Alloplastic Epidermal Skin Substitute in the Treatment of Burns
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Burn Wound Management
3.2. Properties of the Epidermal Substitute
3.3. Review of the Literature on Epidermal Skin Substitutes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atiyeh, B.S.; Gunn, S.W.; Hayek, S.N. State of the Art in Burn Treatment. Mol. Med. 2005, 29, 131–148. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.C.; Paggiaro, A.O.; Isaac, C.; Teixeira Neto, N.; Santos, G.B. Skin substitutes: Current concepts and a new classification system. Rev. Bras. Cir. Plast. 2011, 26, 696–702. [Google Scholar] [CrossRef]
- Evers, L.H.; Bhavsar, D.; Mailänder, P. The biology of burn injury. Exp. Dermatol. 2010, 19, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Surowiecka, A.; Strużyna, J.; Winiarska, A.; Korzeniowski, T. Hydrogels in Burn Wound Management—A Review. Gels 2022, 8, 122. [Google Scholar] [CrossRef]
- Żwierełło, W.; Piorun, K.; Skórka-Majewicz, M.; Maruszewska, A.; Antoniewski, J.; Gutowska, I. Burns: Classification, Pathophysiology, and Treatment: A Review. Int. J. Mol. Sci. 2023, 24, 3749. [Google Scholar] [CrossRef]
- Rosenberg, L.; Krieger, Y.; Bogdanov-Berezovski, A.; Silberstein, E.; Shoham, Y.; Singer, A.J. A novel rapid and selective enzymatic debridement agent for burn wound management: A multi-center RCT. Burns 2014, 40, 466–474. [Google Scholar] [CrossRef]
- Rowan, M.P.; Cancio, L.C.; Elster, E.A.; Burmeister, D.M.; Rose, L.F.; Natesan, S.; Chan, R.K.; Christy, R.J.; Chung, K.K. Burn wound healing and treatment: Review and advancements. Crit. Care 2015, 19, 243. [Google Scholar] [CrossRef]
- Szymański, K.; Waś, J. The potential for healing and regeneration of skin in extensive burn wounds using skin regenerating substitutes. Leczenie Ran 2014, 11, 11–20. [Google Scholar] [CrossRef]
- Korzeniowski, T.; Strużyna, J.; Chrapusta, A.M.; Krajewski, A.; Kucharzewski, M.; Piorun, K.; Nowakowski, J.; Surowiecka, A.; Kozicka, M.; Torres, K. A Questionnaire-Based Study to Obtain a Consensus from 5 Polish Burns Centers on Eschar Removal by Bromelain-Based Enzymatic Debridement (Nexobrid®) in Burns Following the 2020 Updated European Consensus Guidelines. J. Pharmacol. Exp. Ther. 2022, 28, e935632. [Google Scholar] [CrossRef]
- Shoham, Y.; Krieger, Y.; Rubin, G.; Koenigs, I.; Hartmann, B.; Sander, F.; Schulz, A.; David, K.; Rosenberg, L.; Silberstein, E. Rapid enzymatic burn debridement: A review of the paediatric clinical trial experience. Int. Wound J. 2020, 17, 1337–1345. [Google Scholar] [CrossRef]
- Nessler, M.; Chrapusta, A. The use of xenogenic skin substitutes in burns treatment—Literature review. Leczenie Ran 2013, 10, 47–52. [Google Scholar] [CrossRef]
- Uhlig, C.; Rapp, M.; Hartmann, B.; Hierlemann, H.; Planck, H.; Dittel, K.-K. Suprathel®—An innovative, resorbable skin substitute for the treatment of burn victims. Burns 2007, 33, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Mądry, R.; Strużyna, J. The application of silver dressing in the treatment of burns, frostbites, Lyell’s sydrome and chronic wounds. Chir. Plast. Oparzenia 2020, 8, 115–122. [Google Scholar] [CrossRef]
- Sierawska, O.; Małkowska, P.; Taskin, C.; Hrynkiewicz, R.; Mertowska, P.; Grywalska, E.; Korzeniowski, T.; Torres, K.; Surowiecka, A.; Niedźwiedzka-Rystwej, P.; et al. Innate Immune System Response to Burn Damage—Focus on Cytokine Alteration. Int. J. Mol. Sci. 2022, 23, 716. [Google Scholar] [CrossRef] [PubMed]
- Korzeniowski, T.; Mertowska, P.; Mertowski, S.; Podgajna, M.; Grywalska, E.; Strużyna, J.; Torres, K. The Role of the Immune System in Pediatric Burns: A Systematic Review. J. Clin. Med. 2022, 11, 2262. [Google Scholar] [CrossRef] [PubMed]
- Wasiak, J.; Cleland, H.; Campbell, F.; Spinks, A. Dressings for superficial and partial thickness burns. Cochrane Database Syst. Rev. 2013, 2013, CD002106. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Tan, Z.; Zhang, C.; Fu, X. Mesenchymal stem cells for sweat gland regeneration after burns: From possibility to reality. Burns 2015, 42, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Daar, A.S.; Greenwood, H.L. A proposed definition of regenerative medicine. J. Tissue Eng. Regen. Med. 2007, 1, 179–184. [Google Scholar] [CrossRef]
- Huang, L.; Burd, A. An update review of stem cell applications in burns and wound care. Indian J. Plast. Surg. 2012, 45, 229–236. [Google Scholar] [CrossRef]
- Nuutila, K. Hair Follicle Transplantation for Wound Repair. Adv. Wound Care 2021, 10, 153–163. [Google Scholar] [CrossRef]
- Xiao, T.; Yan, Z.; Xiao, S.; Xia, Y. Proinflammatory cytokines regulate epidermal stem cells in wound epithelialization. Stem Cell Res. Ther. 2020, 11, 232. [Google Scholar] [CrossRef]
- Elloso, M.; Kambli, A.; Aijaz, A.; van de Kamp, A.; Jeschke, M.G. Burns in the Elderly: Potential Role of Stem Cells. Int. J. Mol. Sci. 2020, 21, 4604. [Google Scholar] [CrossRef]
- Surowiecka, A.; Chrapusta, A.; Klimeczek-Chrapusta, M.; Korzeniowski, T.; Drukała, J.; Strużyna, J. Mesenchymal Stem Cells in Burn Wound Management. Int. J. Mol. Sci. 2022, 23, 15339. [Google Scholar] [CrossRef]
- Surowiecka, A.; Stendel, O.; Struzyna, J. Mesenchymal stem cells in the treatment of deep burns—A future vision or a myth? Chir. Plast. Oparzenia 2021, 9, 87–91. [Google Scholar] [CrossRef]
- Xiong, S.; Yi, C.; Pu, L.L. An Overview of Principles and New Techniques for Facial Fat Grafting. Clin. Plast. Surg. 2019, 47, 7–17. [Google Scholar] [CrossRef]
- Chen, A.; Zhang, L.; Chen, P.; Zhang, C.; Tang, S.; Chen, X. Comparison of the Efficacy and Safety of Cell-Assisted Lipotransfer and Platelet-Rich Plasma Assisted Lipotransfer: What Should We Expect from a Systematic Review with Meta-Analysis? Cell Transplant. 2021, 30, 963689721989607. [Google Scholar] [CrossRef]
- Park, B.-S.; Jang, K.A.; Sung, J.-H.; Park, J.-S.; Kwon, Y.H.; Kim, K.J.; Kim, W.-S. Adipose-Derived Stem Cells and Their Secretory Factors as a Promising Therapy for Skin Aging. Dermatol. Surg. 2008, 34, 1323–1326. [Google Scholar]
- Suh, A.; Pham, A.; Cress, M.J.; Pincelli, T.; TerKonda, S.P.; Bruce, A.J.; Zubair, A.C.; Wolfram, J.; Shapiro, S.A. Adipose-derived cellular and cell-derived regenerative therapies in dermatology and aesthetic rejuvenation. Ageing Res. Rev. 2019, 54, 100933. [Google Scholar] [CrossRef]
- Kim, S.Y.; Nair, M.G. Macrophages in wound healing: Activation and plasticity. Immunol. Cell Biol. 2019, 97, 258–267. [Google Scholar] [CrossRef]
- Finnerty, C.C.; The Investigators of the Inflammation and the Host Response Glue Grant; Jeschke, M.G.; Herndon, D.N.; Gamelli, R.; Gibran, N.; Klein, M.; Silver, G.; Arnoldo, B.; Remick, D.; et al. Temporal Cytokine Profiles in Severely Burned Patients: A Comparison of Adults and Children. Mol. Med. 2008, 14, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chaudry, I.H.; Choudhry, M.A. ERK and not p38 pathway is required for IL-12 restoration of T cell IL-2 and IFN-gamma in a rodent model of alcohol intoxication and burn injury. J. Immunol. 2009, 183, 3955–3962. [Google Scholar] [CrossRef] [PubMed]
- Holl, J.; Kowalewski, C.; Zimek, Z.; Fiedor, P.; Kaminski, A.; Oldak, T.; Moniuszko, M.; Eljaszewicz, A. Chronic Diabetic Wounds andTheir Treatment with Skin Substitutes. Cells 2021, 10, 655. [Google Scholar] [CrossRef] [PubMed]
- Junker, J.P.; Kamel, R.A.; Caterson, E.; Eriksson, E.; Nuutila, K.; Patil, P.S.; Fathollahipour, S.; Inmann, A.; Pant, A.; Amini, R.; et al. Clinical Impact Upon Wound Healing and Inflammation in Moist, Wet, and Dry Environments. Adv. Wound Care 2013, 2, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Roshangar, L.; Rad, J.S.; Kheirjou, R.; Ranjkesh, M.R.; Khosroshahi, A.F. Skin Burns: Review of Molecular Mechanisms and Therapeutic Approaches. Wounds Compend. Clin. Res. Pract. 2019, 31, 308–315. [Google Scholar]
- Jones, V.; Grey, J.E.; Harding, K.G. Wound dressings. BMJ 2006, 332, 777–780. [Google Scholar] [CrossRef] [PubMed]
- Oualla-Bachiri, W.; Fernández-González, A.; Quiñones-Vico, M.I.; Arias-Santiago, S. From Grafts to Human Bioengineered Vascularized Skin Substitutes. Int. J. Mol. Sci. 2020, 21, 8197. [Google Scholar] [CrossRef] [PubMed]
- Bay, C.; Chizmar, Z.; Reece, E.M.; Yu, J.Z.; Winocour, J.; Vorstenbosch, J.; Winocour, S. Comparison of Skin Substitutes for Acute and Chronic Wound Management. Semin. Plast. Surg. 2021, 35, 171–180. [Google Scholar] [CrossRef]
- Salloum, A.; Bazzi, N.; Squires, S.; Chu, T.; Benedetto, P.; Benedetto, A. Comparing the application of various engineered xenografts for skin defects: A systematic review. J. Cosmet. Dermatol. 2022, 22, 921–931. [Google Scholar] [CrossRef]
- Tuleubayev, B.; Ogay, V.; Anapiya, B.; Zhylkibayev, A.; Saginova, D.; Koshanova, A.; Kurmangaliyev, Y.-D.; Tezekbayev, K.; Bikonurov, N.; Abugaliyev, K. Therapeutic Treatment of 2A Grade Burns with Decellularized Bovine Peritoneum as a Xenograft: Multicenter Randomized Clinical Trial. Medicina 2022, 58, 819. [Google Scholar] [CrossRef]
- Miranda, M.J.B.; Brandt, C.T. Nile tilapia skin xenograft versus silver-based hydrofiber dressing in the treatment of second-degree burns in adults. Rev. Bras. Cir. Plást. 2019, 34, 79–85. [Google Scholar] [CrossRef]
- Lima-Junior, E.M.; Filho, M.O.d.M.; Costa, B.A.; Fechine, F.V.; de Moraes, M.E.A.; Silva-Junior, F.R.; Soares, M.F.A.D.N.; Rocha, M.B.S.; Leontsinis, C.M.P. Innovative treatment using tilapia skin as a xenograft for partial thickness burns after a gunpowder explosion. J. Surg. Case Rep. 2019, 2019, rjz181. [Google Scholar] [CrossRef]
- Schlottmann, F.; Bucan, V.; Vogt, P.M.; Krezdorn, N. A Short History of Skin Grafting in Burns: From the Gold Standard of Autologous Skin Grafting to the Possibilities of Allogeneic Skin Grafting with Immunomodulatory Approaches. Medicina 2021, 57, 225. [Google Scholar] [CrossRef]
- Kitala, D.; Łabuś, W.; Klama-Baryła, A.; Kraut, M.; Maj, M.; Szapski, M. Application of Amniotic Stem Cells on an Acellular Dermal Matrix Scaffold in a Burned Patient: A Case Report. Transplant. Proc. 2020, 52, 2563–2569. [Google Scholar] [CrossRef]
- Akbar, A.; Kazem, M. How Does Human Amniotic Membrane Help Major Burn Patients Who Need Skin Grafting: New Experiences. In Skin Grafts—Indications, Applications and Current Research; InTech: London, UK, 2011. [Google Scholar]
- Vyas, K.S.; Vasconez, H.C. Wound Healing: Biologics, Skin Substitutes, Biomembranes and Scaffolds. Healthcare 2014, 2, 356–400. [Google Scholar] [CrossRef]
- Eldad, A.; Tuchman, I. The use of Omiderm® as an interface for skin grafting. Burns 1991, 17, 155–158. [Google Scholar] [CrossRef]
- Golan, J.; Eldad, A.; Rudensky, B.; Tuchman, Y.; Sterenberg, N.; Ben-Hur, N.; Behar, D.; Juszynski, M. A new temporary synthetic skin substitute. Burns 1985, 11, 274–280. [Google Scholar] [CrossRef]
- O’Connor, N.; Mulliken, J.; Banks-Schlegel, S.; Kehinde, O.; Green, H. Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet 1981, 1, 75–78. [Google Scholar] [CrossRef]
- ter Horst, B.; Chouhan, G.; Moiemen, N.S.; Grover, L.M. Advances in keratinocyte delivery in burn wound care. Adv. Drug Deliv. Rev. 2018, 123, 18–32. [Google Scholar] [CrossRef]
- Karlsson, M.; Steinvall, I.; Olofsson, P.; Thorfinn, J.; Sjöberg, F.; Åstrand, L.; Fayiz, S.; Khalaf, A.; Divyasree, P.; El-Serafi, A.T.; et al. Sprayed cultured autologous keratinocytes in the treatment of severe burns: A retrospective matched cohort study. Ann. Burn. Fire Disasters 2020, 33, 134–142. [Google Scholar]
- Chrapusta, A.; Nessler, M.B.; Drukala, J.; Bartoszewicz, M.; Mądry, R. A comparative analysis of advanced techniques for skin reconstruction with autologous keratinocyte culture in severely burned children: Own experience. Adv. Dermatol. Allergol. 2014, 31, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Schwarze, H.; Küntscher, M.; Uhlig, C.; Hierlemann, H.; Prantl, L.; Noack, N.; Hartmann, B. Suprathel®, a new skin substitute, in the management of donor sites of split-thickness skin grafts: Results of a clinical study. Burns 2007, 33, 850–854. [Google Scholar] [CrossRef]
- Shores, J.T.; Gabriel, A.; Gupta, S. Skin substitutes and alternatives: A review. Adv. Skin. Wound Care. 2007, 20 Pt 1, 493–508. [Google Scholar] [CrossRef]
- Rashaan, Z.M.; Krijnen, P.; Allema, J.H.; Vloemans, A.F.; Schipper, I.B.; Breederveld, R.S. Usability and effectiveness of Suprathel® in partial thickness burns in children. Eur. J. Trauma Emerg. Surg. 2016, 43, 549–556. [Google Scholar] [CrossRef]
- Vacaras, S.; Baciut, G.; Gheban, D.; Bran, S.; Colosi, H.; Toader, S.; Opris, D.; Kretschmer, W.; Manea, A.; Armencea, G.; et al. Engaging a polylactide copolymer in oral tissue regeneration: First validation of Suprathel® for guided epithelial and osseous healing. J. Med. Life 2021, 14, 181–197. [Google Scholar] [CrossRef]
- Amecke, B.; Bendix, D.; Entenmann, G. Resorbable polyesters: Composition, properties, applications. Clin. Mater. 1992, 10, 47–50. [Google Scholar] [CrossRef]
- Zieker, D.; Schäfer, R.; Glatzle, J.; Nieselt, K.; Coerper, S.; Kluba, T.; Northoff, H.; Königsrainer, A.; Hunt, T.K.; Beckert, S. Lactate modulates gene expression in human mesenchymal stem cells. Langenbecks Arch. Surg. 2008, 393, 297–301. [Google Scholar] [CrossRef]
- Oh, S.; Lee, J.H.; Kim, H.M.; Batsukh, S.; Sung, M.J.; Lim, T.H.; Lee, M.H.; Son, K.H.; Byun, K. Poly-L-Lactic Acid Fillers Improved Dermal Collagen Synthesis by Modulating M2 Macrophage Polarization in Aged Animal Skin. Cells 2023, 12, 1320. [Google Scholar] [CrossRef]
- Wagner, S.; Hussain, M.Z.; Hunt, T.K.; Bacic, B.; Becker, H.D. Stimulation of fibroblast proliferation by lactate-mediated oxidants. Wound Repair. Regen. 2004, 12, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Gholipour-Kanani, A.; Mohsenzadegan, M.; Fayyazi, M.; Bahrami, H.; Samadikuchaksaraei, A. Poly (ɛ-caprolactone)-chitosan-poly (vinyl alcohol) nanofibrous scaffolds for skin excisional and burn wounds in a canine model. IET Nanobiotechnol. 2018, 12, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, D.; Ziegler, K.; Wollina, U. EIectrical impedance and transepidermal water loss of healthy human skin under different conditions. Ski. Res. Technol. 1998, 4, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, H.; Kinoshita, M.; Saito, A.; Fujie, T.; Kabata, K.; Hara, E.; Ono, S.; Takeoka, S.; Saitoh, D. An ultrathin poly(l-lactic acid) nanosheet as a burn wound dressing for protection against bacterial infection. Wound Repair. Regen. 2012, 20, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Zhou, M.; Chen, Y.; Lu, K.; Zhang, Z.; Mu, Y.; He, Z. A New Self-Healing Degradable Copolymer Based on Polylactide and Poly(p-dioxanone). Molecules 2023, 28, 4021. [Google Scholar] [CrossRef] [PubMed]
- Mądry, R.; Strużyna, J.; Charytonowicz, D.; Charytonowicz, M.; Bugaj, M.; Antonov, S.; Chrapusta, A.; Krajewski, A. Treatment of frostbites—Effectiveness of dermal substitute application on frostbite wounds—A case report). Chir. Plast. Oparzenia/Plast. Surg. Burn. 2014, 2, 27–39. [Google Scholar] [CrossRef]
- Lindford, A.J.; Kaartinen, I.S.; Virolainen, S.; Vuola, J. Comparison of Suprathel® and allo- graft skin in the treatment of a severe case of toxic epidermal necrolysis. Burns 2011, 37, e67–e72. [Google Scholar] [CrossRef]
- Keck, M.; Selig, H.F.; Lumenta, D.B.; Kamolz, L.P.; Mittlböck, M.; Frey, M. The use of Supra- thel(®) in deep dermal burns: First results of a prospective study. Burns 2012, 38, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Galati, V.; Vonthein, R.; Stang, F.; Mailaender, P.; Kisch, T. Split thickness skin graft versus application of the temporary skin substitute suprathel in the treatment of deep dermal hand burns: A retrospective cohort study of scar elasticity and perfusion. Int. J. Burn. Trauma 2021, 11, 312–320. [Google Scholar]
- Sari, E.; Eryilmaz, T.; Tetik, G.; Ozakpinar, H.R.; Eker, E. Suprathel(®)—Assisted surgical treatment of the hand in a dystrophic epidermolysis bullosa patient. Int. Wound J. 2014, 11, 472–475. [Google Scholar] [CrossRef]
- Kaartinen, I.S.; Kuokkanen, H.O. Suprathel® causes less bleeding and scarring than Mepilex® Transfer in the treatment of donor sites of split-thickness skin grafts. J. Plast. Surg. Hand Surg. 2011, 45, 200–203. [Google Scholar] [CrossRef]
- Schiefer, J.L.; Aretz, G.F.; Fuchs, P.C.; Bagheri, M.; Funk, M.; Schulz, A.; Daniels, M. Comparison of wound healing and patient comfort in partial-thickness burn wounds treated with SUPRATHEL and epictehydro wound dressings. Int. Wound J. 2022, 19, 782–790. [Google Scholar] [CrossRef]
- Haller, H.L.; Blome-Eberwein, S.E.; Branski, L.K.; Carson, J.S.; Crombie, R.E.; Hickerson, W.L.; Kamolz, L.P.; King, B.T.; Nischwitz, S.P.; Popp, D.; et al. Porcine Xenograft and Epidermal Fully Synthetic Skin Substitutes in the Treatment of Partial-Thickness Burns: A Literature Review. Medicina 2021, 57, 432. [Google Scholar] [CrossRef]
- Ryssel, H.; Germann, G.; Riedel, K.; Reichenberger, M.; Hellmich, S.; Kloeters, O. Suprathel-acetic acid matrix versus acticoat and aquacel as an antiseptic dressing: An in vitro study. Ann. Plast. Surg. 2010, 65, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Schriek, K.; Ott, H.; Sinnig, M. Paradigm Shift in Treatment Strategies for Second-Degree Burns Using a Caprolactone Dressing (Suprathel®)? A 15-Year Pediatric Burn Center Experience in 2084 Patients. Eur. Burn J. 2022, 3, 1–9. [Google Scholar] [CrossRef]
- Karlsson, M.; Steinvall, I.; Elmasry, M. Suprathel® or Mepilex® Ag for treatment of partial thickness burns in children: A case control study. Burns 2023, 49, 1585–1591. [Google Scholar] [CrossRef] [PubMed]
- Miguel-Ferrero, M.; Delgado-Miguel, C.; Díaz, M.; López-Gutiérrez, J.C. Toxic epidermal necrolysis management with suprathel™. An. Pediatría 2023, 99, 449–450. [Google Scholar] [CrossRef]
- Iqbal, T.; Ali, U.; Iqbal, Z.; Fatima, Z.J.; Rehan, M.; Khan, M.S. Role of Suprathel in Dermal Burns in Children. Emerg. Med. Investig. 2018, 6, 2–5. [Google Scholar] [CrossRef]
- Rothenberger, J.; Constantinescu, M.A.; Held, M.; Aebersold, D.M.; Stolz, A.; Tschumi, C.; Olariu, R. Use of a Polylactide-based Copolymer as a Temporary Skin Substitute for a Patient with Moist Desquamation Due to Radiation. Wounds 2016, 28, E26–E30. [Google Scholar] [PubMed]
- Mądry, R.; Strużyna, J.; Stachura, A.; Drozd, Ł.; Bugaj, M. Effectiveness of Suprathel® Application in Partial Thickness Burns, Frostbites and Lyell Syndrome Treatment. Przeg. Chir. 2011, 83, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Schiefer, J.L.; Andreae, J.; Fuchs, P.C.; Lefering, R.; Heidekrueger, P.I.; Schulz, A.; Bagheri, M. Evaluation of Scar Quality after Treatment of Superficial Burns with Dressilk® and Suprathel®—In an Intraindividual Clinical Setting. J. Clin. Med. 2022, 11, 2857. [Google Scholar] [CrossRef]
- Vloemans, A.; Hermans, M.; van der Wal, M.; Liebregts, J.; Middelkoop, E. Optimal treatment of partial thickness burns in children: A systematic review. Burns 2014, 40, 177–190. [Google Scholar] [CrossRef]
- Korzeniowski, T.; Grywalska, E.; Strużyna, J.; Bugaj-Tobiasz, M.; Surowiecka, A.; Korona-Głowniak, I.; Staśkiewicz, M.; Torres, K. Preliminary Single-Center Experience of Bromelain-Based Eschar Removal in Children with Mixed Deep Dermal and Full Thickness Burns. J. Clin. Med. 2022, 11, 4800. [Google Scholar] [CrossRef]
- Heitzmann, W.; Mossing, M.; Fuchs, P.C.; Akkan, J.; Seyhan, H.; Grieb, G.; Opländer, C.; Schiefer, J.L. Comparative Clinical Study of Suprathel® and Jelonet® Wound Dressings in Burn Wound Healing after Enzymatic Debridement. Biomedicines 2023, 11, 2593. [Google Scholar] [CrossRef] [PubMed]
Study | Study Type | Dressing Activity | Patients and Methods | Outcomes |
---|---|---|---|---|
Suprathel®-an innovative, resorbable skin substitute for the treatment of burn victims [12] | Randomized | Reducing pain symptoms | Comparison of Suprathel® with paraffin gauze applied to the donor fields after harvesting split-thickness skin grafts and Suprathel® with Omiderm® (Omikron Scientific Ltd., Rehovot, Israel) used on partial-thickness burns. | Suprathel® significantly reduced pain. |
Treatment of frostbites—effectiveness of dermal substitute application on frostbite wounds—a case report [64] | Case study | Supporting epidermalization | Suprathel was used in 21 patients including patients with burn wounds, frostbites and with Lyell’s syndrome. | Suprathel seems to be a good dressing that can per- form the function of a temporary epidermal substitute in partial-thickness burns and frostbites, and in Lyell’s syndrome. |
Comparison of Suprathel® and allograft skin in the treatment of a severe case of toxic epidermal necrolysis [65] | Case report | Wound healing | A 17-year-old female with a diagnosis of TEN with blistering and epidermal separation affecting 80% of the total body surface area (TBSA). | Significantly reduced exudation with the Suprathel®-treated areas, which led to fewer dressing changes, less pain and quicker healing time in contrast to the allograft. |
The use of Suprathel® in deep dermal burns: first results of a prospective study [66] | Prospective | Scar formation | 18 patients with deep dermal burn wounds underwent tangential excision and the wounds matched deep-partial-thickness areas were covered with 0.1 mm STSGs and Suprathel®. | The total Patient Scare Scale of Suprathel areas were similar to the STSG areas and the POSAS showed not to be less for Suprathel compared to STSG. Moreover, patients evaluated Suprathel scars to be less stiff and less different in height. |
Split thickness skin graft versus application of the temporary skin substitute suprathel in the treatment of deep dermal hand burns: a retrospective cohort study of scar elasticity and perfusion [67] | Prospective | Scar formation | A case series of 80 patients with deep dermal hand burns was examined. | Analysis gave similar results. |
Suprathel®-assisted surgical treatment of the hand in a dystrophic epidermolysis bullosa patient [68] | Case report | Wound healing | The use of Suprathel after degloving in a 14-year-old boy with EB undergoing surgery due to hand contractures. | Almost complete epidermalization was observed within one week after surgery |
Suprathel® causes less bleeding and scarring than Mepilex® (Mölnlycke Health Care AB, Göteborg, Sweden) Transfer in the treatment of donor sites of split-thickness skin grafts [69] | Comparison | Wound healing, scar formation | 22 donor sites were examined, each covered side by side with Suprathel® and Mepilex®. | Significantly less pain and bleeding was associated with Suprathel® treatment compared with Mepilex® and Suprathel produced a better scar. |
Comparison of wound healing and patient comfort in partial-thickness burn wounds treated with SUPRATHEL and epictehydro wound dressings [70] | Comparison | Wound healing | 20 patients aged 18 to 75 years who sustained partial- thickness flame, scald, or contact burns with more than 0.5% of their total body surface area. | Interestingly, both dressings showed similar results and can be used alternatively. |
Porcine Xenograft and Epidermal Fully Synthetic Skin Substitutes in the Treatment of Partial-Thickness Burns: A Literature Review [71] | Literature Review | Wound healing | Sixteen Suprathel® and 12 porcine xenograft studies were included. | Suprathel® appears to enable wound healing better than PX and reduces burn wound progression. |
Suprathel-acetic acid matrix versus acticoat and aquacel as an antiseptic dressing: an in vitro study [72] | Experimental | Antibacterial | The dressings were put on top of the agar plate with superimposed bacterial cultures from the burn unit. | Suprathel® showed an excellent bactericidal effect superior to that of Acticoat® (Smith & Nephew, Watford, UK) and Aquacel® ( ConvaTec, Princeton, NJ, USA). |
Paradigm Shift in Treatment Strategies for Second- Degree Burns Using a Caprolactone Dressing (Suprathel®)? A 15-Year Pediatric Burn Center Experience in 2084 Patients [73] | Retrospective | Wound healing | The group of 2084 pediatric patients suffering from mixed superficial and deep dermal second-degree burns who treated caprolactone membranes | Less need for skin grafts (15.69%) and fewer procedures required to be performed under general anesthesia (54.35%) compared to alternative dressing materials. |
Suprathel® or Mepilex® Ag for treatment of partial thickness burns in children: A case control study [74] | Retrospective | Wound healing | Assessment of healing time, burn wound infection (BWI), need for surgery, and number of dressing changes in 58 children treated with Suprathel® or Mepilex® Ag. | No significant differences were found in any of the outcomes. |
Toxic epidermal necrolysis management with Suprathel® [75]. | Case report | Wound healing | 4-year-old boy with a diagnosis of TEN. | Acceleration of wound healing and epithelialization was observed |
Usability and effectiveness of Suprathel® in partial thickness burns in children [54] | Prospective | Wound healing, scar formation | Evaluation adherence of Suprathel® to the wound bed, re-epithelialization time, grafting, wound colonization and infection, pain, dressing changes, length of hospital stay (LOS), and scar formation. | Suprathel® provides potential pain relief and scarring benefits, but extensive wound debridement is required before dressing is applied. |
Role of Suprathel® in Dermal Burns in Children [76] | Retrospective | Wound healing | 65 children (25 females, 40 males: mean age 4.9 years, range 04 months to 11 years) with dermal burns were treated with Suprathel. | Suprathel is a useful skin alternative for dealing with deep dermal and mid-dermal burns in children. |
Use of a Polylactide-based Copolymer as a Temporary Skin Substitute for a Patient With Moist Desquamation Due to Radiation [77] | Case report | Wound healing | The use of a polylactide-based copolymer for covering the skin defects of a patient with moist desquamation due to radiation. | Aplication of polylactid-based copolymer reduced pain and enabled administration of the full radiation protocol preventing skin from deep radiative injury. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbachowska, A.; Korzeniowski, T.; Surowiecka, A.; Strużyna, J. Alloplastic Epidermal Skin Substitute in the Treatment of Burns. Life 2024, 14, 43. https://doi.org/10.3390/life14010043
Barbachowska A, Korzeniowski T, Surowiecka A, Strużyna J. Alloplastic Epidermal Skin Substitute in the Treatment of Burns. Life. 2024; 14(1):43. https://doi.org/10.3390/life14010043
Chicago/Turabian StyleBarbachowska, Aleksandra, Tomasz Korzeniowski, Agnieszka Surowiecka, and Jerzy Strużyna. 2024. "Alloplastic Epidermal Skin Substitute in the Treatment of Burns" Life 14, no. 1: 43. https://doi.org/10.3390/life14010043
APA StyleBarbachowska, A., Korzeniowski, T., Surowiecka, A., & Strużyna, J. (2024). Alloplastic Epidermal Skin Substitute in the Treatment of Burns. Life, 14(1), 43. https://doi.org/10.3390/life14010043