Nutlin-3 Loaded Ethosomes and Transethosomes to Prevent UV-Associated Skin Damage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Ethosome Preparation
2.3. Transethosome Preparation
2.4. Cryo-Transmission Electron Microscopy (Cryo-TEM)
2.5. Photon Correlation Spectroscopy (PCS) and Zeta Potential Evaluation
2.6. NUT Entrapment Capacity Evaluation
2.7. Ethosome and Transethosome Stability Evaluation
2.8. In Vitro Permeation Test (IVPT)
2.9. HPLC Analysis
2.10. Ex Vivo Studies
2.10.1. Skin Explants Culturing and Treatment
2.10.2. LDH Assay
2.10.3. Immunohistochemistry
2.10.4. Statistical Analysis
3. Results
3.1. Preparation of Ethosomes and Transethosomes
3.2. Size, Zeta Potential, and Morphology
3.3. NUT Entrapment Capacity (EC)
3.4. Stability Studies
3.5. IVPT
3.6. Evaluation of the Protective Effects against UV-Induced Skin Damage in Human Skin
3.6.1. Immunofluorescence Staining Analysis of Cell Proliferation (ki67)
3.6.2. Immunofluorescence Staining Analysis of Metalloproteinase MMP9 Activation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vassilev, L.T.; Vu, B.T.; Graves, B.; Carvajal, D.; Podlaski, F.; Filipovic, Z.; Kong, N.; Kammlott, U.; Lukacs, C.; Klein, C.; et al. In Vivo Activation of the p53 Pathway by Small-Molecule Antagonists of MDM2. Science 2004, 303, 844–848. [Google Scholar] [CrossRef] [PubMed]
- Tisato, V.; Voltan, R.; Gonelli, A.; Secchiero, P.; Zauli, G. MDM2/X inhibitors under clinical evaluation: Perspectives for the management of hematological malignancies and pediatric cancer. J. Hematol. Oncol. 2017, 10, 133. [Google Scholar] [CrossRef]
- Manfé, V.; Biskup, E.; Johansen, P.; Kamstrup, M.R.; Krejsgaard, T.F.; Morling, N.; Wulf, H.C.; Gniadecki, R. MDM2 inhibitor nutlin-3a induces apoptosis and senescence in cutaneous T-cell lymphoma: Role of p53. J. Invest. Dermatol. 2012, 132, 1487–1496. [Google Scholar] [CrossRef] [PubMed]
- Charruyer, A.; Weisenberger, T.; Li, H.; Khalifa, A.; Schroeder, A.W.; Belzer, A.; Ghadially, R. Decreased p53 is associated with a decline in asymmetric stem cell self-renewal in aged human epidermis. Aging Cell 2021, 20, e13310. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Shin, S.J.; Kim, H.S. ERK1/2 activation mediated by the nutlin-3-induced mitochondrial translocation of p53. Int. J. Oncol. 2013, 42, 1027–1035. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Yount, C.; Lang, H.; Yang, A.; Riemer, E.C.; Lyons, K.; Vanek, K.N.; Silvestri, G.A.; Schulte, B.A.; Wang, G.Y. Activation of p53 with Nutlin-3a radiosensitizes lung cancer cells via enhancing radiation-induced premature senescence. Lung Cancer 2013, 81, 167–173. [Google Scholar] [CrossRef]
- Voltan, R.; Secchiero, P.; Ruozi, B.; Caruso, L.; Forni, F.; Palomba, M.; Zauli, G.; Vandelli, M.A. Nanoparticles Loaded with Nutlin-3 Display Cytotoxicity Towards p53wildtype JVM-2 But Not Towards p53mutated BJAB Leukemic Cells. Curr. Med. Chem. 2013, 20, 2712–2722. [Google Scholar] [CrossRef]
- Belletti, D.; Tosi, G.; Riva, G.; Lagreca, I.; Galliania, M.; Luppi, M.; Vandelli, M.A.; Forni, F.; Ruozi, B. Nutlin-3 loaded nanocarriers: Preparation, characterization and in vitro antineoplastic effect against primary effusion lymphoma. Int. J. Pharm. 2015, 490, 85–93. [Google Scholar] [CrossRef]
- Grillone, A.; Battaglini, M.; Moscato, S.; Mattii, L.; De Julián Fernández, C.; Scarpellini, A.; Giorgi, M.; Sinibaldi, E.; Ciofani, G. Nutlin-loaded magnetic solid lipid nanoparticles for targeted glioblastoma treatment. Nanomedicine 2019, 14, 727–752. [Google Scholar] [CrossRef]
- Das, M.; Sahoo, S.K. Folate decorated dual drug loaded nanoparticle: Role of curcumin in enhancing therapeutic potential of nutlin-3a by reversing multidrug resistance. PLoS ONE 2012, 7, e32920. [Google Scholar] [CrossRef]
- Das, M.; Dilnawaz, F.; Sahoo, S.K. Targeted nutlin-3a loaded nanoparticles inhibiting p53-MDM2 interaction: Novel strategy for breast cancer therapy. Nanomedicine 2011, 6, 489–507. [Google Scholar] [CrossRef] [PubMed]
- Debelec-Butuner, B.; Kotmakci, M.; Oner, E.; Ozduman, G.; Kantarci, A.G. Nutlin3a-Loaded Nanoparticles Show Enhanced Apoptotic Activity on Prostate Cancer Cells. Mol. Biotechnol. 2019, 61, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Nadler-Milbauer, M.; Apter, L.; Haupt, Y.; Haupt, S.; Barenholz, Y.; Minko, T.; Rubinstein, A. Synchronized release of Doxil and Nutlin-3 by remote degradation of polysaccharide matrices and its possible use in the local treatment of colorectal cancer. J. Drug Target. 2011, 19, 859–873. [Google Scholar] [CrossRef] [PubMed]
- Ainbinder, D.; Paolino, D.; Fresta, M.; Touitou, E. Drug delivery applications with ethosomes. J. Biomed Nanotechnol. 2010, 6, 558–568. [Google Scholar] [CrossRef] [PubMed]
- Natsheh, H.; Vettorato, E.; Touitou, E. Ethosomes for Dermal Administration of Natural Active Molecules. Curr. Pharm. Des. 2019, 25, 2338–2348. [Google Scholar] [CrossRef] [PubMed]
- Esposito, E.; Calderan, L.; Galvan, A.; Cappellozza, E.; Drechsler, M.; Mariani, P.; Pepe, A.; Sguizzato, M.; Vigato, E.; Dalla Pozza, E.; et al. Ex Vivo Evaluation of Ethosomes and Transethosomes Applied on Human Skin: A Comparative Study. Int. J. Mol. Sci. 2022, 23, 15112. [Google Scholar] [CrossRef]
- Song, H.; Wen, J.; Li, H.; Meng, Y.; Zhang, Y.; Zhang, N.; Zheng, W. Enhanced transdermal permeability and drug deposition of rheumatoid arthritis via sinomenine hydrochloride-loaded antioxidant surface transethosome. Int. J. Nanomed. 2019, 14, 3177–3188. [Google Scholar] [CrossRef]
- Song, C.K.; Balakrishnan, P.; Shim, C.K.; Chung, S.J.; Chong, S.; Kim, D.D. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: Characterization and in vitro/in vivo evaluation. Colloids Surf. B Biointerfaces 2012, 92, 299–304. [Google Scholar] [CrossRef]
- Ferrara, F.; Benedusi, M.; Cervellati, F.; Sguizzato, M.; Montesi, L.; Bondi, A.; Drechsler, M.; Pula, W.; Valacchi, G.; Esposito, E. Dimethyl Fumarate-Loaded Transethosomes: A Formulative Study and Preliminary Ex Vivo and In Vivo Evaluation. Int. J. Mol. Sci. 2022, 23, 8756. [Google Scholar] [CrossRef]
- Jafari, A.; Daneshamouz, S.; Ghasemiyeh, P.; Mohammadi-Samani, S. Ethosomes as dermal/transdermal drug delivery systems: Applications, preparation and characterization. J. Liposome Res. 2023, 33, 34–52. [Google Scholar] [CrossRef]
- Nainwal, N.; Jawla, S.; Singh, R.; Saharan, V.A. Transdermal applications of ethosomes–a detailed review. J. Liposome Res. 2019, 29, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Soeur, J.; Belaïdi, J.P.; Chollet, C.; Denat, L.; Dimitrov, A.; Jones, C.; Perez, P.; Zanini, M.; Zobiri, O.; Mezzache, S.; et al. Photo-pollution stress in skin: Traces of pollutants (PAH and particulate matter) impair redox homeostasis in keratinocytes exposed to UVA1. J. Dermatol. Sci. 2017, 86, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.E.; Cho, D.; Park, H.J. Air pollution and skin diseases: Adverse effects of airborne particulate matter on various skin diseases. Life Sci. 2016, 152, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, F.; Woodby, B.; Pecorelli, A.; Schiavone, M.L.; Pambianchi, E.; Messano, N.; Therrien, J.P.; Choudhary, H.; Valacchi, G. Additive effect of combined pollutants to UV induced skin OxInflammation damage. Evaluating the protective topical application of a cosmeceutical mixture formulation. Redox Biol. 2020, 34, 101481. [Google Scholar] [CrossRef]
- Woodby, B.; Penta, K.; Pecorelli, A.; Lila, M.A.; Valacchi, G. Skin Health from the Inside Out. Annu. Rev. Food Sci. Technol. 2020, 11, 235–254. [Google Scholar] [CrossRef]
- Rinnerthaler, M.; Bischof, J.; Streubel, M.K.; Trost, A.; Richter, K. Oxidative stress in aging human skin. Biomolecules 2015, 5, 545–589. [Google Scholar] [CrossRef]
- Davis, T.A.; Vilgelm, A.E.; Richmond, A.; Johnston, J.N. Preparation of (-)-nutlin-3 using enantioselective organocatalysis at decagram scale. J. Org. Chem. 2013, 78, 10605–10616. [Google Scholar] [CrossRef]
- Vara, B.A.; Mayasundari, A.; Tellis, J.C.; Danneman, M.W.; Arredondo, V.; Davis, T.A.; Min, J.; Finch, K.; Guy, R.K.; Johnston, J.N. Organocatalytic, diastereo- and enantioselective synthesis of nonsymmetric cis -stilbene diamines: A platform for the preparation of single-enantiomer cis -imidazolines for protein-protein inhibition. J. Org. Chem. 2014, 79, 6913–6938. [Google Scholar] [CrossRef]
- Pecora, R. Dynamic light scattering measurement of nanometer particles in liquids. J. Nanoparticle Res. 2000, 2, 123–131. [Google Scholar] [CrossRef]
- Sze, A.; Erickson, D.; Ren, L.; Li, D. Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow. J. Colloid Interface Sci. 2003, 261, 402–410. [Google Scholar] [CrossRef]
- Haq, A.; Goodyear, B.; Ameen, D.; Joshi, V.; Michniak-Kohn, B. Strat-M® synthetic membrane: Permeability comparison to human cadaver skin. Int. J. Pharm. 2018, 547, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, F.; Benedusi, M.; Sguizzato, M.; Cortesi, R.; Baldisserotto, A.; Buzzi, R.; Valacchi, G.; Esposito, E. Ethosomes and Transethosomes as Cutaneous Delivery Systems for Quercetin: A Preliminary Study on Melanoma Cells. Pharmaceutics 2022, 14, 1038. [Google Scholar] [CrossRef] [PubMed]
- Committee for Medicinal Products for Human Use. Draft Guideline on quality and equivalence of topical products. Eur. Med. Agency 2018, 44, 1–36. [Google Scholar]
- Le Guyader, G.; Do, B.; Vieillard, V.; Andrieux, K.; Paul, M. Comparison of the in vitro and ex vivo permeation of existing topical formulations used in the treatment of facial angiofibroma and characterization of the variations observed. Pharmaceutics 2020, 12, 1060. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, F.; Pambianchi, E.; Woodby, B.; Messano, N.; Therrien, J.P.; Pecorelli, A.; Canella, R.; Valacchi, G. Evaluating the effect of ozone in UV induced skin damage. Toxicol. Lett. 2021, 338, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Pambianchi, E.; Ferrara, F.; Pecorelli, A.; Woodby, B.; Grace, M.; Therrien, J.P.; Lila, M.A.; Valacchi, G. Blueberry Extracts as a Novel Approach to Prevent Ozone-Induced Cutaneous Inflammasome Activation. Oxid. Med. Cell. Longev. 2020, 2020, 9571490. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, F.; Pambianchi, E.; Pecorelli, A.; Woodby, B.; Messano, N.; Therrien, J.P.; Lila, M.A.; Valacchi, G. Redox regulation of cutaneous inflammasome by ozone exposure. Free Radic. Biol. Med. 2020, 152, 561–570. [Google Scholar] [CrossRef]
- Sguizzato, M.; Ferrara, F.; Mariani, P.; Pepe, A.; Cortesi, R.; Huang, N.; Simelière, F.; Boldrini, P.; Baldisserotto, A.; Valacchi, G.; et al. “Plurethosome” as vesicular system for cutaneous administration of mangiferin: Formulative study and 3D skin tissue evaluation. Pharmaceutics 2021, 13, 1124. [Google Scholar] [CrossRef]
- Sguizzato, M.; Ferrara, F.; Hallan, S.S.; Baldisserotto, A.; Drechsler, M.; Malatesta, M.; Costanzo, M.; Cortesi, R.; Puglia, C.; Valacchi, G.; et al. Ethosomes and transethosomes for mangiferin transdermal delivery. Antioxidants 2021, 10, 768. [Google Scholar] [CrossRef]
- Natsheh, H.; Touitou, E. Phospholipid vesicles for dermal/transdermal and nasal administration of active molecules: The effect of surfactants and alcohols on the fluidity of their lipid bilayers and penetration enhancement properties. Molecules 2020, 25, 2959. [Google Scholar] [CrossRef]
- Abdulbaqi, I.M.; Darwis, Y.; Khan, N.A.K.; Assi, R.A.; Khan, A.A. Ethosomal nanocarriers: The impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int. J. Nanomed. 2016, 11, 2279–2304. [Google Scholar] [CrossRef] [PubMed]
- Bin Jardan, Y.A.; Ahad, A.; Raish, M.; Al-Jenoobi, F.I. Preparation and Characterization of Transethosome Formulation for the Enhanced Delivery of Sinapic Acid. Pharmaceutics 2023, 15, 2391. [Google Scholar] [CrossRef] [PubMed]
- Quan, T.; Qin, Z.; Xia, W.; Shao, Y.; Voorhees, J.J.; Fisher, G.J. Matrix-degrading metalloproteinases in photoaging. J. Investig. Dermatol. Symp. Proc. 2009, 14, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Riihilä, P.; Nissinen, L.; Kähäri, V.M. Matrix metalloproteinases in keratinocyte carcinomas. Exp. Dermatol. 2021, 30, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Gonzaga, E.R. Role of UV light in photodamage, skin aging, and skin cancer: Importance of photoprotection. Am. J. Clin. Dermatol. 2009, 10, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Gromkowska-Kępka, K.J.; Puścion-Jakubik, A.; Markiewicz-Żukowska, R.; Socha, K. The impact of ultraviolet radiation on skin photoaging—Review of in vitro studies. J. Cosmet. Dermatol. 2021, 20, 3427–3431. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.L.; Lawrence, I.; Hoffman, M.; Elgindi, D.; Nadhan, K.; Potnis, M.; Jin, A.; Sershon, C.; Binnebose, R.; Lorenzini, A.; et al. Topical rapamycin reduces markers of senescence and aging in human skin: An exploratory, prospective, randomized trial. GeroScience 2019, 41, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhang, H.; Yang, Y.; Zhang, S.; Wang, J.; Zhang, D.; Yu, H. Metformin Attenuates UVA-Induced Skin Photoaging by Suppressing Mitophagy and the PI3K/AKT/mTOR Pathway. Int. J. Mol. Sci. 2022, 23, 6960. [Google Scholar] [CrossRef]
- Kranz, D.; Dohmesen, C.; Dobbelstein, M. BRCA1 and Tip60 determine the cellular response to ultraviolet irradiation through distinct pathways. J. Cell Biol. 2008, 182, 197–213. [Google Scholar] [CrossRef]
- Lerche, C.M.; Thomsen, B.M.; Wulf, H.C.; Gniadecki, R. Topical Nutlin-3 Potentiates the UVB-induced p53 Response and Reduces DNA Photodamage and Apoptosis in Mouse Epidermal Keratinocytes in Vivo. J. Clin. Exp. Dermatol. 2010, 1, 2–3. [Google Scholar] [CrossRef]
- Salminen, A.; Kaarniranta, K.; Kauppinen, A. Photoaging: UV radiation-induced inflammation and immunosuppression accelerate the aging process in the skin. Inflamm. Res. 2022, 71, 817–831. [Google Scholar] [CrossRef] [PubMed]
Formulation | PC 1 | Ethanol | T80 2 | Water | NUT 3 |
---|---|---|---|---|---|
Code | % w/w | % w/w | % w/w | % w/w | % w/w |
ETO | 0.900 | 29.100 | - | 70.00 | - |
ETO-NUT0.3 | 0.900 | 29.070 | - | 70.00 | 0.030 |
ETO-NUT0.15 | 0.900 | 29.085 | - | 70.00 | 0.015 |
ETO-NUT0.1 | 0.900 | 29.090 | - | 70.00 | 0.010 |
T-ETO | 0.900 | 29.100 | 0.300 | 69.70 | - |
T-ETO-NUT0.3 | 0.900 | 29.070 | 0.300 | 69.70 | 0.030 |
Formulation Code | Time (Days) | Z Average (nm) ± s.d. | Typical Intensity Distribution | Polydispersity Index ± s.d. | |
---|---|---|---|---|---|
nm * | Area (%) * | ||||
ETO | 1 | 212.25 ± 14.2 | 237.6 | 98.9 | 0.12 ± 0.01 |
90 | 235.22 ± 20.5 | 245.5 | 100.0 | 0.14 ± 0.03 | |
ETO-NUT0.3 | 1 | 224.2 ± 11.57 | 245.1 | 99.0 | 0.17 ± 0.04 |
90 | 228.9 ± 19.42 | 242.4 | 99.1 | 0.14 ± 0.03 | |
ETO-NUT0.15 | 1 | 227.2 ± 10.78 | 233.5 | 95.8 | 0.20 ± 0.02 |
90 | 234.6 ± 15.55 | 250.7 | 97.6 | 0.17 ± 0.04 | |
ETO-NUT0.1 | 1 | 224.4 ± 10.60 | 232.9 | 96.9 | 0.20 ± 0.01 |
90 | 228.3 ± 15.30 | 236.2 | 97.4 | 0.16 ± 0.04 | |
T-ETO | 1 | 161.90 ± 11.32 | 148.7 | 99.6 | 0.13 ± 0.02 |
90 | 209.10 ± 18.22 | 198.7 | 100.0 | 0.16 ± 0.03 | |
T-ETO-NUT0.3 | 1 | 143.1 ± 14.88 | 169.0 | 99.8 | 0.15 ± 0.04 |
90 | 146.5 ± 13.52 | 162.1 | 100.0 | 0.14 ± 0.03 |
Formulation Code | EC 1 day 1 (%) | EC 1 day 90 (%) |
---|---|---|
ETO-NUT0.3 | 89.93 ± 6.70 | 72.62 ± 8.33 |
T-ETO-NUT0.3 | 91.64 ± 5.22 | 72.58 ± 4.21 |
Formulation Code | Jss 1 (μg cm−2 h−1) | Tlag 2 (h) | Kp 3 (cm h−1 10−3) | D 4 (cm2 h−1) × 10 | P 5 STRAT-M/Vehicle | ANUT 6 (μg cm−2) | MNUT 7 (μg cm−2) |
---|---|---|---|---|---|---|---|
ETO-NUT0.3 | 0.24 ± 0.12 | 2.52 ± 0.10 | 0.81 ± 0.36 | 16.80 ± 0.10 | 0.01 ± 0.02 | 15.9 ± 12.1 | 7.9 ± 7.5 |
T-ETO-NUT0.3 | 1.79 ± 0.42 | 2.75 ± 0.12 | 5.98 ± 1.24 | 18.33 ± 0.12 | 0.09 ± 0.01 | 57.6 ± 18.2 | 9.8 ± 6.0 |
SOL-NUT0.3 | 0.44 ± 0.02 | 2.00 ± 0.12 | 1.49 ± 0.06 | 0.07 ± 0.01 | 5.96 ± 0.02 | 6.4 ± 0.5 | 24.3 ± 6.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esposito, E.; Ferrara, F.; Drechsler, M.; Bortolini, O.; Ragno, D.; Toldo, S.; Bondi, A.; Pecorelli, A.; Voltan, R.; Secchiero, P.; et al. Nutlin-3 Loaded Ethosomes and Transethosomes to Prevent UV-Associated Skin Damage. Life 2024, 14, 155. https://doi.org/10.3390/life14010155
Esposito E, Ferrara F, Drechsler M, Bortolini O, Ragno D, Toldo S, Bondi A, Pecorelli A, Voltan R, Secchiero P, et al. Nutlin-3 Loaded Ethosomes and Transethosomes to Prevent UV-Associated Skin Damage. Life. 2024; 14(1):155. https://doi.org/10.3390/life14010155
Chicago/Turabian StyleEsposito, Elisabetta, Francesca Ferrara, Markus Drechsler, Olga Bortolini, Daniele Ragno, Sofia Toldo, Agnese Bondi, Alessandra Pecorelli, Rebecca Voltan, Paola Secchiero, and et al. 2024. "Nutlin-3 Loaded Ethosomes and Transethosomes to Prevent UV-Associated Skin Damage" Life 14, no. 1: 155. https://doi.org/10.3390/life14010155
APA StyleEsposito, E., Ferrara, F., Drechsler, M., Bortolini, O., Ragno, D., Toldo, S., Bondi, A., Pecorelli, A., Voltan, R., Secchiero, P., Zauli, G., & Valacchi, G. (2024). Nutlin-3 Loaded Ethosomes and Transethosomes to Prevent UV-Associated Skin Damage. Life, 14(1), 155. https://doi.org/10.3390/life14010155