The Impact of Chronic Comorbidities on Outcomes in Acute Exacerbations of Idiopathic Pulmonary Fibrosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Source
2.2. Inclusion and Exclusion Criteria
2.3. Patient and Variables
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Summary of Results
4.2. Comparison with Previously Published Data
4.3. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Fell, C.D.; Martinez, F.J.; Liu, L.X.; Murray, S.; Han, M.K.; Kazerooni, E.A.; Gross, B.H.; Myers, J.; Travis, W.D.; Colby, T.V.; et al. Clinical predictors of a diagnosis of idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2010, 181, 832–837. [Google Scholar] [CrossRef] [PubMed]
- King, T.E., Jr.; Pardo, A.; Selman, M. Idiopathic pulmonary fibrosis. Lancet 2011, 378, 1949–1961. [Google Scholar] [CrossRef]
- Weiss, C.O.; Boyd, C.M.; Yu, Q.; Wolff, J.L.; Leff, B. Patterns of prevalent major chronic disease among older adults in the United States. JAMA 2007, 298, 1160–1162. [Google Scholar] [CrossRef] [PubMed]
- Raghu, G.; Amatto, V.C.; Behr, J.; Stowasser, S. Comorbidities in idiopathic pulmonary fibrosis patients: A systematic literature review. Eur. Respir J. 2015, 46, 1113–1130. [Google Scholar] [CrossRef] [PubMed]
- Collard, H.R.; Ryerson, C.J.; Corte, T.J.; Jenkins, G.; Kondoh, Y.; Lederer, D.J.; Lee, J.S.; Maher, T.M.; Wells, A.U.; Antoniou, K.M.; et al. Acute Exacerbation of Idiopathic Pulmonary Fibrosis. An International Working Group Report. Am. J. Respir. Crit. Care Med. 2016, 194, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Natsuizaka, M.; Chiba, H.; Kuronuma, K.; Otsuka, M.; Kudo, K.; Mori, M.; Bando, M.; Sugiyama, Y.; Takahashi, H. Epidemiologic survey of Japanese patients with idiopathic pulmonary fibrosis and investigation of ethnic differences. Am. J. Respir. Crit. Care Med. 2014, 190, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Judge, E.P.; Fabre, A.; Adamali, H.I.; Egan, J.J. Acute exacerbations and pulmonary hypertension in advanced idiopathic pulmonary fibrosis. Eur. Respir. J. 2012, 40, 93–100. [Google Scholar] [CrossRef]
- Kakugawa, T.; Sakamoto, N.; Sato, S.; Yura, H.; Harada, T.; Nakashima, S.; Hara, A.; Oda, K.; Ishimoto, H.; Yatera, K.; et al. Risk factors for an acute exacerbation of idiopathic pulmonary fibrosis. Respir. Res. 2016, 17, 79. [Google Scholar] [CrossRef]
- Kondoh, Y.; Taniguchi, H.; Katsuta, T.; Kataoka, K.; Kimura, T.; Nishiyama, O.; Sakamoto, K.; Johkoh, T.; Nishimura, M.; Ono, K.; et al. Risk factors of acute exacerbation of idiopathic pulmonary fibrosis. Sarcoidosis Vasc. Diffuse Lung Dis. 2010, 27, 103–110. [Google Scholar]
- Kishaba, T.; Tamaki, H.; Shimaoka, Y.; Fukuyama, H.; Yamashiro, S. Staging of acute exacerbation in patients with idiopathic pulmonary fibrosis. Lung 2014, 192, 141–149. [Google Scholar] [CrossRef]
- Song, J.W.; Hong, S.B.; Lim, C.M.; Koh, Y.; Kim, D.S. Acute exacerbation of idiopathic pulmonary fibrosis: Incidence, risk factors and outcome. Eur. Respir. J. 2011, 37, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, S.; Shimizu, H.; Isshiki, T.; Nakamura, Y.; Usui, Y.; Kurosaki, A.; Isobe, K.; Takai, Y.; Homma, S. New risk scoring system for predicting 3-month mortality after acute exacerbation of idiopathic pulmonary fibrosis. Sci. Rep. 2022, 12, 1134. [Google Scholar] [CrossRef] [PubMed]
- HCUP National Inpatient Sample (NIS). Available online: https://hcup-us.ahrq.gov/nisoverview.jsp (accessed on 1 January 2019).
- Collard, H.R.; Chen, S.Y.; Yeh, W.S.; Li, Q.; Lee, Y.C.; Wang, A.; Raghu, G. Health care utilization and costs of idiopathic pulmonary fibrosis in U.S. Medicare beneficiaries aged 65 years and older. Ann. Am. Thorac. Soc. 2015, 12, 981–987. [Google Scholar] [CrossRef] [PubMed]
- Esposito, D.B.; Lanes, S.; Donneyong, M.; Holick, C.N.; Lasky, J.A.; Lederer, D.; Nathan, S.D.; O’Quinn, S.; Parker, J.; Tran, T.N. Idiopathic Pulmonary Fibrosis in United States Automated Claims. Incidence, Prevalence, and Algorithm Validation. Am. J. Respir. Crit. Care Med. 2015, 192, 1200–1207. [Google Scholar] [CrossRef] [PubMed]
- Flaherty, K.R.; King, T.E., Jr.; Raghu, G.; Lynch, J.P., 3rd; Colby, T.V.; Travis, W.D.; Gross, B.H.; Kazerooni, E.A.; Toews, G.B.; Long, Q.; et al. Idiopathic interstitial pneumonia: What is the effect of a multidisciplinary approach to diagnosis? Am. J. Respir. Crit. Care Med. 2004, 170, 904–910. [Google Scholar] [CrossRef]
- Yagyu, H.; Murohashi, K.; Hara, Y.; Saigusa, Y.; Aoki, A.; Kobayashi, N.; Kaneko, T. Clinical utility of a composite scoring system including Charlson Comorbidity Index score in patients with interstitial lung disease. J. Thorac. Dis. 2020, 12, 5774–5782. [Google Scholar] [CrossRef]
- Murohashi, K.; Hara, Y.; Saigusa, Y.; Kobayashi, N.; Sato, T.; Yamamoto, M.; Kudo, M.; Kaneko, T. Clinical significance of Charlson comorbidity index as a prognostic parameter for patients with acute or subacute idiopathic interstitial pneumonias and acute exacerbation of collagen vascular diseases-related interstitial pneumonia. J. Thorac. Dis. 2019, 11, 2448–2457. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Durheim, M.T.; Judy, J.; Bender, S.; Baumer, D.; Lucas, J.; Robinson, S.B.; Mohamedaly, O.; Shah, B.R.; Leonard, T.; Conoscenti, C.S.; et al. In-Hospital Mortality in Patients with Idiopathic Pulmonary Fibrosis: A US Cohort Study. Lung 2019, 197, 699–707. [Google Scholar] [CrossRef]
- Ikezoe, K.; Handa, T.; Tanizawa, K.; Yokoi, H.; Kubo, T.; Aihara, K.; Sokai, A.; Nakatsuka, Y.; Hashimoto, S.; Uemasu, K.; et al. Chronic Kidney Disease Predicts Survival in Patients with Idiopathic Pulmonary Fibrosis. Respiration 2017, 94, 346–354. [Google Scholar] [CrossRef]
- Emura, I.; Usuda, H. Acute exacerbation of IPF has systemic consequences with multiple organ injury, with SRA(+) and TNF-alpha(+) cells in the systemic circulation playing central roles in multiple organ injury. BMC Pulm. Med. 2016, 16, 138. [Google Scholar] [CrossRef] [PubMed]
- Kopf, S.; Groener, J.B.; Kender, Z.; Fleming, T.; Brune, M.; Riedinger, C.; Volk, N.; Herpel, E.; Pesta, D.; Szendrodi, J.; et al. Breathlessness and Restrictive Lung Disease: An Important Diabetes-Related Feature in Patients with Type 2 Diabetes. Respiration 2018, 96, 29–40. [Google Scholar] [CrossRef]
- Marchioni, A.; Tonelli, R.; Ball, L.; Fantini, R.; Castaniere, I.; Cerri, S.; Luppi, F.; Malerba, M.; Pelosi, P.; Clini, E. Acute exacerbation of idiopathic pulmonary fibrosis: Lessons learned from acute respiratory distress syndrome? Crit. Care 2018, 22, 80. [Google Scholar] [CrossRef] [PubMed]
- Moss, M.; Guidot, D.M.; Steinberg, K.P.; Duhon, G.F.; Treece, P.; Wolken, R.; Hudson, L.D.; Parsons, P.E. Diabetic patients have a decreased incidence of acute respiratory distress syndrome. Crit. Care Med. 2000, 28, 2187–2192. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Christiani, D.C.; Thompson, B.T.; Bajwa, E.K.; Gong, M.N. Role of diabetes in the development of acute respiratory distress syndrome. Crit. Care Med. 2013, 41, 2720–2732. [Google Scholar] [CrossRef] [PubMed]
- Jeganathan, N.; Miot, C.; Sathananthan, A.; Sathananthan, M. The association of pulmonary fibrosis with diabetes mellitus. ERJ Open Res. 2020, 6, 00237-2020. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.; Chen, M.; Hong, X.; Chen, T.; Zhang, N. The effect of diabetes on the risk and mortality of acute lung injury/acute respiratory distress syndrome: A meta-analysis. Medicine 2019, 98, e15095. [Google Scholar] [CrossRef] [PubMed]
- Singla, A.; Turner, P.; Pendurthi, M.K.; Agrawal, V.; Modrykamien, A. Effect of type II diabetes mellitus on outcomes in patients with acute respiratory distress syndrome. J. Crit. Care 2014, 29, 66–69. [Google Scholar] [CrossRef]
- Rajasurya, V.; Gunasekaran, K.; Surani, S. Interstitial lung disease and diabetes. World J. Diabetes 2020, 11, 351–357. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, M.; Guo, P.; Wang, Y.; Liu, L.; Zhao, J.; Gao, L.; Yuan, Z.; Xue, F.; Zhao, J. Mendelian randomisation highlights hypothyroidism as a causal determinant of idiopathic pulmonary fibrosis. EBioMedicine 2021, 73, 103669. [Google Scholar] [CrossRef]
- Oldham, J.M.; Kumar, D.; Lee, C.; Patel, S.B.; Takahashi-Manns, S.; Demchuk, C.; Strek, M.E.; Noth, I. Thyroid Disease Is Prevalent and Predicts Survival in Patients With Idiopathic Pulmonary Fibrosis. Chest 2015, 148, 692–700. [Google Scholar] [CrossRef] [PubMed]
- Awano, N.; Jo, T.; Yasunaga, H.; Inomata, M.; Kuse, N.; Tone, M.; Morita, K.; Matsui, H.; Fushimi, K.; Nagase, T.; et al. Body mass index and in-hospital mortality in patients with acute exacerbation of idiopathic pulmonary fibrosis. ERJ Open Res. 2021, 7, 00037-2021. [Google Scholar] [CrossRef] [PubMed]
- Sangani, R.G.; Ghio, A.J.; Mujahid, H.; Patel, Z.; Catherman, K.; Wen, S.; Parker, J.E. Outcomes of Idiopathic Pulmonary Fibrosis Improve with Obesity: A Rural Appalachian Experience. South. Med. J. 2021, 114, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Kalininskiy, A.; Rackow, A.R.; Nagel, D.; Croft, D.; McGrane-Minton, H.; Kottmann, R.M. Association between weight loss and mortality in idiopathic pulmonary fibrosis. Respir. Res. 2022, 23, 377. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Feng, C.; Tang, H.; Deng, P.; Li, Y.; Wang, J.; Zhu, S.; Zhu, L. Management of BMI Is a Potential New Approach for the Prevention of Idiopathic Pulmonary Fibrosis. Front. Genet. 2022, 13, 821029. [Google Scholar] [CrossRef]
- Jovanovic, D.M.; Sterclova, M.; Mogulkoc, N.; Lewandowska, K.; Muller, V.; Hajkova, M.; Studnicka, M.; Tekavec-Trkanjec, J.; Littnerova, S.; Vasakova, M.; et al. Comorbidity burden and survival in patients with idiopathic pulmonary fibrosis: The EMPIRE registry study. Respir. Res. 2022, 23, 135. [Google Scholar] [CrossRef] [PubMed]
- de Andrade, J.A.; Neely, M.L.; Hellkamp, A.S.; Culver, D.A.; Kim, H.J.; Liesching, T.; Lobo, L.J.; Ramaswamy, M.; Safdar, Z.; Bender, S.; et al. Effect of Antifibrotic Therapy on Survival in Patients With Idiopathic Pulmonary Fibrosis. Clin. Ther. 2023, 45, 306–315. [Google Scholar] [CrossRef]
- Dempsey, T.M.; Payne, S.; Sangaralingham, L.; Yao, X.; Shah, N.D.; Limper, A.H. Adoption of the Antifibrotic Medications Pirfenidone and Nintedanib for Patients with Idiopathic Pulmonary Fibrosis. Ann. Am. Thorac. Soc. 2021, 18, 1121–1128. [Google Scholar] [CrossRef]
- Ley, B.; Urbania, T.; Husson, G.; Vittinghoff, E.; Brush, D.R.; Eisner, M.D.; Iribarren, C.; Collard, H.R. Code-based Diagnostic Algorithms for Idiopathic Pulmonary Fibrosis. Case Validation and Improvement. Ann. Am. Thorac. Soc. 2017, 14, 880–887. [Google Scholar] [CrossRef]
- Jeganathan, N.; Smith, R.A.; Sathananthan, M. Mortality Trends of Idiopathic Pulmonary Fibrosis in the United States From 2004 Through 2017. Chest 2021, 159, 228–238. [Google Scholar] [CrossRef]
- Dove, E.P.; Olson, A.L.; Glassberg, M.K. Trends in Idiopathic Pulmonary Fibrosis-related Mortality in the United States: 2000-2017. Am. J. Respir. Crit. Care Med. 2019, 200, 929–931. [Google Scholar] [CrossRef] [PubMed]
- Arai, T.; Kagawa, T.; Sasaki, Y.; Sugawara, R.; Sugimoto, C.; Tachibana, K.; Kitaichi, M.; Akira, M.; Hayashi, S.; Inoue, Y. Heterogeneity of incidence and outcome of acute exacerbation in idiopathic interstitial pneumonia. Respirology 2016, 21, 1431–1437. [Google Scholar] [CrossRef] [PubMed]
- Raghu, G.; Remy-Jardin, M.; Myers, J.L.; Richeldi, L.; Ryerson, C.J.; Lederer, D.J.; Behr, J.; Cottin, V.; Danoff, S.K.; Morell, F.; et al. Diagnosis of Idiopathic Pulmonary Fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2018, 198, e44–e68. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.W.; Kim, J.; Song, J.W. Impact of the revised definition on incidence and outcomes of acute exacerbation of idiopathic pulmonary fibrosis. Sci. Rep. 2022, 12, 8817. [Google Scholar] [CrossRef] [PubMed]
- Kreuter, M.; Polke, M.; Walsh, S.L.F.; Krisam, J.; Collard, H.R.; Chaudhuri, N.; Avdeev, S.; Behr, J.; Calligaro, G.; Corte, T.; et al. Acute exacerbation of idiopathic pulmonary fibrosis: International survey and call for harmonisation. Eur. Respir. J. 2020, 55, 1901760. [Google Scholar] [CrossRef]
- Zambon, M.; Vincent, J.L. Mortality rates for patients with acute lung injury/ARDS have decreased over time. Chest 2008, 133, 1120–1127. [Google Scholar] [CrossRef]
- Petnak, T.; Lertjitbanjong, P.; Thongprayoon, C.; Moua, T. Impact of Antifibrotic Therapy on Mortality and Acute Exacerbation in Idiopathic Pulmonary Fibrosis: A Systematic Review and Meta-Analysis. Chest 2021, 160, 1751–1763. [Google Scholar] [CrossRef]
- Fulton, B.G.; Ryerson, C.J. Managing comorbidities in idiopathic pulmonary fibrosis. Int. J. Gen. Med. 2015, 8, 309–318. [Google Scholar]
- Oldham, J.M.; Collard, H.R. Comorbid Conditions in Idiopathic Pulmonary Fibrosis: Recognition and Management. Front. Med. 2017, 4, 123. [Google Scholar] [CrossRef]
- King, C.S.; Nathan, S.D. Idiopathic pulmonary fibrosis: Effects and optimal management of comorbidities. Lancet Respir. Med. 2017, 5, 72–84. [Google Scholar] [CrossRef]
- Torrisi, S.E.; Ley, B.; Kreuter, M.; Wijsenbeek, M.; Vittinghoff, E.; Collard, H.R.; Vancheri, C. The added value of comorbidities in predicting survival in idiopathic pulmonary fibrosis: A multicentre observational study. Eur. Respir. J. 2019, 53, 1801587. [Google Scholar] [CrossRef] [PubMed]
Variable | IPF—Survivors | IPF—Non-Survivors | p-Value |
---|---|---|---|
N | 4310 (86.6%) | 665 (13.4%) | |
Age in years, Mean (SD) | 74.0 (8.0) | 74.5 (7.6) | 0.14 |
Sex—male N (%) | 2490 (57.8%) | 465 (69.9%) | <0.001 |
Race, N (%) | <0.001 | ||
White | 3080 (73.8%) | 495 (78.0%) | |
Black | 295 (7.1%) | 40 (6.3%) | |
Hispanic | 550 (13.2%) | 45 (7.1%) | |
Other | 250 (6.0%) | 55 (8.7%) | |
Median household income, N (%) | <0.001 | ||
Very low | 855 (20.1%) | 125 (19.2%) | |
Low | 1030 (24.2%) | 120 (18.5%) | |
Medium | 1225 (28.8%) | 135 (20.8%) | |
High | 1145 (26.9%) | 270 (41.5%) | |
Primary payer, N (%) | <0.0001 | ||
Medicare | 3530 (81.9%) | 485 (72.9%) | |
Medicaid | 145 (3.4%) | 25 (3.8%) | |
Private/HMO | 525 (12.2%) | 130 (19.5%) | |
Other/self-pay | 110 (2.6%) | 25 (3.8%) | |
Number of diagnoses, Mean (SD) | 16.4 (6.1) | 18.5 (5.3) | <0.001 |
Number of procedures, Mean (SD) * | 2.0 (4.1) | 2.5 (3.5) | <0.001 |
Chronic medical conditions | |||
Hypertension | 2860 (66.4%) | 440 (66.2%) | 0.92 |
Diabetes | 1280 (29.7%) | 150 (22.6%) | <0.001 |
Obesity | 480 (11.1%) | 60 (9.0%) | 0.10 |
Hypothyroidism | 840 (19.5%) | 105 (15.8%) | 0.02 |
Alcohol and drug use | 125 (2.9%) | 15 (2.9%) | 0.35 |
Chronic kidney disease | 5 (0.1%) | 5 (0.8%) | 0.001 |
Cardiovascular disease | 385 (8.9%) | 50 (7.5%) | 0.23 |
Malignancy | 185 (4.3%) | 25 (3.8%) | 0.53 |
Discharge disposition | |||
Home | 1715 (39.8%) | ||
Skilled nursing facility | 1185 (27.5%) | ||
Home with home healthcare | 1410 (32.7%) | ||
Length of stay in days, Mean (SD) * | 9.4 (13.2) | 9.8 (9.1) | <0.001 |
Variable | IPF—Survivors | IPF—Non-Survivors | p-Value |
---|---|---|---|
Admission year, N (%) | 0.02 | ||
2016 | 1260 (29.2%) | 225 (33.8%) | |
2017 | 1355 (31.4%) | 180 (27.1%) | |
2018 | 1695 (39.3%) | 260 (39.1%) | |
Bed size of hospital, N (%) | 0.54 | ||
Large | 2350 (54.5%) | 375 (56.4%) | |
Medium | 1155 (26.8%) | 165 (24.8%) | |
Small | 805 (18.7%) | 125 (18.8%) | |
Region of hospital, N (%) | 0.00 | ||
Northeast | 1000 (23.2%) | 195 (29.3%) | |
Midwest | 875 (20.3%) | 110 (16.5%) | |
South | 1565 (36.3%) | 230 (34.6%) | |
West | 870 (20.2%) | 130 (19.5%) |
Chronic Medical Conditions | aOR | 95% CI | p-Value |
---|---|---|---|
Hypertension | 1.03 | 0.84–1.25 | 0.80 |
Diabetes | 0.62 | 0.50–0.77 | <0.001 |
Obesity | 0.82 | 0.60–1.12 | 0.22 |
Hypothyroidism | 0.81 | 0.63–1.04 | 0.10 |
Alcohol and drug use | 0.58 | 0.33–1.05 | 0.07 |
Chronic kidney disease | 6.85 | 1.90–24.70 | 0.00 |
Cardiovascular disease | 0.74 | 0.54–1.01 | 0.06 |
Malignancy | 0.74 | 0.48–1.17 | 0.20 |
Chronic Medical Conditions | Incidence Rate Ratio (IRR) | 95% CI | p-Value |
---|---|---|---|
Hypertension | 0.93 | 0.87–1.00 | 0.06 |
Diabetes | 1.02 | 0.95–1.10 | 0.55 |
Obesity | 0.85 | 0.76–0.94 | 0.00 |
Hypothyroidism | 0.90 | 0.83–0.98 | 0.02 |
Alcohol and drug use | 1.11 | 0.92–1.33 | 0.28 |
Chronic kidney disease | 1.14 | 0.59–2.21 | 0.70 |
Cardiovascular disease | 0.96 | 0.86–1.07 | 0.50 |
Malignancy | 1.09 | 0.93–1.27 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baig, S.H.; Yoo, E.J. The Impact of Chronic Comorbidities on Outcomes in Acute Exacerbations of Idiopathic Pulmonary Fibrosis. Life 2024, 14, 156. https://doi.org/10.3390/life14010156
Baig SH, Yoo EJ. The Impact of Chronic Comorbidities on Outcomes in Acute Exacerbations of Idiopathic Pulmonary Fibrosis. Life. 2024; 14(1):156. https://doi.org/10.3390/life14010156
Chicago/Turabian StyleBaig, Saqib H., and Erika J. Yoo. 2024. "The Impact of Chronic Comorbidities on Outcomes in Acute Exacerbations of Idiopathic Pulmonary Fibrosis" Life 14, no. 1: 156. https://doi.org/10.3390/life14010156
APA StyleBaig, S. H., & Yoo, E. J. (2024). The Impact of Chronic Comorbidities on Outcomes in Acute Exacerbations of Idiopathic Pulmonary Fibrosis. Life, 14(1), 156. https://doi.org/10.3390/life14010156