripoliti, E.E.; Ioannidou, P.; Toumpaniaris, P.; Rammos, A.; Pacitto, D.; Lourme, J.C.; Goletsis, Y.; Naka, K.K.; Errachid, A.; Fotiadis, D.I. Point-of-Care Testing Devices for Heart Failure Analyzing Blood and Saliva Samples. IEEE Rev. Biomed. Eng. 2020, 13, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Laguna, L.; Sarkar, A. Aging-related changes in quantity and quality of saliva: Where do we stand in our understanding? J. Text. Stud. 2019, 50, 27–35. [Google Scholar] [CrossRef]
- Proctor, G.B.; Shaalan, A.M. Disease-Induced Changes in Salivary Gland Function and the Composition of Saliva. J. Dent. Res. 2021, 100, 1201–1209. [Google Scholar] [CrossRef] [PubMed]
CHF, n = 13 | Obese, n = 18 | Hypertensive, n = 18 | p-Value | |
---|---|---|---|---|
Age, years, median (IQR) | 75 (64, 78) † | 48 (42, 58) | 66 (57, 74) † | <0.001 |
Male gender, n (%) | 7 (54) | 8 (44) | 9 (50) | 0.870 |
CV risk factors, n (%) | ||||
Hypertension | 10 (77) | 5 (28) | 18 (100) | <0.001 |
Dyslipidemia | 11 (85) | 7 (39) | 15 (83) | 0.005 |
Diabetes | 4 (31) | 0 (0) | 3 (17) | 0.051 |
Obesity | 4 (31) | 18 (100) | 6 (33) | <0.001 |
Smoking | 1 (8) | 6 (33) | 3 (17) | 0.265 |
History, n (%) | ||||
CAD | 5 (39) | 0 (0) | 3 (17) | 0.017 |
Stroke/TIA | 1 (8) | 0 (0) | 1 (6) | 0.522 |
PAD | 1 (8) | 0 (0) | 0 (0) | 0.243 |
CKD | 3 (23) | 1 (6) | 1 (6) | 0.012 |
AF | 6 (46) | 1 (6) | 1 (6) | 0.003 |
Medications, n (%) | ||||
ACEi | 3 (23) | 0 (0) | 1 (6) | 0.06 |
ARBs | 4 (31) | 1 (6) | 12 (67) | 0.001 |
CCB | 6 (46) | 2 (11) | 10 (56) | 0.016 |
Statins | 9 (69) | 3 (17) | 15 (83) | <0.001 |
B-blockers | 8 (62) | 4 (22) | 7 (39) | 0.086 |
MRA | 5 (39) | 1 (6) | 1 (6) | 0.015 |
Loop diuretics | 8 (62) | 1 (6) | 0 (0) | <0.001 |
Thiazide diuretics | 2 (15) | 0 (0) | 6 (33) | 0.026 |
SBP, mmHg | 133 ± 16 | 139 ± 14 | 149 ± 22 * | 0.045 |
DBP, mmHg | 67 ± 11 | 84 ± 11 * | 87 ± 13 * | <0.001 |
BMI, kg/m2 | 28.6 ± 4.0 † | 35.1 ± 3.5 | 29.9 ± 4.4 † | <0.001 |
6MWD, m | 362 ± 165 | 531 ± 121 * | 492 ± 103 * | 0.002 |
Hb, g/dL | 13.3 ± 2.3 | 14.3 ± 1.9 | 14.3 ± 1.2 | 0.220 |
Glucose, mg/dL | 98 (90, 157) | 94 (90, 106) | 101 (94, 107) | 0.421 |
eGFR, mL/min/1.73 m2 | 64.5 ± 17.4 | 82.2 ± 22.9 * | 80.0 ± 13.5 | 0.026 |
TCHOL, mg/dL | 184 ± 52 | 219 ± 31 | 180 ± 53 † | 0.032 |
HDL, mg/dL | 48 ± 13 | 55 ± 10 | 55 ± 13 | 0.226 |
TRG, mg/dL | 129 ± 63 | 113 ± 44 | 109 ± 42 | 0.505 |
LDL, mg/dL | 111 ± 43 | 142 ± 33 | 104 ± 40 † | 0.032 |
Echocardiography | ||||
LVEF, % | 45 ± 15 | 60 ± 2 * | 60 ± 3 * | <0.001 |
LVIDD, mm | 52 ± 10 | 48 ± 5 | 43 ± 6 * | 0.004 |
RWT | 0.47 ± 0.13 | 0.42 ± 0.09 | 0.54 ± 0.12 † | 0.011 |
LVH, n (%) | 6 (46) | 4 (22) | 7 (39) | 0.345 |
E, cm/s | 99 ± 27 | 76 ± 19 * | 69 ± 14 * | 0.001 |
E/E’ | 12.0 (8.8, 13.5) | 7.5 (6.8, 9.0) | 7.0 (6.9, 9.0) | <0.001 |
TRVmax, m/s | 2.6 ± 0.7 | 2.1 ± 0.6 | 1.9 ± 0.5 * | 0.009 |
Serum NT-proBNP, pg/mL, median (IQR) | 1232 (566, 3509) | 64 (<60, 93) | 106 (63, 120) | <0.001 |
Saliva NT-proBNP, pg/mL median (IQR) | 8.6 (7.1, 35.2) | 8.8 (6.3, 22.7) | 11.1 (6.0, 17.6) | 0.969 |
Chronic HF, n = 13 | ADHF, n = 50 | p-Value | |
---|---|---|---|
Age, years, median (IQR) | 75 (64, 78) | 76 (63, 83) | 0.981 |
Male gender, n (%) | 7 (54) | 35 (70) | 0.329 |
CV risk factors, n (%) | |||
Hypertension | 10 (77) | 43 (86) | 0.417 |
Dyslipidemia | 11 (85) | 38 (76) | 0.714 |
Diabetes | 4 (31) | 25 (50) | 0.349 |
Obesity | 4 (31) | 11 (22) | 0.489 |
Smoking | 1 (8) | 6 (12) | 0.882 |
History, n (%) | |||
CAD | 5 (39) | 22 (44) | 0.764 |
Stroke/TIA | 1 (8) | 6 (12) | 0.660 |
PAD | 1 (8) | 4 (8) | 0.971 |
CKD | 3 (23) | 23 (46) | 0.207 |
AF | 6 (46) | 29 (58) | 0.537 |
Medications, n (%) | |||
ACEi | 3 (23) | 8 (16) | 0.549 |
ARBs | 4 (31) | 11 (22) | 0.508 |
ARNI | 1 (8) | 5 (10) | 0.801 |
CCB | 6 (46) | 8 (16) | 0.020 |
Statins | 9 (69) | 29 (58) | 0.538 |
B-blockers | 8 (62) | 34 (68) | 0.660 |
MRA | 5 (39) | 26 (52) | 0.536 |
Loop diuretics | 8 (62) | 37 (74) | 0.376 |
Anticoagulation | 5 (39) | 31 (62) | 0.208 |
Antiplatelets | 5 (39) | 15 (30) | 0.559 |
SBP, mmHg | 133 ± 16 | 130 ± 25 | 0.628 |
DBP, mmHg | 67 ± 11 | 70 ± 14 | 0.446 |
HR, bpm | 73 ± 20 | 79 ± 16 | 0.265 |
BMI, kg/m2 | 28.6 ± 4.0 | 27.2 ± 4.8 | 0.331 |
6MWD, m | 362 ± 165 | 263 ± 151 | 0.045 |
NYHA class | |||
I | 1 (8) | 0 (0) | |
II | 3 (23) | 1 (2) | |
III | 8 (61) | 30 (60) | |
IV | 1 (8) | 19 (38) | 0.003 |
QRS duration, msec | 118 (90, 159) | 140 (99, 158) | 0.535 |
WBC | 7238 ± 2059 | 8499 ± 2832 | 0.139 |
Hb, g/dL | 13.3 ± 2.3 | 12.5 ± 2.2 | 0.261 |
Glucose, mg/dL | 98 (90, 157) | 138 (106, 168) | 0.036 |
Urea, mg/dL | 51 (39, 80) | 73 (54, 101) | 0.045 |
eGFR, mL/min/1.73 m2 | 64.5 ± 17.4 | 55.1 ± 18.5 | 0.107 |
K+ | 4.05 ± 0.41 | 4.24 ± 0.52 | 0.216 |
Na+ | 139 (138, 141) | 138 (135, 140) | 0.189 |
TCHOL, mg/dL | 184 ± 52 | 154 ± 36 | 0.016 |
HDL, mg/dL | 48 ± 13 | 43 ± 13 | 0.281 |
TRG, mg/dL | 129 ± 63 | 125 ± 65 | 0.844 |
LDL, mg/dL | 111 ± 43 | 85 ± 29 | 0.013 |
Echocardiography | |||
LVEF, % | 45 ± 15 | 38 ± 19 | 0.206 |
LVIDD, mm | 52 ± 10 | 57 ± 12 | 0.176 |
RWT | 0.47 ± 0.13 | 0.42 ± 0.16 | 0.366 |
LVH, n (%) | 6 (46) | 31 (62) | 0.353 |
E, cm/s | 99 ± 27 | 102 ± 42 | 0.775 |
E/E’ | 12.0 (8.8, 13.5) | 15.0 (12.8, 16.0) | 0.018 |
TRVmax, m/s | 2.6 ± 0.7 | 3.0 ± 0.8 | 0.131 |
IVC diameter, mm | 13 (10, 19) | 23 (20, 25) | 0.001 |
Serum NT-proBNP, pg/mL, median (IQR) | 1232 (566, 3509) | 4706 (1237, 8438) | 0.007 |
Saliva NT-proBNP, pg/mL, median (IQR) | 8.6 (7.1, 35.2) | 15.1 (10.4, 30.6) | 0.122 |
Chronic HF Patients, n = 13 | |||
---|---|---|---|
Serum NT-proBNP (pg/mL) | Saliva NT-proBNP (pg/mL) | ||
CAD | R = 0.676, p = 0.011 | NYHA class | R = 0.054, p = 0.862 |
Loop diuretics | R = 0.634, p = 0.020 | 6MWD, m | R = −0.429, p = 0.143 |
eGFR, mL/min/1.73 m2 | R = −0.731, p = 0.005 | ||
NYHA class | R = 0.533, p = 0.061 | ||
6MWD, m | R = −0.250, p = 0.409 | ||
ADHF patients, n = 50 | |||
Serum NT-proBNP (pg/mL) | Saliva NT-proBNP (pg/mL) | ||
SBP, mmHg | R = −0.286, p = 0.044 | Age, years | R = −0.317, p = 0.025 |
eGFR, mL/min/1.73 m2 | R = −0.347, p = 0.014 | NYHA class | R = 0.224, p = 0.119 |
RWT | R = −0.302, p = 0.033 | 6MWD, m | R = −0.222, p = 0.125 |
E/E’ | R = 0.404, p = 0.005 | ||
IVC diameter, mm | R = 0.401, p = 0.004 | ||
NYHA class | R = 0.506, p < 0.001 | ||
6MWD, m | R = −0.401, p = 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rammos, A.; Bechlioulis, A.; Kalogeras, P.; Watson, C.J.; Salvo, P.; Lomonaco, T.; Kardakari, O.; Tripoliti, E.E.; Goletsis, Y.; Fotiadis, D.I.; et al. The Potential Role of Salivary NT-proBNP in Heart Failure. Life 2023, 13, 1818. https://doi.org/10.3390/life13091818
Rammos A, Bechlioulis A, Kalogeras P, Watson CJ, Salvo P, Lomonaco T, Kardakari O, Tripoliti EE, Goletsis Y, Fotiadis DI, et al. The Potential Role of Salivary NT-proBNP in Heart Failure. Life. 2023; 13(9):1818. https://doi.org/10.3390/life13091818
Chicago/Turabian StyleRammos, Aidonis, Aris Bechlioulis, Petros Kalogeras, Chris J. Watson, Pietro Salvo, Tommaso Lomonaco, Olga Kardakari, Evanthia E. Tripoliti, Yorgos Goletsis, Dimitris I. Fotiadis, and et al. 2023. "The Potential Role of Salivary NT-proBNP in Heart Failure" Life 13, no. 9: 1818. https://doi.org/10.3390/life13091818
APA StyleRammos, A., Bechlioulis, A., Kalogeras, P., Watson, C. J., Salvo, P., Lomonaco, T., Kardakari, O., Tripoliti, E. E., Goletsis, Y., Fotiadis, D. I., Katsouras, C. S., Michalis, L. K., & Naka, K. K. (2023). The Potential Role of Salivary NT-proBNP in Heart Failure. Life, 13(9), 1818. https://doi.org/10.3390/life13091818