Spontaneous Coronary Artery Dissection and COVID-19: A Review of the Literature
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Pathophysiologic Pathways of SARS-CoV-2 in Vascular Damage: The Role of ACE-2
3.2. Pathophysiology of SCAD
3.3. Association of COVID-19 with SCAD: Possible Pathophysiologic Mechanisms
3.4. Special Considerations Regarding SCAD following COVID-19 Infection and Heart Involvement
3.5. Diagnosis of SCAD—Clinical Presentation
3.6. Management of Patients with COVID-19 and SCAD
Conservative Pharmacotherapy versus Invasive Management
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- COVID-19 Cases|WHO COVID-19 Dashboard. Available online: https://data.who.int/dashboards/covid19/cases?n=c (accessed on 12 February 2024).
- Kaye, A.D.; Spence, A.L.; Mayerle, M.; Sardana, N.; Clay, C.M.; Eng, M.R.; Luedi, M.M.; Turpin, M.A.C.; Urman, R.D.; Cornett, E.M.; et al. Impact of COVID-19 infection on the cardiovascular system: An evidence-based analysis of risk factors and outcomes. Best Pract. Res. Clin. Anaesthesiol. 2021, 35, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Pelle, M.C.; Zaffina, I.; Lucà, S.; Forte, V.; Trapanese, V.; Melina, M.; Giofrè, F.; Arturi, F. Endothelial Dysfunction in COVID-19: Potential Mechanisms and Possible Therapeutic Options. Life 2022, 12, 1605. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.W.; Saad, M.; Vijayakumar, S.; Ilyas, S.; Kokkirala, A.; Aronow, H.D. The Cardiovascular Manifestations of COVID-19. Heart Fail. Clin. 2023, 19, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Ning, Q.; Wu, D.; Wang, X.; Xi, D.; Chen, T.; Chen, G.; Wang, H.; Lu, H.; Wang, M.; Zhu, L.; et al. The mechanism underlying extrapulmonary complications of the coronavirus disease 2019 and its therapeutic implication. Signal Transduct. Target. Ther. 2022, 7, 57. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, N.; Noval, M.G.; Kaur, R.; Amadori, L.; Gildea, M.; Sajja, S.; Das, D.; Cilhoroz, B.; Stewart, O.; Fernandez, D.M.; et al. SARS-CoV-2 infection triggers pro-atherogenic inflammatory responses in human coronary vessels. Nat. Cardiovasc. Res. 2023, 2, 899–916. [Google Scholar] [CrossRef]
- Meng, P.N.; Xu, C.; You, W.; Wu, Z.M.; Xie, D.J.; Zhang, H.; Pan, C.; Ye, F. Spontaneous coronary artery dissection as a cause of acute myocardial infarction in young female population: A single-center study. Chin. Med. J. 2017, 130, 1534–1539. [Google Scholar] [CrossRef]
- Saw, J.; Humphries, K.; Aymong, E.; Sedlak, T.; Prakash, R.; Starovoytov, A.; Mancini, G.B.J. Spontaneous Coronary Artery Dissection: Clinical Outcomes and Risk of Recurrence. J. Am. Coll. Cardiol. 2017, 70, 1148–1158. [Google Scholar] [CrossRef]
- Lamers, M.M.; Haagmans, B.L. SARS-CoV-2 pathogenesis. Nat. Rev. Microbiol. 2022, 20, 270–284. [Google Scholar] [CrossRef]
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. J. Am. Med. Assoc. 2020, 324, 782–793. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003, 426, 450–454. [Google Scholar] [CrossRef]
- Fountain, J.H.; Kaur, J.; Lappin, S.L. Physiology, Renin Angiotensin System; StatPearls: St. Petersburg, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470410/ (accessed on 12 February 2024).
- Evans, P.C.; Rainger, G.E.; Mason, J.C.; Guzik, T.J.; Osto, E.; Stamataki, Z.; Neil, D.; Hoefer, I.E.; Fragiadaki, M.; Waltenberger, J.; et al. Endothelial Dysfunction in COVID-19: A Position Paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Available online: https://academic.oup.com/cardiovascres/article-abstract/doi/10.1093/cvr/cvaa230/5880580 (accessed on 18 February 2024).
- Buckley, L.F.; Wohlford, G.F.; Ting, C.; Alahmed, A.; Van Tassell, B.W.; Abbate, A.; Devlin, J.W.P.; Libby, P. Role for Anti-Cytokine Therapies in Severe Coronavirus Disease 2019. Crit. Care Explor. 2020, 2, E0178. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.; Liu, Y.; Yuan, J.; Wen, Y.; Xu, G.; Zhao, J.; Cheng, L.; Li, J.; Wang, X.; Wang, F.; et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 2020, 26, 842–844. [Google Scholar] [CrossRef] [PubMed]
- Bonaventura, A.; Vecchié, A.; Dagna, L.; Martinod, K.; Dixon, D.L.; Van Tassell, B.W.; Dentali, F.; Montecucco, F.; Massberg, S.; Levi, M.; et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat. Rev. Immunol. 2021, 21, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Paz, L.; Capodanno, D.; Montalescot, G.; Angiolillo, D.J. Coronavirus disease 2019—Associated thrombosis and coagulopathy: Review of the pathophysiological characteristics and implications for antithrombotic management. J. Am. Heart Assoc. 2021, 10, e019650. [Google Scholar] [CrossRef] [PubMed]
- Nishiga, M.; Wang, D.W.; Han, Y.; Lewis, D.B.; Wu, J.C. COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspectives. Nat. Rev. Cardiol. 2020, 17, 543–558. [Google Scholar] [CrossRef] [PubMed]
- Yip, A.; Saw, J. Spontaneous coronary artery dissection—A review. Cardiovasc. Diagn. Ther. 2015, 5, 37–48. [Google Scholar]
- Hayes, S.N.; Tweet, M.S.; Adlam, D.; Kim, E.S.; Gulati, R.; Price, J.E.; Rose, C.H. Spontaneous Coronary Artery Dissection: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 76, 961–984. [Google Scholar] [CrossRef] [PubMed]
- Margaritis, M.; Saini, F.; Baranowska-Clarke, A.A.; Parsons, S.; Vink, A.; Budgeon, C.; Allcock, N.; Wagner, B.E.; Samani, N.J.; von der Thüsen, J.; et al. Vascular histopathology and connective tissue ultrastructure in spontaneous coronary artery dissection: Pathophysiological and clinical implications. Cardiovasc. Res. 2022, 118, 1835–1848. [Google Scholar] [CrossRef]
- Shojaei, F.; Habibi, Z.; Goudarzi, S.; Firouzabadi, F.D.; Montazerin, S.M.; Najafi, H.; Kahe, F.; Momenzadeh, K.; Mir, M.; Khan, F.; et al. COVID-19: A double threat to takotsubo cardiomyopathy and spontaneous coronary artery dissection? Med. Hypotheses 2021, 146, 110410. [Google Scholar] [CrossRef]
- Pitliya, A.; Datta, S.; Kalayci, A.; Kahe, F.; Sharfaei, S.; Jafarizade, M.; Goudarzi, S.; Chi, G. Eosinophilic inflammation in spontaneous coronary artery dissection: A potential therapeutic target? Med. Hypotheses 2018, 121, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Pine, A.B.; Meizlish, M.L.; Goshua, G.; Chang, C.H.; Zhang, H.; Bishai, J.; Bahel, P.; Patel, A.; Gbyli, R.; Kwan, J.M.; et al. Circulating markers of angiogenesis and endotheliopathy in COVID-19. Pulm. Circ. 2020, 10, 2045894020966547. [Google Scholar] [CrossRef] [PubMed]
- Kireev, K.; Genkel, V.; Kuznetsova, A.; Sadykov, R. Multivessel spontaneous coronary artery dissection in a patient after mild COVID-19: A case report. SAGE Open Med. Case Rep. 2020, 8, 2050313X2097598. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.; Cortese, B. “Spontaneous” Coronary Artery Dissection After SARS-CoV-2 Messenger RNA Vaccination. J. Soc. Cardiovasc. Angiogr. Interv. 2023, 2, 100551. [Google Scholar] [CrossRef] [PubMed]
- Aparisi, Á.; Ybarra-Falcón, C.; García-Granja, P.E.; Uribarri, A.; Gutiérrez, H.; Amat-Santos, I.J. COVID-19 and spontaneous coronary artery dissection: Causality? REC Interv. Cardiol. 2021, 3, 141–143. [Google Scholar] [CrossRef]
- Emren, Z.Y.; Emren, V.; Özdemir, E.; Karagöz, U.; Nazli, C. Spontaneous right coronary artery dissection in a patient with COVID-19 infection: A case report and review of the literature. Turk. Kardiyol. Dern. Arsivi 2021, 49, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Ahmed, A.; Rajendraprasad, S.; Loranger, A.; Vivekanandan, R.; Moore, D. Spontaneous Coronary Artery Dissection: A Rare Sequela of COVID-19. Chest 2021, 160, A94–A95. Available online: http://journal.chestnet.org/article/S0012369221015725/fulltext (accessed on 12 February 2024). [CrossRef]
- Pettinato, A.M.; Ladha, F.A.; Zeman, J.; Ingrassia, J.J. Spontaneous Coronary Artery Dissection Following SARS-CoV-2-Associated Multisystem Inflammatory Syndrome. Cureus 2022, 14, e26479. [Google Scholar] [CrossRef]
- Courand, P.Y.; Harbaoui, B.; Bonnet, M.; Lantelme, P. Spontaneous Coronary Artery Dissection in a Patient with COVID-19. JACC Cardiovasc. Interv. 2020, 13, e107–e108. [Google Scholar] [CrossRef]
- Cannata, S.; Birkinshaw, A.; Sado, D.; Dworakowski, R.; Pareek, N. Spontaneous coronary artery dissection after COVID-19 infection presenting with ST segment elevation. Eur. Heart J. 2020, 41, 4602. [Google Scholar] [CrossRef]
- Albiero, R.; Seresini, G.; Liga, R.; Camm, C.F.; Liga, R.; Camm, C.F.; Thomson, R. Atherosclerotic spontaneous coronary artery dissection (A-SCAD) in a patient with COVID-19: Case report and possible mechanisms. Eur. Heart J. Case Rep. 2020, 4, 1–6. [Google Scholar] [CrossRef]
- Bashir, H.; Muhammad Haroon, D.; Mahalwar, G.; Kalra, A.; Alquthami, A. The Coronavirus Double Threat: A Rare Presentation of Chest Pain in a Young Female. Cureus 2023, 15, e37274. [Google Scholar] [CrossRef]
- Alemzadeh-Ansari, M.J.; Fakhrabadi, A.A.; Amin, A.; Rafiee, F.; Houshmand, G. Spontaneous coronary artery dissection in a patient with recent COVID-19 infection: A case report. Clin. Case Rep. 2022, 10, e6399. [Google Scholar] [CrossRef]
- Kumar, K.; Vogt, J.C.; Divanji, P.H.; Cigarroa, J.E. Spontaneous coronary artery dissection of the left anterior descending artery in a patient with COVID-19 infection. Catheter. Cardiovasc. Interv. 2021, 97, E249–E252. [Google Scholar] [CrossRef] [PubMed]
- Gasso, L.F.; Maneiro Melon, N.M.; Cebada, F.S.; Solis, J.; Tejada, J.G. Multivessel spontaneous coronary artery dissection presenting in a patient with severe acute SARS-CoV-2 respiratory infection. Eur. Heart J. 2020, 41, 3100–3101. [Google Scholar] [CrossRef] [PubMed]
- Papanikolaou, J.; Alharthy, A.; Platogiannis, N.; Balhamar, A.; Alqahtani, S.A.; Memish, Z.A.; Karakitsos, D. Spontaneous coronary artery dissection in a patient with COVID-19. Coron. Artery Dis. 2021, 32, 354–355. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, A.; Moulias, A.; Papageorgiou, A.; Karampitsakos, T.; Apostolos, A.; Tsigkas, G.; Davlouros, P. Spontaneous Coronary Artery Dissection as a Cause of Acute Myocardial Infarction in COVID-19 Patients: A Case Report and Review of the Literature. 2023. Available online: http://www.preprints.org (accessed on 18 February 2024).
- Shah, N.; Shah, N.; Mehta, S.; Murray, E.; Grodzinsky, A. Spontaneous Coronary Artery Dissection (SCAD) in an Atypical Patient without Risk Factors and Prior Asymptomatic COVID-19 Infection. Cureus 2023, 25, e40906. [Google Scholar] [CrossRef] [PubMed]
- Lewars, J.; Mohta, A.; Lal, H.H. Case Report of Spontaneous Coronary Artery Dissection in a Patient Positive for COVID-19. Chest 2022, 162, A283. Available online: http://journal.chestnet.org/article/S0012369222015756/fulltext (accessed on 12 February 2024). [CrossRef]
- Jackson, R.; Al-Hussaini, A.; Joseph, S.; van Soest, G.; Wood, A.; Macaya, F.; Gonzalo, N.; Cade, J.; Caixeta, A.; Hlinomaz, O.; et al. Spontaneous Coronary Artery Dissection: Pathophysiological Insights from Optical Coherence Tomography. JACC Cardiovasc. Imaging 2019, 12, 2475–2488. [Google Scholar] [CrossRef] [PubMed]
- Yeo, I.; Feldman, D.N.; Kim, L.K. Spontaneous Coronary Artery Dissection: Diagnosis and Management. Curr. Treat. Options Cardiovasc. Med. 2018, 20, 27. [Google Scholar] [CrossRef]
- Tweet, M.S.; Hayes, S.N.; Pitta, S.R.; Simari, R.D.; Lerman, A.; Lennon, R.J.; Gersh, B.J.; Khambatta, S.; Best, P.J.M.; Rihal, C.S.; et al. Clinical features, management, and prognosis of spontaneous coronary artery dissection. Circulation 2012, 126, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Bu, J.; Chen, M.; Cheng, X.; Dong, Y.; Fang, W.; Ge, J.; Gong, Y.; He, B.; Huang, L.; Huo, Y.; et al. Consensus of Chinese experts on diagnosis and treatment processes of acute myocardial infarction in the context of prevention and control of COVID-19 (first edition). Nan Fang Yi Ke Da Xue Xue Bao 2020, 40, 147–151. [Google Scholar] [PubMed]
- Qiu, L.; Li, J.; Yan, H.; Guo, H.; Song, D.; Su, X. Discussion on the causes of thrombolysis failure in a patient with STEMI: A case report. BMC Cardiovasc. Disord. 2022, 22, 473. [Google Scholar]
- Mahmud, E.; Dauerman, H.L.; Welt, F.G.; Messenger, J.C.; Rao, S.V.; Grines, C.; Mattu, A.; Kirtane, A.J.; Jauhar, R.; Meraj, P.; et al. Management of Acute Myocardial Infarction during the COVID-19 Pandemic: A Position Statement from the Society for Cardiovascular Angiography and Interventions (SCAI), the American College of Cardiology (ACC), and the American College of Emergency Physicians (ACEP). J. Am. Coll. Cardiol. 2020, 76, 1375–1384. [Google Scholar] [PubMed]
- Buccheri, D.; Zambelli, G.; Alfonso, F.; Cortese, B. Pulse on Spontaneous Coronary Artery Dissections: Experience Based Survey. JACC Cardiovasc. Interv. 2017, 10, 1469–1471. [Google Scholar] [CrossRef]
- Cerrato, E.; Giacobbe, F.; Quadri, G.; Macaya, F.; Bianco, M.; Mori, R.; Biolè, C.A.; Boi, A.; Bettari, L.; Rolfo, C.; et al. Antiplatelet therapy in patients with conservatively managed spontaneous coronary artery dissection from the multicentre DISCO registry. Eur. Heart J. 2021, 42, 3161–3171. Available online: https://pubmed.ncbi.nlm.nih.gov/34338759/ (accessed on 12 February 2024).
- Abou-Ismail, M.Y.; Diamond, A.; Kapoor, S.; Arafah, Y.; Nayak, L. The hypercoagulable state in COVID-19: Incidence, pathophysiology, and management. Thromb. Res. 2020, 194, 101–115. [Google Scholar] [CrossRef]
- Roche, A.M.; Klingel, K.; Toth, K.; Pepper, K.; Francis, S.A. Spontaneous Coronary Artery Dissection in the Setting of COVID-19 Pandemic-Related Stressors: A Case Report. Cureus 2022, 14, e23069. [Google Scholar] [CrossRef]
Number | Author, Published Date | Country | Sex | Age | Symptoms | Findings from Lab and Imaging Tests | Past Medical History/ Predisposing Factors | Timing According to COVID-19 Infection | COVID-19 Severity | Complications Associated with COVID-19 Infection | Diagnosis | Arteries | Treatment | Outcome |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Courand et al., 8 April 2020 [32] | France | Male | 55 years old | Cough, febrile dyspnea, chest pain | Abnormal ECG, elevated Hs-TnI, echo: LVEF = 60%, mild mitral regurgitation | Peripheral artery disease/ unreported | 48 h after a positive COVID-19 test | Moderate, crazy pavy pattern in the lung | None | Non-STEMI | RCA → mild dissection PDA → chronic total occlusion with epicardial collaterals | Conservative aspirin, statins, B-blockers | Survived |
2 | Kumar et al., 7 May 2020 [37] | USA | Female | 48 years old | Chest pain | First hospital admission: elevated troponin, normal ECG 3 days post discharge: elevated troponin, abnormal ECG | Migraines, hyperlipidemia/ unreported | COVID-19 test (+) 8 h after SCAD had been diagnosed | Mild | Polymorphic ventricular tachycardia | STEMI | LAD | Conservative dual antiplatelet, beta blocker, amiodarone | Survived |
3 | Gasso et al., 7 May 2020 [38] | Spain | Male | 39 years old | Fever, cough, myalgia chest pain, dyspnea | Elevated ferritin, CRP, LDH. 13 days after admission → elevated troponin levels, abnormal ECG, echo → LVEF = 50% | 18 days | Severe intubation because of respiratory failure | None | STEMI | LAD, LCx | Conservative dual antiplatelet treatment | Survived | |
4 | Albiero et al., 12 May 2020 [34] | Italy | Male | 70 years old | Severe chest pain | Increased D-dimers abnormal ECG, echo: left-ventricular wall motion abnormalities | Hypertension, type 2 diabetes, prior PCI to LCx/smoking, hypertension | 1 day after positive test | Mild | None | Non-STEMI, ACS | LAD → A-SCAD, LCx-OM → in stent restenosis RCA → moderate stenosis | PCI → LAD aspirin, clopidogrel, pantoprazole, atorvastatin, bisoprolol, metformin | Survived |
5 | Kireev et al., 27 November 2020 [26] | Russia | Male | 35 years old | Pressure chest pain, fever, dry cough, nasal congestion, chest congestion | CRP elevation, abnormal ECG | Obese, smoker/ autoimmune diseases were ruled out | Approximately 18 days | Mild | None | STEMI | PCI → RI, RCA occluded distal, extended lesions, control angiography → RCA and RI unchanged, stenosis in an RI branch | PCI → RI conservative | Survived |
6 | Cannata et al., 18 December 2020 [33] | Great Britain | Female | 45 years old | Chest pain, anosmia, hypogeusia | Abnormal ECG | None/ unreported | 8 weeks | Mild | None | STEMI | LAD | Conservative dual antiplatelet therapy, B-blockers, ACE-I | Survived |
7 | Aparisi et al., 21 December 2020 [28] | Spain | Male | 40 years old | Fever, cough | Elevated troponin-T, D-dimers, CRP, ferritin, lymphopenia | None/ unreported | 8 weeks | Severe lung infiltration | Cardiogenic shock, severe respiratory distress syndrome, cardiac thrombus | Non-STEMI | LAD | Conservative therapy aspirin, guideline-directed medical therapy for HF; the follow-up CA confirmed the complete resolution | Survived |
8 | Papanikolaou et al., 23 December 2020 [39] | Saudi Arabia | Female | 51 years old | Fever, cough, respiratory distress, chest pain | Abnormal ECG, positive cardiac enzymes | Hypertension/ unreported | 3 days | Mild | None | Non-STEMI | LAD | Conservative therapy, dual antiplatelet, anticoagulation, statin | Survived |
9 | Emren et al., 1 June 2021 [29] | Turkey | Male | 50 years old | Cough, fever, chest pain (later) | Abnormal ECG | None/ unreported | 7 days | Mild | None | STEMI | RCA | PCI, dual antiplatelet, atorvastatin, metoprolol | Survived |
10 | Ahmad et al., 11 October 2021 [30] | Female | 43 years old | Syncope | Elevated troponin | Atrial fibrillation | 12-weeks-prior positive PCR test | Severe | Intubation | Cardiogenic shock | LCX | Conservative | Survived | |
11 | Pettinato et al., 1 July 2022 [31] | USA | Female | 43 years old | Initial hospital admission: fever, weakness, dysphagia, vomiting, diarrhea, maculopapular rash. Second hospital admission (2 months later): chest tightness, nausea | First hospital admission: acute renal failure, lactic acidosis, hypotension, leukocytosis, elevated CRP, ferritin, D-dimers, left-side colitis, oral candidiasis, antibody-negative hypothyroidism. Second hospital admission: abnormal ECG, elevated troponin, D-dimer, LDL | None/ unreported | PCR-positive test 3 months prior to dissection | Mild | Multisystem inflammatory syndrome (MIS-A) 1 month after SARS-CoV-2 infection | Non-STEMI | LAD | Conservative antiplatelet, clopidogrel, carvedilol, metoprolol, spironolactone, lisinopril, atorvastatin, warfarin | Survived |
12 | Ansari et al., 3 October 2022 [36] | Female | 58 years old | Chest pain | Abnormal ECG, leucocytosis, high CRP, increased hs-cTnI | Hyperlipidemia/ unreported | Approximately 2 months after the active phase of COVID-19 | Fever, gastrointestinal symptoms, isolate severe thrombocytopenia | None | Troponin-positive chest pain with pericardial components | LCx | Conservative antiplatelet, clopidogrel, metoprolol, lisinopril, statin | Survived | |
13. | Lewars et al., 19 October 2022 [42] | Female | 51 years old | Chest pain, dyspnea | Elevated troponin, First ECG: consistent with acute ischemic changes, Second ECG: Abnormal ECG | Anxiety, postpartum cardiomyopathy 15 years prior with recovered ejection fraction/ unreported | 24 h after result | Asymptomatic | None | Troponin-positive chest pain | LAD | Conservative | Survived | |
14. | Bashir et al., 15 April 2023 [35] | Female | 36 years old | Severe chest pain. | Elevated troponin, hyperacute T on ECG RBBB | Morbid obesity | A few hours before the PCR test returned positive | Mild, fever | None | NSTEMI | LAD | Conservative | Survived | |
15. | Shah et al., 24 June 2023 [41] | Female | 67 years old | Chest pain, shortness of breath, nausea | First ECG: abnormal ECG Second ECG: abnormal ECG, elevated troponin | None/FHCAD | 1 day before a positive PCR test | Asymptomatic | None | STEMI | LAD | POBA | ||
16. | Papageorgiou et al., 16 January 2024 [40] | Greece | Male | 51 years old | Chest pain | Abnormal ECG | Hypertension | 7 days after a positive PCR test | Fever, severe | Severe respiratory distress | STEMI | LCX | Conservative | Survived |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsigkas, G.; Bozika, M.; Nastouli, K.-M.; Apostolos, A.; Routoula, M.; Georga, A.-M.; Latta, A.; Papageorgiou, A.; Papafaklis, M.I.; Leventopoulos, G.; et al. Spontaneous Coronary Artery Dissection and COVID-19: A Review of the Literature. Life 2024, 14, 315. https://doi.org/10.3390/life14030315
Tsigkas G, Bozika M, Nastouli K-M, Apostolos A, Routoula M, Georga A-M, Latta A, Papageorgiou A, Papafaklis MI, Leventopoulos G, et al. Spontaneous Coronary Artery Dissection and COVID-19: A Review of the Literature. Life. 2024; 14(3):315. https://doi.org/10.3390/life14030315
Chicago/Turabian StyleTsigkas, Grigorios, Maria Bozika, Kassiani-Maria Nastouli, Anastasios Apostolos, Michaela Routoula, Athanasia-Maria Georga, Anastasia Latta, Angeliki Papageorgiou, Michail I. Papafaklis, Georgios Leventopoulos, and et al. 2024. "Spontaneous Coronary Artery Dissection and COVID-19: A Review of the Literature" Life 14, no. 3: 315. https://doi.org/10.3390/life14030315
APA StyleTsigkas, G., Bozika, M., Nastouli, K. -M., Apostolos, A., Routoula, M., Georga, A. -M., Latta, A., Papageorgiou, A., Papafaklis, M. I., Leventopoulos, G., Karamasis, G. V., & Davlouros, P. (2024). Spontaneous Coronary Artery Dissection and COVID-19: A Review of the Literature. Life, 14(3), 315. https://doi.org/10.3390/life14030315