Possible Molecular Mechanisms of Hypertension Induced by Sleep Apnea Syndrome/Intermittent Hypoxia
Abstract
:1. Introduction
2. Reactive Oxygen Species (ROS)
3. Hypoxia-Inducible Factors (HIFs)
4. Endothelin 1 (ET-1)
5. Inflammatory Molecules
6. Renin–Angiotensin System (RAS)
7. Catecholamine
8. Cardiovascular Factors for Hypertension in IH
9. Pro-Inflammatory/Inflammatory Cytokines
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benjafield, A.V.; Ayas, N.T.; Eastwood, P.R.; Heinzer, R.; Ip, M.S.M.; Morrell, M.J.; Nunez, C.M.; Patel, S.R.; Penzel, T.; Pépin, J.L.; et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir. Med. 2019, 7, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Cho, J. Sleep and obesity. Sleep Med. Clin. 2022, 17, 111–116. [Google Scholar] [CrossRef]
- Bonsignore, M.R. Obesity and obstructive sleep apnea. Handb. Exp. Pharmacol. 2022, 274, 181–201. [Google Scholar] [CrossRef]
- Ota, H.; Tamaki, S.; Itaya-Hironaka, A.; Yamauchi, A.; Sakuramoto-Tsuchida, S.; Morioka, T.; Takasawa, S.; Kimura, H. Attenuation of glucose-induced insulin secretion by intermittent hypoxia via down-regulation of CD38. Life Sci. 2012, 90, 206–211. [Google Scholar] [CrossRef]
- Muraki, I.; Wada, H.; Tanigawa, T. Sleep apnea and type 2 diabetes. J. Diabetes Investig. 2018, 9, 991–997. [Google Scholar] [CrossRef]
- Paschou, S.A.; Bletsa, E.; Saltiki, K.; Kazakou, P.; Kantreva, K.; Katsaounou, P.; Rovina, N.; Trakada, G.; Bakakos, P.; Vlachopoulos, C.V.; et al. Sleep apnea and cardiovascular risk in patients with prediabetes and Type 2 diabetes. Nutrients 2022, 14, 4989. [Google Scholar] [CrossRef]
- Uchiyama, T.; Ota, H.; Itaya-Hironaka, A.; Shobatake, R.; Yamauchi, A.; Sakuramoto-Tsuchida, S.; Makino, M.; Kimura, H.; Takeda, M.; Ohbayashi, C.; et al. Up-regulation of selenoprotein P and HIP/PAP mRNAs in hepatocytes by intermittent hypoxia via down-regulation of miR-203. Biochem. Biophys. Rep. 2017, 11, 130–137. [Google Scholar] [CrossRef]
- Barros, D.; García-Río, F. Obstructive sleep apnea and dyslipidemia: From animal models to clinical evidence. Sleep 2019, 42, zsy236. [Google Scholar] [CrossRef]
- Popadic, V.; Brajkovic, M.; Klasnja, S.; Milic, N.; Rajovic, N.; Lisulov, D.P.; Divac, A.; Ivankovic, T.; Manojlovic, A.; Nikolic, N.; et al. Correlation of dyslipidemia and inflammation with obstructive sleep apnea severity. Front. Pharmacol. 2022, 13, 897279. [Google Scholar] [CrossRef]
- Kang, J.; Tian, Z.; Wei, J.; Mu, Z.; Liang, J.; Li, M. Association between obstructive sleep apnea and Alzheimer’s disease-related blood and cerebrospinal fluid biomarkers: A meta-analysis. J. Clin. Neurosci. 2022, 102, 87–94. [Google Scholar] [CrossRef]
- Mohammadi, I.; Adibparsa, M.; Najafi, A.; Sehat, M.S.; Sadeghi, M. A systematic review with meta-analysis to assess Alzheimer’s disease biomarkers in adults with or without obstructive sleep apnoea. Int. Orthod. 2023, 21, 100814. [Google Scholar] [CrossRef]
- Maniaci, A.; Ferlito, S.; Lechien, J.R.; Di Luca, M.; Lannella, G.; Cammaroto, G. Anxiety, depression and sleepiness in OSA patients treated with barbed reposition pharyngoplasty: A prospective study. Eur. Arch. Otorhinolaryngol. 2022, 279, 4189–4198. [Google Scholar] [CrossRef]
- Yuan, F.; Zhang, S.; Liu, X.; Liu, Y. Correlation between obstructive sleep apnea hypopnea syndrome and hypertension: A systematic review and meta-analysis. Ann. Palliat. Med. 2021, 10, 12251–12261. [Google Scholar] [CrossRef]
- Seravalle, G.; Grassi, G. Sleep apnea and hypertension. High Blood Press. Cardiovasc. Prev. 2022, 29, 23–31. [Google Scholar] [CrossRef]
- Brown, J.; Yazdi, F.; Jodari-Karimi, M.; Owen, J.G.; Reisin, E. Obstructive sleep apnea and hypertension: Updates to a critical relationship. Curr. Hypertens. Rep. 2022, 24, 173–184. [Google Scholar] [CrossRef]
- Kanclerska, J.; Szymańska-Chabowska, A.; Poręba, R.; Michałek-Zrąbkowska, M.; Lachowicz, G.; Mazur, G.; Martynowicz, H. A systematic review of publications on the associations between sleep architecture and arterial hypertension. Med. Sci. Monit. 2023, 29, e941066. [Google Scholar] [CrossRef]
- Fletcher, E.C. The relationship between systemic hypertension and obstructive sleep apnea: Facts and theory. Am. J. Med. 1995, 98, 118–128. [Google Scholar] [CrossRef]
- Hohl, M.; Linz, B.; Böhm, M.; Linz, D. Obstructive sleep apnea and atrial arrhythmogenesis. Curr. Cardiol. Rev. 2014, 10, 362–368. [Google Scholar] [CrossRef]
- Hsu, H.C.; Chen, N.H.; Ho, W.J.; Lin, M.H. Factors associated with undiagnosed obstructive sleep apnoea among hypertensive patients: A multisite cross-sectional survey study in Taiwan. J. Clin. Nurs. 2018, 27, 1901–1912. [Google Scholar] [CrossRef]
- Kuniyoshi, F.H.; Pusalavidyasagar, S.; Singh, P.; Somers, V.K. Cardiovascular consequences of obstructive sleep apnoea. Indian J. Med. Res. 2010, 131, 196–205. [Google Scholar]
- Özlek, B.; Özlek, E.; Tekinalp, M.; Kahraman, S.; Zencirkiran Agus, H.; Başaran, Ö.; Kaya, B.C.; Rencüzoğulları, İ.; Mert, K.U.; Çakır, O.; et al. Comparison of clinical characteristics of patients with heart failure and preserved ejection fraction with atrial fibrillation versus sinus rhythm: Insights from the APOLLON registry. Turk. Kardiyol. Dern. Ars. 2020, 48, 234–245. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, E.C.; Lesske, J.; Qian, W.; Miller, C.C., 3rd; Unger, T. Repetitive, episodic hypoxia causes diurnal elevation of blood pressure in rats. Hypertension 1992, 19, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Foster, G.E.; Hanly, P.J.; Ahmed, S.B.; Beaudin, A.E.; Pialoux, V.; Poulin, M.J. Intermittent hypoxia increases arterial blood pressure in humans through a renin-angiotensin system-dependent mechanism. Hypertension 2010, 56, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Knight, W.D.; Little, J.T.; Carreno, F.R.; Toney, G.M.; Mifflin, S.W.; Cunningham, J.T. Chronic intermittent hypoxia increases blood pressure and expression of FosB/ΔFosB in central autonomic regions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 301, R131–R139. [Google Scholar] [CrossRef]
- Prabhakar, N.R.; Peng, Y.J.; Nanduri, J. Adaptive cardiorespiratory changes to chronic continuous and intermittent hypoxia. Handb. Clin. Neurol. 2022, 188, 103–123. [Google Scholar] [CrossRef]
- Demirci-Çekiç, S.; Özkan, G.; Avan, A.N.; Uzunboy, S.; Çapanoğlu, E.; Apak, R. Biomarkers of oxidative stress and antioxidant defense. J. Pharm. Biomed. Anal. 2022, 209, 114477. [Google Scholar] [CrossRef]
- Lin, S.; Ye, C.; Lin, Z.; Huang, L.; Li, D. Recent progress of near-infrared fluorescent probes in the determination of reactive oxygen species for disease diagnosis. Talanta 2024, 268, 125264. [Google Scholar] [CrossRef]
- Lavie, L.; Vishnevsky, A.; Lavie, P. Evidence for lipid peroxidation in obstructive sleep apnea. Sleep 2004, 27, 123–128. [Google Scholar]
- Jordan, W.; Cohrs, S.; Degner, D.; Meier, A.; Rodenbeck, A.; Mayer, G.; Pilz, J.; Rüther, E.; Kornhuber, J.; Bleich, S. Evaluation of oxidative stress measurements in obstructive sleep apnea syndrome. J. Neural Transm. 2006, 113, 239–254. [Google Scholar] [CrossRef]
- Meliante, P.G.; Zoccali, F.; Cascone, F.; Di Stefano, V.; Greco, A.; de Vincentiis, M.; Petrella, C.; Fiore, M.; Minni, A.; Barbato, C. Molecular pathology, oxidative stress, and biomarkers in obstructive sleep apnea. Int. J. Mol. Sci. 2023, 24, 5478. [Google Scholar] [CrossRef]
- Pecchillo Cimmino, T.; Ammendola, R.; Cattaneo, F.; Esposito, G. NOX dependent ROS generation and cell metabolism. Int. J. Mol. Sci. 2023, 24, 2086. [Google Scholar] [CrossRef]
- Nishino, T. The conversion of xanthine dehydrogenase to xanthine oxidase and the role of the enzyme in reperfusion injury. J. Biochem. 1994, 116, 1–6. [Google Scholar] [CrossRef]
- Meneshian, A.; Bulkley, G.B. The physiology of endothelial xanthine oxidase: From urate catabolism to reperfusion injury to inflammatory signal transduction. Microcirculation 2002, 9, 161–175. [Google Scholar] [CrossRef]
- Nanduri, J.; Vaddi, D.R.; Khan, S.A.; Wang, N.; Makerenko, V.; Prabhakar, N.R. Xanthine oxidase mediates hypoxia-inducible factor-2α degradation by intermittent hypoxia. PLoS ONE 2013, 8, e75838. [Google Scholar] [CrossRef]
- Nanduri, J.; Vaddi, D.R.; Khan, S.A.; Wang, N.; Makarenko, V.; Semenza, G.L.; Prabhakar, N.R. HIF-1α activation by intermittent hypoxia requires NADPH oxidase stimulation by xanthine oxidase. PLoS ONE 2015, 10, e0119762. [Google Scholar] [CrossRef]
- Nanduri, J.; Makarenko, V.; Reddy, V.D.; Yuan, G.; Pawar, A.; Wang, N.; Khan, S.A.; Zhang, X.; Kinsman, B.; Peng, Y.J.; et al. Epigenetic regulation of hypoxic sensing disrupts cardiorespiratory homeostasis. Proc. Natl. Acad. Sci. USA 2012, 109, 2515–2520. [Google Scholar] [CrossRef]
- Nanduri, J.; Semenza, G.L.; Prabhakar, N.R. Epigenetic changes by DNA methylation in chronic and intermittent hypoxia. Am. J. Physiol. Lung Cell. Mol. Physiol. 2017, 313, L1096–L1100. [Google Scholar] [CrossRef]
- Nanduri, J.; Peng, Y.J.; Wang, N.; Khan, S.A.; Semenza, G.L.; Kumar, G.K.; Prabhakar, N.R. Epigenetic regulation of redox state mediates persistent cardiorespiratory abnormalities after long-term intermittent hypoxia. J. Physiol. 2017, 595, 63–77. [Google Scholar] [CrossRef]
- Nanduri, J.; Peng, Y.J.; Wang, N.; Khan, S.A.; Semenza, G.L.; Prabhakar, N.R. DNA methylation in the central and efferent limbs of the chemoreflex requires carotid body neural activity. J. Physiol. 2018, 596, 3087–3100. [Google Scholar] [CrossRef]
- Morgan, A.E.; Davies, T.J.; Mc Auley, M.T. The role of DNA methylation in ageing and cancer. Proc. Nutr. Soc. 2018, 77, 412–422. [Google Scholar] [CrossRef]
- Emon, I.M.; Al-Qazazi, R.; Rauh, M.J.; Archer, S.L. The role of clonal hematopoiesis of indeterminant potential and DNA (cytosine-5)-methyltransferase dysregulation in pulmonary arterial hypertension and other cardiovascular diseases. Cells 2023, 12, 2528. [Google Scholar] [CrossRef]
- Kierans, S.J.; Taylor, C.T. Regulation of glycolysis by the hypoxia-inducible factor (HIF): Implications for cellular physiology. J. Physiol. 2021, 599, 23–37. [Google Scholar] [CrossRef]
- Chen, H.; Ma, D.; Yue, F.; Qi, Y.; Dou, M.; Cui, L.; Xing, Y. The potential role of hypoxia-inducible factor-1 in the progression and therapy of central nervous system diseases. Curr. Neuropharmacol. 2022, 20, 1651–1666. [Google Scholar] [CrossRef]
- Yuan, G.; Nanduri, J.; Khan, S.; Semenza, G.L.; Prabhakar, N.R. Induction of HIF-1α expression by intermittent hypoxia: Involvement of NADPH oxidase, Ca2+ signaling, prolyl hydroxylases, and mTOR. J. Cell. Physiol. 2008, 217, 674–685. [Google Scholar] [CrossRef]
- Peng, Y.J.; Yuan, G.; Ramakrishnan, D.; Sharma, S.D.; Bosch-Marce, M.; Kumar, G.K.; Semenza, G.L.; Prabhakar, N.R. Heterozygous HIF-1α deficiency impairs carotid body-mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia. J. Physiol. 2006, 577, 705–716. [Google Scholar] [CrossRef]
- Nanduri, J.; Wang, N.; Yuan, G.; Khan, S.A.; Souvannakitti, D.; Peng, Y.J.; Kumar, G.K.; Garcia, J.A.; Prabhakar, N.R. Intermittent hypoxia degrades HIF-2α via calpains resulting in oxidative stress: Implications for recurrent apnea-induced morbidities. Proc. Natl. Acad. Sci. USA 2009, 106, 1199–1204. [Google Scholar] [CrossRef]
- Nanduri, J.; Wang, N.; Wang, B.L.; Prabhakar, N.R. Lysine demethylase KDM6B regulates HIF-1α-mediated systemic and cellular responses to intermittent hypoxia. Physiol. Genom. 2021, 53, 385–394. [Google Scholar] [CrossRef]
- Yuan, G.; Nanduri, J.; Bhasker, C.R.; Semenza, G.L.; Prabhakar, N.R. Ca2+/calmodulin kinase-dependent activation of hypoxia inducible factor 1 transcriptional activity in cells subjected to intermittent hypoxia. J. Biol. Chem. 2005, 280, 4321–4328. [Google Scholar] [CrossRef]
- Prabhakar, N.R.; Kumar, G.K.; Nanduri, J. Intermittent hypoxia augments acute hypoxic sensing via HIF-mediated ROS. Respir. Physiol. Neurobiol. 2010, 174, 230–234. [Google Scholar] [CrossRef]
- Befani, C.; Liakos, P. The role of hypoxia-inducible factor-2 alpha in angiogenesis. J. Cell. Physiol. 2018, 233, 9087–9098. [Google Scholar] [CrossRef]
- Ema, M.; Taya, S.; Yokotani, N.; Sogawa, K.; Matsuda, Y.; Fujii-Kuriyama, Y. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1α regulates the VEGF expression and is potentially involved in lung and vascular development. Proc. Natl. Acad. Sci. USA 1997, 94, 4273–4278. [Google Scholar] [CrossRef]
- Ajith, T.A. Current insights and future perspectives of hypoxia-inducible factor-targeted therapy in cancer. J. Basic Clin. Physiol. Pharmacol. 2018, 30, 11–18. [Google Scholar] [CrossRef]
- Banecki, K.M.R.M.; Dora, K.A. Endothelin-1 in health and disease. Int. J. Mol. Sci. 2023, 24, 11295. [Google Scholar] [CrossRef]
- Chen, J.; He, L.; Dinger, B.; Stensaas, L.; Fidone, S. Role of endothelin and endothelin A-type receptor in adaptation of the carotid body to chronic hypoxia. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002, 282, L1314–L1323. [Google Scholar] [CrossRef]
- Rey, S.; Del Rio, R.; Iturriaga, R. Contribution of endothelin-1 to the enhanced carotid body chemosensory responses induced by chronic intermittent hypoxia. Brain Res. 2006, 1086, 152–159. [Google Scholar] [CrossRef]
- Peng, Y.J.; Nanduri, J.; Zhang, X.; Wang, N.; Raghuraman, G.; Seagard, J.; Kumar, G.K.; Prabhakar, N.R. Endothelin-1 mediates attenuated carotid baroreceptor activity by intermittent hypoxia. J. Appl. Physiol. 2012, 112, 187–196. [Google Scholar] [CrossRef]
- Pawar, A.; Nanduri, J.; Yuan, G.; Khan, S.A.; Wang, N.; Kumar, G.K.; Prabhakar, N.R. Reactive oxygen species-dependent endothelin signaling is required for augmented hypoxic sensory response of the neonatal carotid body by intermittent hypoxia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 296, R735–R742. [Google Scholar] [CrossRef]
- Hu, T.; Luan, R.; Zhang, H.; Lau, W.B.; Wang, Q.; Zhang, Y.; Wang, H.C.; Tao, L. Hydrogen peroxide enhances osteopontin expression and matrix metalloproteinase activity in aortic vascular smooth muscle cells. Clin. Exp. Pharmacol. Physiol. 2009, 36, 626–630. [Google Scholar] [CrossRef]
- Minchenko, A.; Caro, J. Regulation of endothelin-1 gene expression in human microvascular endothelial cells by hypoxia and cobalt: Role of hypoxia responsive element. Mol. Cell. Biochem. 2000, 208, 53–62. [Google Scholar] [CrossRef]
- Yamashita, K.; Discher, D.J.; Hu, J.; Bishopric, N.H.; Webster, K.A. Molecular regulation of the endothelin-1 gene by hypoxia. Contributions of hypoxia-inducible factor-1, activator protein-1, GATA-2, and p300/CBP. J. Biol. Chem. 2001, 276, 12645–12653. [Google Scholar] [CrossRef]
- Lam, S.Y.; Tipoe, G.L.; Liong, E.C.; Fung, M.L. Hypoxia-inducible factor (HIF)-1α and endothelin-1 expression in the rat carotid body during intermittent hypoxia. Adv. Exp. Med. Biol. 2006, 580, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Belaidi, E.; Joyeux-Faure, M.; Ribuot, C.; Launois, S.H.; Levy, P.; Godin-Ribuot, D. Major role for hypoxia inducible factor-1 and the endothelin system in promoting myocardial infarction and hypertension in an animal model of obstructive sleep apnea. J. Am. Coll. Cardiol. 2009, 53, 1309–1317. [Google Scholar] [CrossRef] [PubMed]
- Roe, K. An inflammation classification system using cytokine parameters. Scand. J. Immunol. 2021, 93, e12970. [Google Scholar] [CrossRef] [PubMed]
- Shih, R.H.; Wang, C.Y.; Yang, C.M. NF-kappaB signaling pathways in neurological inflammation: A mini review. Front. Mol. Neurosci. 2015, 8, 77. [Google Scholar] [CrossRef] [PubMed]
- Prabhakar, N.R.; Semenza, G.L. Oxygen sensing and homeostasis. Physiology 2015, 30, 340–348. [Google Scholar] [CrossRef]
- Hocker, A.D.; Stokes, J.A.; Powell, F.L.; Huxtable, A.G. The impact of inflammation on respiratory plasticity. Exp. Neurol. 2017, 287, 243–253. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Z.; Li, L.; Jiang, M.; Tang, Y.; Zhou, L.; Li, J.; Chen, Y. Sesamin inhibits hypoxia-stimulated angiogenesis via the NF-κB p65/HIF-1α/VEGFA signaling pathway in human colorectal cancer. Food Funct. 2022, 13, 8989–8997. [Google Scholar] [CrossRef]
- Bonello, S.; Zähringer, C.; BelAiba, R.S.; Djordjevic, T.; Hess, J.; Michiels, C.; Kietzmann, T.; Görlach, A. Reactive oxygen species activate the HIF-1α promoter via a functional NFκB site. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 755–761. [Google Scholar] [CrossRef]
- Görlach, A.; Bonello, S. The cross-talk between NF-κB and HIF-1: Further evidence for a significant liaison. Biochem. J. 2008, 412, e17–e19. [Google Scholar] [CrossRef]
- Rius, J.; Guma, M.; Schachtrup, C.; Akassoglou, K.; Zinkernagel, A.S.; Nizet, V.; Johnson, R.S.; Haddad, G.G.; Karin, M. NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature 2008, 453, 807–811. [Google Scholar] [CrossRef]
- Eltzschig, H.K.; Carmeliet, P. Hypoxia and inflammation. N. Engl. J. Med. 2011, 364, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Meier-Ewert, H.K.; Ridker, P.M.; Rifai, N.; Regan, M.M.; Price, N.J.; Dinges, D.F.; Mullington, J.M. Effect of sleep loss on C-reactive protein, an inflammatory marker of cardiovascular risk. J. Am. Coll. Cardiol. 2004, 43, 678–683. [Google Scholar] [CrossRef] [PubMed]
- Irwin, M.R.; Carrillo, C.; Olmstead, R. Sleep loss activates cellular markers of inflammation: Sex differences. Brain Behav. Immun. 2010, 24, 54–57. [Google Scholar] [CrossRef]
- Chang, R.C.; Chiu, K.; Ho, Y.S.; So, K.F. Modulation of neuroimmune responses on glia in the central nervous system: Implication in therapeutic intervention against neuroinflammation. Cell. Mol. Immunol. 2009, 6, 317–726. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.Y.; Liu, Y.; Ng, K.M.; Lau, C.F.; Liong, E.C.; Tipoe, G.L.; Fung, M.L. Chronic intermittent hypoxia induces local inflammation of the rat carotid body via functional upregulation of proinflammatory cytokine pathways. Histochem. Cell Biol. 2012, 137, 303–317. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, R.; Moya, E.A.; Parga, M.J.; Madrid, C.; Iturriaga, R. Carotid body inflammation and cardiorespiratory alterations in intermittent hypoxia. Eur. Respir. J. 2012, 39, 1492–1500. [Google Scholar] [CrossRef] [PubMed]
- Snyder, B.; Shell, B.; Cunningham, J.T.; Cunningham, R.L. Chronic intermittent hypoxia induces oxidative stress and inflammation in brain regions associated with early-stage neurodegeneration. Physiol. Rep. 2017, 5, e13258. [Google Scholar] [CrossRef]
- Oyarce, M.P.; Iturriaga, R. Proinflammatory cytokines in the nucleus of the solitary tract of hypertensive rats exposed to chronic intermittent hypoxia. Adv. Exp. Med. Biol. 2018, 1071, 69–74. [Google Scholar] [CrossRef]
- Del Rio, R.; Andrade, D.C.; Lucero, C.; Arias, P.; Iturriaga, R. Carotid body ablation abrogates hypertension and autonomic alterations induced by intermittent hypoxia in rats. Hypertension 2016, 68, 436–445. [Google Scholar] [CrossRef]
- Dempsey, J.A.; Veasey, S.C.; Morgan, B.J.; O’Donnell, C.P. Pathophysiology of sleep apnea. Physiol. Rev. 2010, 90, 47–112. [Google Scholar] [CrossRef]
- Guyenet, P.G. The sympathetic control of blood pressure. Nat. Rev. Neurosci. 2006, 7, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Shell, B.; Faulk, K.; Cunningham, J.T. Neural control of blood pressure in chronic intermittent hypoxia. Curr. Hypertens. Rep. 2016, 18, 19. [Google Scholar] [CrossRef] [PubMed]
- Caputo, I.; Bertoldi, G.; Driussi, G.; Cacciapuoti, M.; Calò, L.A. The RAAS goodfellas in cardiovascular system. J. Clin. Med. 2023, 12, 6873. [Google Scholar] [CrossRef] [PubMed]
- Grobe, J.L.; Xu, D.; Sigmund, C.D. An intracellular renin-angiotensin system in neurons: Fact, hypothesis, or fantasy. Physiology 2008, 23, 187–193. [Google Scholar] [CrossRef]
- Saxena, A.; Little, J.T.; Nedungadi, T.P.; Cunningham, J.T. Angiotensin II type 1a receptors in subfornical organ contribute towards chronic intermittent hypoxia-associated sustained increase in mean arterial pressure. Am. J. Physiol. Heart Circ. Physiol. 2015, 308, H435–H446. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.Q.; Schreihofer, A.M. Altered sympathetic reflexes and vascular reactivity in rats after exposure to chronic intermittent hypoxia. J. Physiol. 2011, 589, 1463–1476. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.Y.; Leung, P.S. A locally generated angiotensin system in rat carotid body. Regul. Pept. 2002, 107, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Leung, P.S.; Lam, S.Y.; Fung, M.L. Chronic hypoxia upregulates the expression and function of AT1 receptor in rat carotid body. J. Endocrinol. 2000, 167, 517–524. [Google Scholar] [CrossRef]
- Peng, Y.J.; Raghuraman, G.; Khan, S.A.; Kumar, G.K.; Prabhakar, N.R. Angiotensin II evokes sensory long-term facilitation of the carotid body via NADPH oxidase. J. Appl. Physiol. 2011, 111, 964–970. [Google Scholar] [CrossRef]
- Peng, Y.J.; Yuan, G.; Jacono, F.J.; Kumar, G.K.; Prabhakar, N.R. 5-HT evokes sensory long-term facilitation of rodent carotid body via activation of NADPH oxidase. J. Physiol. 2006, 576, 289–295. [Google Scholar] [CrossRef]
- Brooks, V.L.; Ell, K.R.; Wright, R.M. Pressure-independent baroreflex resetting produced by chronic infusion of angiotensin II in rabbits. Am. J. Physiol. 1993, 265, H1275–H1282. [Google Scholar] [CrossRef]
- Marcus, N.J.; Li, Y.L.; Bird, C.E.; Schultz, H.D.; Morgan, B.J. Chronic intermittent hypoxia augments chemoreflex control of sympathetic activity: Role of the angiotensin II type 1 receptor. Respir. Physiol. Neurobiol. 2010, 171, 36–45. [Google Scholar] [CrossRef]
- da Silva, A.Q.; Fontes, M.A.; Kanagy, N.L. Chronic infusion of angiotensin receptor antagonists in the hypothalamic paraventricular nucleus prevents hypertension in a rat model of sleep apnea. Brain Res. 2011, 1368, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, E.C.; Orolinova, N.; Bader, M. Blood pressure response to chronic episodic hypoxia: The renin-angiotensin system. J. Appl. Physiol. 2002, 92, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Knight, W.D.; Saxena, A.; Shell, B.; Nedungadi, T.P.; Mifflin, S.W.; Cunningham, J.T. Central losartan attenuates increases in arterial pressure and expression of FosB/ΔFosB along the autonomic axis associated with chronic intermittent hypoxia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 305, R1051–R1058. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Finn, L.; Zhang, J.; Young, T.; Mignot, E. Angiotensin-converting enzyme, sleep-disordered breathing, and hypertension. Am. J. Respir. Crit. Care Med. 2004, 170, 1349–1353. [Google Scholar] [CrossRef] [PubMed]
- Shimoura, C.G.; Andrade, M.A.; Toney, G.M. Central AT1 receptor signaling by circulating angiotensin II is permissive to acute intermittent hypoxia-induced sympathetic neuroplasticity. J. Appl. Physiol. 2020, 128, 1329–1337. [Google Scholar] [CrossRef]
- Shell, B.; Farmer, G.E.; Nedungadi, T.P.; Wang, L.A.; Marciante, A.B.; Snyder, B.; Cunningham, R.L.; Cunningham, J.T. Angiotensin type 1a receptors in the median preoptic nucleus support intermittent hypoxia-induced hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019, 316, R651–R665. [Google Scholar] [CrossRef]
- Kim, H.L. Arterial stiffness and hypertension. Clin. Hypertens. 2023, 29, 31. [Google Scholar] [CrossRef]
- Xiong, J.; Xia, M.; Yi, F.; Abais, J.M.; Li, N.; Boini, K.M.; Li, P.L. Regulation of renin release via cyclic ADP-ribose-mediated signaling: Evidence from mice lacking CD38 gene. Cell. Physiol. Biochem. 2013, 31, 44–55. [Google Scholar] [CrossRef]
- Takasawa, S.; Nata, K.; Yonekura, H.; Okamoto, H. Cyclic ADP-ribose in insulin secretion from pancreatic β cells. Science 1993, 259, 370–373. [Google Scholar] [CrossRef] [PubMed]
- Takasawa, S.; Akiyama, T.; Nata, K.; Kuroki, M.; Tohgo, A.; Noguchi, N.; Kobayashi, S.; Kato, I.; Katada, T.; Okamoto, H. Cyclic ADP-ribose and inositol 1,4,5-trisphosphate as alternate second messengers for intracellular Ca2+ mobilization in normal and diabetic β-cells. J. Biol. Chem. 1998, 273, 2497–2500. [Google Scholar] [CrossRef] [PubMed]
- Takasawa, S.; Kuroki, M.; Nata, K.; Noguchi, N.; Ikeda, T.; Yamauchi, A.; Ota, H.; Itaya-Hironaka, A.; Sakuramoto-Tsuchida, S.; Takahashi, I.; et al. A novel ryanodine receptor expressed in pancreatic islets by alternative splicing from type 2 ryanodine receptor gene. Biochem. Biophys. Res. Commun. 2010, 397, 140–145. [Google Scholar] [CrossRef]
- Galione, A.; Lee, H.C.; Busa, W.B. Ca2+-induced Ca2+ release in sea urchin egg homogenates: Modulation by cyclic ADP-ribose. Science 1991, 253, 1143–1146. [Google Scholar] [CrossRef] [PubMed]
- Galione, A. Cyclic ADP-ribose: A new way to control calcium. Science 1993, 259, 325–326. [Google Scholar] [CrossRef] [PubMed]
- Takasawa, S.; Tohgo, A.; Noguchi, N.; Koguma, T.; Nata, K.; Sugimoto, T.; Yonekura, H.; Okamoto, H. Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38 and inhibition of the hydrolysis by ATP. J. Biol. Chem. 1993, 268, 26052–26054. [Google Scholar] [CrossRef] [PubMed]
- Howard, M.; Grimaldi, J.C.; Bazan, J.F.; Lund, F.E.; Santos-Argumedo, L.; Parkhouse, R.M.; Walseth, T.F.; Lee, H.C. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science 1993, 262, 1056–1059. [Google Scholar] [CrossRef]
- Zocchi, E.; Franco, L.; Guida, L.; Benatti, U.; Bargellesi, A.; Malavasi, F.; Lee, H.C.; De Flora, A. A single protein immunologically identified as CD38 displays NAD+ glycohydrolase, ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase activities at the outer surface of human erythrocytes. Biochem. Biophys. Res. Commun. 1993, 196, 1459–1465. [Google Scholar] [CrossRef]
- Takasawa, S. CD38-cyclic ADP-ribose signal system in physiology, biochemistry, and pathophysiology. Int. J. Mol. Sci. 2022, 23, 4306. [Google Scholar] [CrossRef]
- Yi, F.; Zhang, A.Y.; Li, N.; Zhang, F.; Xia, M.; Li, P.L. Role of cyclic ADP-ribose-Ca2+ signaling in mediating renin production and release in As4.1 cells. Cell. Physiol. Biochem. 2007, 19, 293–302. [Google Scholar] [CrossRef]
- Walseth, T.F.; Lee, H.C. Synthesis and characterization of antagonists of cyclic-ADP-ribose-induced Ca2+ release. Biochim. Biophys. Acta 1993, 1178, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Takeda, Y.; Itaya-Hironaka, A.; Yamauchi, A.; Makino, M.; Sakuramoto-Tsuchida, S.; Ota, H.; Kawaguchi, R.; Takasawa, S. Intermittent hypoxia upregulates the Renin and Cd38 mRNAs in Renin-producing cells via the downregulation of miR-203. Int. J. Mol. Sci. 2021, 22, 10127. [Google Scholar] [CrossRef]
- Channer, B.; Matt, S.M.; Nickoloff-Bybel, E.A.; Pappa, V.; Agarwal, Y.; Wickman, J.; Gaskill, P.J. Dopamine, immunity, and disease. Pharmacol. Rev. 2023, 75, 62–158. [Google Scholar] [CrossRef] [PubMed]
- Elam, M.; Grassi, G. Adrenaline and hypertension: New evidence for a guilty verdict? J. Hypertens. 2000, 18, 675–677. [Google Scholar] [CrossRef]
- Takasawa, S.; Shobatake, R.; Takeda, Y.; Uchiyama, T.; Yamauchi, A.; Makino, M.; Sakuramoto-Tsuchida, S.; Asai, K.; Ota, H.; Itaya-Hironaka, A. Intermittent hypoxia increased the expression of DBH and PNMT in neuroblastoma cells via microRNA-375-mediated mechanism. Int. J. Mol. Sci. 2022, 23, 5868. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, M.G.; Nelesen, R.; Mills, P.; Ancoli-Israel, S.; Kennedy, B.; Dimsdale, J.E. Sleep apnea, norepinephrine-release rate, and daytime hypertension. Sleep 1997, 20, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Khurana, S.; Peng, S.; McDonald, E.; Yates, W.; Venkataraman, K.; Tai, T.C. Phenylethanolamine N-methyltransferase gene expression in PC12 cells exposed to intermittent hypoxia. Neurosci. Lett. 2018, 666, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Nurse, C.A.; Salman, S.; Scott, A.L. Hypoxia-regulated catecholamine secretion in chromaffin cells. Cell Tissue Res. 2018, 372, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Makarenko, V.V.; Peng, Y.J.; Khan, S.A.; Nanduri, J.; Fox, A.P.; Prabhakar, N.R. Long-term facilitation of catecholamine secretion from adrenal chromaffin cells of neonatal rats by chronic intermittent hypoxia. J. Neurophysiol. 2019, 122, 1874–1883. [Google Scholar] [CrossRef]
- Gridina, A.; Su, X.; Khan, S.A.; Peng, Y.J.; Wang, B.; Nanduri, J.; Fox, A.P.; Prabhakar, N.R. Gaseous transmitter regulation of hypoxia-evoked catecholamine secretion from murine adrenal chromaffin cells. J. Neurophysiol. 2021, 125, 1533–1542. [Google Scholar] [CrossRef] [PubMed]
- Kyotani, Y.; Takasawa, S.; Yoshizumi, M. Proliferative pathways of vascular smooth muscle cells by intermittent hypoxia. Int. J. Mol. Sci. 2019, 20, 2706. [Google Scholar] [CrossRef] [PubMed]
- Takasawa, S. Regenerating gene (REG) product and its potential clinical usage. Exp. Opin. Ther. Tergets 2016, 20, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Akiyama, T.; Nata, K.; Abe, M.; Tajima, M.; Shervani, N.J.; Unno, M.; Matsuno, S.; Sasaki, H.; Takasawa, S.; et al. Identification of a receptor for reg (regenerating gene) protein, a pancreatic β-cell regeneration factor. J. Biol. Chem. 2000, 275, 10723–10726. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, T.; Takasawa, S.; Nata, K.; Kobayashi, S.; Abe, M.; Shervani, N.J.; Ikeda, T.; Nakagawa, K.; Unno, M.; Matsuno, S.; et al. Activation of Reg gene, a gene for insulin-producing β-cell regeneration: Poly(ADP-ribose) polymerase binds Reg promoter and regulates the transcription by autopoly(ADP-ribosyl)ation. Proc. Natl. Acad. Sci. USA 2001, 98, 48–53. [Google Scholar] [CrossRef]
- Nakagawa, K.; Takasawa, S.; Nata, K.; Yamauchi, A.; Itaya-Hironaka, A.; Ota, H.; Yoshimoto, K.; Sakuramoto-Tsuchida, S.; Miyaoka, T.; Takeda, M.; et al. Prevention of Reg I-induced β-cell apoptosis by IL-6/dexamethasone through activation of HGF gene regulation. Biochim. Biophys. Acta 2013, 1833, 2988–2995. [Google Scholar] [CrossRef] [PubMed]
- Tohma, Y.; Dohi, Y.; Shobatake, R.; Uchiyama, T.; Takeda, M.; Takasawa, S.; Tanaka, Y.; Ohgushi, H. Reg gene expression in periosteum after fracture and its in vitro induction triggered by IL-6. Int. J. Mol. Sci. 2017, 18, 2257. [Google Scholar] [CrossRef] [PubMed]
- Takasawa, S.; Itaya-Hironaka, A.; Makino, M.; Yamauchi, A.; Sakuramoto-Tsuchida, S.; Uchiyama, T.; Shobatake, R.; Takeda, Y.; Ota, H. Upregulation of Reg IV and Hgf mRNAs by intermittent hypoxia via downregulation of microRNA-499 in cardiomyocytes. Int. J. Mol. Sci. 2022, 23, 12414. [Google Scholar] [CrossRef]
- Mészáros, L.G.; Bak, J.; Chu, A. Cyclic ADP-ribose as an endogenous regulator of the non-skeletal type ryanodine receptor Ca2+ channel. Nature 1993, 364, 76–79. [Google Scholar] [CrossRef]
- Yano, M.; Ono, K.; Ohkusa, T.; Suetsugu, M.; Kohno, M.; Hisaoka, T.; Kobayashi, S.; Hisamatsu, Y.; Yamamoto, T.; Kohno, M.; et al. Altered stoichiometry of FKBP12.6 versus ryanodine receptor as a cause of abnormal Ca2+ leak through ryanodine receptor in heart failure. Circulation 2000, 102, 2131–2136. [Google Scholar] [CrossRef]
- Wong, L.; Aarhusm, R.; Lee, H.C.; Walseth, T.F. Cyclic 3-deaza-adenosine diphosphoribose: A potent and stable analog of cyclic ADP-ribose. Biochim. Biophys. Acta 1999, 1472, 555–564. [Google Scholar] [CrossRef]
- Takasawa, S.; Makino, M.; Uchiyama, T.; Yamauchi, A.; Sakuramoto-Tsuchida, S.; Itaya-Hironaka, A.; Takeda, Y.; Asai, K.; Shobatake, R.; Ota, H. Downregulation of the Cd38-cyclic ADP-ribose signaling in cardiomyocytes by intermittent hypoxia via Pten upregulation. Int. J. Mol. Sci. 2022, 23, 8782. [Google Scholar] [CrossRef] [PubMed]
- Yazan, S.; Karakurt, H.; Püşüroğlu, H. Relationship between obstructive sleep apnea severity and serum endocan levels in patients with hypertension. Tex. Heart Inst. J. 2023, 50, e217664. [Google Scholar] [CrossRef] [PubMed]
- Takasawa, S.; Makino, M.; Yamauchi, A.; Sakuramoto-Tsuchida, S.; Hirota, R.; Fuji, R.; Asai, K.; Takeda, Y.; Uchiyama, T.; Shobatake, R.; et al. Intermittent hypoxia increased the expression of ESM1 and ICAM-1 in vascular endothelial cells via the downregulation of microRNA-181a1. J. Cell. Mol. Med. 2023; in press. [Google Scholar] [CrossRef] [PubMed]
- Deussen, A.; Kopaliani, I. Targeting inflammation in hypertension. Curr. Opin. Nephrol. Hypertens. 2023, 32, 111–117. [Google Scholar] [CrossRef]
- Susick, L.; Veluthakal, R.; Suresh, M.V.; Hadden, T.; Kowluru, A. Regulatory roles for histone deacetylation in IL-β-induced nitric oxide release in pancreatic β-cells. J. Cell. Mol. Med. 2008, 12, 1571–1583. [Google Scholar] [CrossRef]
- Takasawa, S.; Shobatake, R.; Itaya-Hironaka, A.; Makino, M.; Uchiyama, T.; Sakuramoto-Tsuchida, S.; Takeda, Y.; Ota, H.; Yamauchi, A. Upregulation of IL-8, osteonectin, and myonectin mRNAs by intermittent hypoxia via OCT1- and NRF2-mediated mechanisms in skeletal muscle cells. J. Cell. Mol. Med. 2022, 26, 6019–6031. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takeda, Y.; Kimura, F.; Takasawa, S. Possible Molecular Mechanisms of Hypertension Induced by Sleep Apnea Syndrome/Intermittent Hypoxia. Life 2024, 14, 157. https://doi.org/10.3390/life14010157
Takeda Y, Kimura F, Takasawa S. Possible Molecular Mechanisms of Hypertension Induced by Sleep Apnea Syndrome/Intermittent Hypoxia. Life. 2024; 14(1):157. https://doi.org/10.3390/life14010157
Chicago/Turabian StyleTakeda, Yoshinori, Fuminori Kimura, and Shin Takasawa. 2024. "Possible Molecular Mechanisms of Hypertension Induced by Sleep Apnea Syndrome/Intermittent Hypoxia" Life 14, no. 1: 157. https://doi.org/10.3390/life14010157
APA StyleTakeda, Y., Kimura, F., & Takasawa, S. (2024). Possible Molecular Mechanisms of Hypertension Induced by Sleep Apnea Syndrome/Intermittent Hypoxia. Life, 14(1), 157. https://doi.org/10.3390/life14010157