Exploring the Potential of Macroalgae for Sustainable Crop Production in Agriculture
Abstract
:1. Introduction
2. Historical and Economic Aspects of the Use of Macroalgae
3. Macroalgae Fertilizers and Biostimulants
- -
- improved germination of seeds.
- -
- improved plant yield.
- -
- enhanced root growth.
- -
- increased tolerance to various abiotic stresses.
- -
- increased resistance to infection or insect attack.
3.1. Soil Improvers
3.2. Algae Extracts and Liquid Fertilizers
3.3. Tolerance to Abiotic Stresses
3.4. Effects on Plant Diseases and Pests
4. Algae Extraction Methods
5. How Seaweed Has Been Used in Agriculture
6. Other Applications of Algal Extracts
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rama, R. Preparation of liquid Seaweed fertilizer from Sargassum. In Proceedings of the Seaweed Research and Utilization Association Workshop on Algal Products and Seminar on Phaeophyceae, Madras, India, 4–7 June 1990; p. 16. [Google Scholar]
- Leung, P.O.; Lee, H.H.; Kung, Y.C.; Tsai, M.F.; Chou, T.C. Therapeutic effect of C-phycocyanin extracted from blue green algae in a rat model of acute lung injury induced by lipopolysaccharide. Evid. Based Complement. Altern. Med. 2013, 91, 65–90. [Google Scholar] [CrossRef] [PubMed]
- Spagnuolo, D.; Prisa, D. Evaluation of Growth Parameters on Carpobrotus edulis, Kalanchoe daigremontiana and Kalanchoe tubiflora in Relation to Different Seaweed Liquid Fertilizer (SLF) as a Biostimulant. Int. J. Curr. Microbiol. Appl. Sci. 2021, 10, 67–76. [Google Scholar] [CrossRef]
- Spagnuolo, D.; Russo, V.; Manghisi, A. Screening on the Presence of Plant Growth Regulators in High Biomass Forming Seaweeds from the Ionian Sea (Mediterranean Sea). Sustainability 2022, 14, 3914. [Google Scholar] [CrossRef]
- Stirk, W.A.; Van Staden, J. Plant Growth Regulators in Seaweeds. Advances in Botanical Research; Academic Press: Cambridge, MA, USA, 2014; Volume 71, pp. 125–159. [Google Scholar]
- Benítez García, I.; Dueñas Ledezma, A.K.; Martínez Montaño, E. Identification and Quantification of Plant Growth Regulators and Antioxidant Compounds in Aqueous Extracts of Padina durvillaei and Ulva lactuca. Agronomy 2020, 10, 866. [Google Scholar] [CrossRef]
- D’Acqui, L.P. Use of Indigenous Cyanobacteria for Sustainable Improvement of Biogeochemical and Physical Fertility of Marginal Soils in Semiarid Tropics. In Bioformulations: For Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Prisa, D. Possible use of Spirulina and Klamath algae as biostimulant in Portulaca grandiflora (Moss Rose). World J. Adv. Res. Rev. 2019, 2, 1–6. [Google Scholar] [CrossRef]
- Prisa, D.; Gobbino, M. Microbic and Algae biofertilizers in Aloe barbadensis Miller. Open Access Res. J. Biol. Pharm. 2021, 1, 1–9. [Google Scholar] [CrossRef]
- Hassan, S.M.; Ashour, M.; Soliman, A.A.F. The Potential of a New Commercial Seaweed Extract in Stimulating Morpho-Agronomic and Bioactive Properties of Eruca vesicaria (L.) Cav. Sustainability 2021, 13, 4485. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulant Properties of Seaweed Extracts in Plants: Implications towards Sustainable Crop Production. Plants 2021, 10, 531. [Google Scholar] [CrossRef] [PubMed]
- Abetz, P.; Young, C.L. The effect of seaweed extract sprays derived from Ascophyllum nodosum on lettuce and cauliflower crops. Bot. Mar. 1983, 10, 487–492. [Google Scholar] [CrossRef]
- Basavaraja, P.K.; Yogendra, N.D.; Zodape, S.T. Effect of seaweed sap as foliar spray on growth and yield of hybrid maize. J. Plant Nutr. 2018, 14, 1851–1861. [Google Scholar] [CrossRef]
- Pushparaj, B.; Pelosi, E.; Tredici, M.R.; Pinzani, E.; Materassi, R. An integrated culture system for outdoor production of microalgae and cyanobacteria. J. Appl. Phycol. 1997, 9, 113–119. [Google Scholar] [CrossRef]
- Radmann, E.M.; Rheinehr, C.O.; Costa, J.A.V. Optimisation of the repeated batch cultivation of microalga Spirulina platensis in open raceway ponds. Aquaculture 2007, 265, 118–126. [Google Scholar] [CrossRef]
- Prisa, D. Ascophyllum nodosum extract on growth plants in Rebutia heliosa and Sulcorebutia canigueralli. GSC Biol. Pharm. Sci. 2020, 1, 39–45. [Google Scholar] [CrossRef]
- El Arroussi, H.; El Mernissi, N.; Benhima, R. Microalgae polysaccharides a promising plant growth biostimulant. J. Algal Biomass Utln 2016, 7, 55–63. [Google Scholar]
- Grima, E.M.; Belarbi, E.H.; Fernandez, F.A. Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnol. Adv. 2003, 20, 491–515. [Google Scholar] [CrossRef]
- Mulberry, W.; Konrad, S.; Pisarro, C. Bio fertilizers from algal treatment of dairy and swine manure effluents. J. Veg. Sci. 2007, 12, 107–125. [Google Scholar]
- Hofmann, D.; Singh, D.; Ebonhoh, O. Evaluating potential of green alga Chlorella Vulgaris to accumulate phosphorus and to fertilize nutrient-poor soil substrates for crop plants. J. Appl. Phycol. 2018, 30, 2827–2836. [Google Scholar]
- Tarraf, S.A.; Talaat, I.M.; El-Sayed, A.E.K.B. Influence of foliar application of algae extract and amino acids mixture on fenugreek plants in sandy and clay soils. Amino Acids 2015, 16, 19–58. [Google Scholar] [CrossRef]
- Franciraldo de Lima, J. Utilization of Chlorella spp. as biostimulant in the germination of melon seeds (Cucumis melo L.). J. Agric. Stud. 2020, 8, 2. [Google Scholar]
- Faheed, F.A.; El Fattah, Z.A. Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of lettuce plant. J Agric. Soc. Sci. 2008, 4, 165–169. [Google Scholar]
- Trejo Valencia, R.; Sánchez Acosta, L.; Fortis Hernández, M.; Preciado Rangel, P.; Gallegos Robles, M.Á.; Antonio Cruz, R.d.C.; Vázquez Vázquez, C. Effect of Seaweed Aqueous Extracts and Compost on Vegetative Growth, Yield, and Nutraceutical Quality of Cucumber (Cucumis sativus L.) Fruit. Agronomy 2018, 8, 264. [Google Scholar] [CrossRef]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Colavita, G.M.; Spera, N.; Blackhall, V.; Sepulveda, G.M. Effect of seaweed extract on pear fruit quality and yield. Acta Hortic. 2011, 909, 601–607. [Google Scholar] [CrossRef]
- Tuhy, L.; Chowanska, J.; Chojnacka, K. Seaweed extracts as biostimulants of plant growth: Review. Chemik 2013, 67, 636–641. [Google Scholar]
- Dillehay, T.D.; Ramirez, C.; Pino, M.; Collins, M.B.; Rossen, J.; Pino-Navarro, J.D. Monte verde: Seaweed, food, medicine, and the peopling of South America. Science 2008, 320, 784–786. [Google Scholar] [CrossRef]
- Aitken, J.B.; Senn, T.L. Seaweed product as a fertilizer and soil conditions for horticultural crops. Bot. Mar. 1965, 8, 144–148. [Google Scholar] [CrossRef]
- Newton, G.W. Seaweed Manure for Perfect Soil and Smiling Fields; Sampson Low: London, UK, 1951; p. 188. [Google Scholar]
- McHugh, D.J. A guide to the seaweed industry. In Fao Fisheries Technical Paper; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2003; p. 441. [Google Scholar]
- Basak, A. Effect of preharvest treatment with seaweed products, Kelpak and Goemar BM 86, on fruit quality in apple. Int. J. Fruit Sci. 2008, 8, 1–14. [Google Scholar] [CrossRef]
- Craigie, J.S. Seaweed extract stimuli in plant science and agriculture. J. Appl. Phycol. 2011, 23, 371–393. [Google Scholar] [CrossRef]
- Arioli, T.; Mattner, S.W.; Winberg, P.C. Applications of seaweed extracts in Australian agriculture: Past, present and future. J. Appl. Phycol. 2015, 27, 2007–2015. [Google Scholar] [CrossRef]
- Bulgari, R.; Cocetta, G.; Trivellini, A.; Vernieri, P.; Ferrante, A. Biostimulants and crop responses: A review. Biol. Agric. Hortic. 2015, 31, 1–17. [Google Scholar] [CrossRef]
- Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 2017, 4, 5. [Google Scholar] [CrossRef]
- FAO. The Global Status of Seaweed Production, Trade and Utilization; Globefish Research Programme 124; FAO: Rome, Italy, 2018; p. 120. [Google Scholar]
- Sultana, V.; Baloch, G.N.; Ara, J.; Ehteshamul-Haque, S.; Tariq, R.M.; Athar, M. Seaweeds as an alternative to chemical pesticides for the management of root diseases of sunflower and tomato. J. Appl. Bot. Food Qual. 2011, 84, 162–168. [Google Scholar]
- Bhatia, P.C. Revitalizing Indian agriculture for higher productivity. Indian Farming 2002, 52, 3. [Google Scholar]
- Dhargalkar, V.K.; Pereira, N. Seaweed: Promising plant of the millennium. Sci. Cult. 2005, 71, 60–66. [Google Scholar]
- Crouch, I.J.; van Staden, J. Evidence for the presence of plant growth regulators in commercial seaweed products. Plant Growth Regul. 1993, 13, 21–29. [Google Scholar] [CrossRef]
- Sultana, V.; Baloch, G.N.; Ambreen, A.J.; Tariq, M.R.; Ehteshamul-Haque, S. Comparative efficacy of a red alga Soliera robusta, chemical fertilizers and pesticides in managing the root diseases and growth of soybean. Pak. J. Bot. 2011, 43, 1–6. [Google Scholar]
- Haslam, S.F.I.; Hopkins, D.W. Physical and biological effects of kelp (seaweed) added to soil. Appl. Soil Ecol. 1996, 3, 257–261. [Google Scholar] [CrossRef]
- Eyras, M.C.; Defossè, G.E.; Dellatorre, F. Seaweed compost as an amendment for horticultural soils in Patagonia, Argentina. Compos. Sci. Util. 2008, 16, 119–124. [Google Scholar] [CrossRef]
- Lattner, D.; Flemming, H.; Mayer, C. 13C-NMR study of the interaction of bacterial alginate with bivalent cations. Int. J. Biol. Macromol. 2003, 33, 81–88. [Google Scholar] [CrossRef]
- Gandhiyappan, K.; Perumal, P. Growth promoting effect of seaweed liquid fertilizer (Enteromorpha intestinalis) on the sesame crop plant. Seaweed Res. Util. 2001, 23, 23–25. [Google Scholar]
- Chen, S.K.; Edwards, C.A.; Subler, S. The influence of two agricultural bio-stimulants on nitrogen transformations, microbial activity, and plant growth in soil microcosms. Soil Biol. Biochem. 2003, 35, 9–19. [Google Scholar] [CrossRef]
- Moore, K.K. Using seaweed compost to grow bedding plants. BioCycle 2004, 45, 43–44. [Google Scholar]
- Lopez-Mosquera, M.E.; Pazos, P. Effects of seaweed on potato yields and soil chemistry. Biol. Agric. Hortic. 1997, 14, 199–206. [Google Scholar] [CrossRef]
- Kuwada, K.; Wamocho, L.S.; Utamura, M.; Matsushita, I.; Ishii, T. Effect of red and green algal extracts on hyphal growth of arbuscular mycorrhizal fungi, an on mycorrhizal development and growth of papaya and passionfruit. Agron. J. 2006, 98, 1340–1344. [Google Scholar] [CrossRef]
- Kuwada, K.; Utamura, M.; Matsushita, I.; Ishii, T. Effect of tangle stock ground extracts on in vitro hyphal growth of vesicular arbuscular mycorrhizal fungi and their in vivo infections of citrus roots. In Proceedings of the 9th International Society of Citriculture Congress, Orlando, FL, USA, 3–7 December 2000; pp. 1034–1037. [Google Scholar]
- Sabir, A.; Yazar, K.; Sabir, F.; Kara, Z.; Yazici, M.A.; Goksu, N. Vine growth, Yield, berry quality attributes and leaf nutrient content of grapevines as influenced by seaweed extract (Ascophyllum nodosum) and nanosize fertilizer pulverizations. Sci. Hortic. 2014, 175, 1–8. [Google Scholar] [CrossRef]
- Frioni, T.; Sabbatini, P.; Tombesi, S.; Norrie, J.; Poni, S.; Gatti, M.; Palliotti, A. Effects of a biostimulant derived from the brown seaweed Ascophyllum nodosum on ripening dynamics and fruit quality of grapevines. Sci. Hortic. 2018, 232, 97–106. [Google Scholar] [CrossRef]
- Di Stasio, E.; Van Oosten, M.J.; Silletti, S.; Raimondi, G.; dell’Aversana, E.; Carillo, P.; Maggio, A. Ascophyllum nodosum based algal extracts act as enhancer of growth, fruit quality and adaptation to stress in salinized tomato plants. J. Appl. Phycol. 2018, 30, 2675–2686. [Google Scholar] [CrossRef]
- Chouliaras, V.; Tasioula-Margari, M.; Chatzissavvidis, C.; Therios, I.; Tsabolatidou, E. The effects of a seaweed extract in addition to nitrogen and boron fertilization on productivity, fruit maturation, leaf nutritional status and oil quality of the olive (Olea europaea L.) cultivar Koroneiki. J. Sci. Food Agric. 2009, 89, 984–988. [Google Scholar] [CrossRef]
- Jannin, L.; Arkoun, M.; Etienne, P.; Lainè, P.; Goux, D.; Garnica, M. Brassica napus growth is promoted by Ascophyllum nodosum (L.) Le Jol. Seaweed extract: Microarray analysis and physiological characterization of N, C, and S metabolisms. J. Plant Growth Regul. 2013, 32, 31–52. [Google Scholar] [CrossRef]
- Durand, N.; Briand, X.; Meyer, C. The effect of marine bioactive substances (NPRO) and exogenous cytokinins on nitrate reductase activity in Arabidopsis thaliana. Physiol. Plant. 2003, 199, 489–493. [Google Scholar] [CrossRef]
- Stirk, W.A.; Novak, O.; Strnad, M.; Van Staden, J. Cytokinins in macroalgae. Plant Growth Regul. 2003, 41, 13–24. [Google Scholar] [CrossRef]
- Stirk, W.A.; Arthur, G.D.; Lourens, A.F.; Novak, O.; Strnad, M.; Van Staden, J. Changes in cytokinin and auxin concentrations in seaweed concentrates when stored at an elevated temperature. J. Appl. Phycol. 2004, 16, 31–39. [Google Scholar] [CrossRef]
- Stirk, W.A.; Tarkowska, D.; Turecova, V.; Strnad, M.; Van Staden, J. Abscisic acid, gibberellins and brassinosteroids in Kelpak, a commercial seaweed extract made from Ecklonia maxima. J. Appl. Phycol. 2014, 26, 561–567. [Google Scholar] [CrossRef]
- Wu, Y.; Jenkins, T.; Blunden, G.; Whaphan, C.; Hankin, S.D. The role of betaines in alkaline extracts of Ascophyllum nodosum in the reduction of Meloidogyne javanica and M. incognita infestations of tomato plants. Fundam. Appl. Nematol. 1997, 20, 99–102. [Google Scholar]
- MacKinnon, S.L.; Hiltz, D.; Ugarte, R.; Craft, C.A. Improved methods of analysis for betaines in Ascophyllum nodosum and its commercial seaweed extracts. J. Appl. Phycol. 2010, 22, 489–494. [Google Scholar] [CrossRef]
- Hong, D.D.; Hien, H.M.; Son, P.N. Seaweeds from Vietnam used for functional food, medicine and biofertilizer. J. Appl. Phycol. 2007, 19, 817–826. [Google Scholar] [CrossRef]
- Prasad, K.; Das, A.K.; Oza, M.D.; Brahmbhatt, H.; Siddhanta, A.K.; Meena, R.; Eswaran, K.; Rajyaguru, M.R.; Ghosh, P.K. Detection and quantification of some plant growth regulators in a seaweed-based foliar spray employing a mass spectrometric technique sans chromatographic separation. J. Agric. Food Chem. 2010, 58, 4594–4601. [Google Scholar] [CrossRef]
- Panda, D.; Pramanik, K.; Nayak, B.R. Use of seaweed extracts as plant growth regulators for sustainable agriculture. Int. J. Bio-Resour. Stress Manag. 2012, 3, 404–411. [Google Scholar]
- Spinelli, F.; Fiori, G.; Noferini, M.; Sprocatti, M.; Costa, G. Perspectives on the use of a seaweed extract to moderate the negative effects of alternate bearing in apple trees. J. Hortic. Sci. Biotechnol. 2009, 84, 131–137. [Google Scholar] [CrossRef]
- Gersani, M.; Kende, H. Studies on cytokinin-stimulated translocation in isolated bean leaves. J. Plant Growth Regul. 1982, 1, 161–171. [Google Scholar]
- Davey, J.E.; van Staden, J. Cytokinin activity in Lupinus albus. III. Distrib. Fruits. Physiol. Plant. 1978, 43, 87–93. [Google Scholar] [CrossRef]
- Hoyerova, K.; Hosek, P. New insights into the metabolism and role of cytokinin N-glucosides in plants. Front. Plant Sci. 2020, 11, 741. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Hirji, R.; Adam, L.; Rozwadowski, K.L.; Hammerlindl, J.K.; Keller, W.A.; Selvaraj, G. Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: Metabolic limitations. Plant Physiol. 2000, 122, 747–756. [Google Scholar] [CrossRef]
- Fahad, S.; Hussain, S.; Matloob, A.; Khan, F.A.; Khaliq, A.; Saud, S.; Hassan, S.; Shan, D.; Khan, F.; Ullah, N.; et al. Phytohormones and plant responses to salinity stress: A review. Plant Growth Regul. 2015, 75, 391–404. [Google Scholar] [CrossRef]
- Blunden, G.; Jenkins, T.; Liu, Y.W. Enhanced leaf chlorophyll levels in plants treated with seaweed extract. J. Appl. Phycol. 1996, 8, 535–543. [Google Scholar] [CrossRef]
- Sudha, G.; Ravishankar, G.A. Involvement and interaction of various signaling compounds on the plant metabolic events during defense response, resistance to stress factors, formation of secondary metabolites and their molecular aspects. Plant Cell Tissue Organ Cult. 2002, 71, 181–212. [Google Scholar] [CrossRef]
- Mancuso, S.; Azzarello, E.; Mugnai, S.; Briand, X. Marine bioactive substances (IPA extract) improve foliar ion uptake and water stress tolerance in potted Vitis vinifera plants. Adv. Hortic. Sci. 2006, 20, 1000–1006. [Google Scholar]
- Abdel-Mawgoud, A.M.R.; Tantaway, A.S.; Hafez, M.; Habib, H.A.M. Seaweed extract improves growth, yield and quality of different watermelon hybrids. Res. J. Agric. Biol. Sci. 2010, 6, 161–168. [Google Scholar]
- Eris, A.; Sivritepe, H.O.; Stvritepe, N. The effects of seaweed (Ascophyllum nodosum) extract on yield and quality in peppers. Acta Hortic. 1995, 412, 185–192. [Google Scholar] [CrossRef]
- Fornes, F.; Sanchez-Perales, M.; Guardiola, J.L. Effect of seaweed extract on the productivity of de Nules clementine mandarin and Navelina orange. Bot. Mar. 2002, 45, 486–489. [Google Scholar] [CrossRef]
- Geny, L.; Bernardon Mery, A.; Larrive, G. Un filtrat d’algues agit sur la vigne et le pommier. Phytoma. Def. Veg. 2007, 609, 37–40. [Google Scholar]
- Baszczyk, J. Quality and Conference pears as affected by Goemar BM 86 and Fruton. In Biostimulators in Modern Agriculture: Fruit Crops; Sadowski, A., Ed.; Editorial House wie: Warsaw, Poland, 2008; pp. 18–24. [Google Scholar]
- Tasioula-Margari, M.; Stamatakos, G.; Chatzissavvidis, C.; Mantzoutsos, I.; Chytiri, A.; Chouliaras, V. The effect of commercial seaweed extracts and commercial liquid organic nitrogen foliar sprays on productivity, oil quality and nutritional status of the olive cultivar Mastoidis. In Proceedings of the 4th International Conference on Olive Culture and Biotechnology of Olive tree Products, OliveBioteq, Chania, Greece, 31 October–4 November 2011; pp. 475–479. [Google Scholar]
- Vernieri, P.; Borghesi, E.; Ferrante, A.; Magnani, G. Application of biostimulants in floating system for improving rocket quality. J. Food Agric. Environ. 2005, 3, 86–88. [Google Scholar]
- Alam, M.Z.; Braun, G.; Norrie, J.; Mark Hodges, D. Ascophyllum extract application can promote plant growth and root yield in carrot associated with increased root-zone soil microbial activity. Can. J. Plant Sci. 2014, 94, 337–348. [Google Scholar] [CrossRef]
- Thompson, B. Five years of Irish trials on biostimulants: The conversion of a skeptic. USDA Serv. Proc. 2004, 33, 72–79. [Google Scholar]
- Slavik, M. Production of Norway spruce (Picea abies) seedlings on substrate mixes using growth stimulants. J. For. Sci. 2005, 51, 15–23. [Google Scholar] [CrossRef]
- El-Ansary, M.S.M.; Hamouda, R.A. Biocontrol of root-knot nematode infected banana plants by some marine algae. Russ. J. Mar. Biol. 2014, 40, 140–146. [Google Scholar] [CrossRef]
- El- Eslamboly, A.A.S.A.; Abd El- Wanis, M.M.; Amin, A.W. Algal application as a biological control method of root-knot nematode Meloidogyne incognita on cucumber under protected culture conditions and its impact on yield and fruit qulity. Egypt. J. Biol. Pest Control 2019, 29, 18. [Google Scholar] [CrossRef]
- Crouch, I.J.; van Staden, J. Effect of seaweed concentrate on the establishment and yield of greenhouse tomato plants. J. Appl. Phycol. 1992, 4, 291–296. [Google Scholar] [CrossRef]
- Morales-Payan, J.P. Effects of an agricultural extract of the brown alga, Ascophyllum nodosum (Phaeophyceae), on mango, Mangifera indica (Anacardiaceae), grown for transplant in the nursery. Life Excit. Biol. 2013, 1, 111–117. [Google Scholar] [CrossRef]
- Nelson, W.R.; Staden, J.V. Effect of seaweed concentrate on the growth of wheat. South Afr. J. Sci. 1986, 82, 199–200. [Google Scholar]
- Turan, M.; Kose, C. Seaweed extracts improve copper uptake of grapevine. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2004, 54, 213–220. [Google Scholar] [CrossRef]
- Rathore, S.S.; Chaudhary, D.R.; Boricha, G.N.; Ghosh, A.; Bhatt, B.P.; Zodape, S.T.; Patolia, J.S. Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. South Afr. J. Bot. 2009, 75, 351–355. [Google Scholar] [CrossRef]
- Rayorath, P.; Jithesh, M.N.; Farid, A.; Khan, W.; Palanisamy, R.; Hankins, S.D.; Critchley, A.T.; Prithiviraj, B. Rapid bioassays to evaluate the plant growth promoting activity of Ascophyllum nodosum (L). J. Appl. Phycol. 2008, 20, 423–429. [Google Scholar] [CrossRef]
- Whapam, C.A.; Blunden, G.; Jenkins, T.; Hankins, S.D. Significance of betaines in the increased chlorophyll content of plants treated with seaweed extract. J. Appl. Phycol. 1993, 5, 231–234. [Google Scholar] [CrossRef]
- Fike, J.H.; Allen, V.G.; Schmidt, R.E.; Zhang, X.; Fontenot, J.P.; Bagley, C.P.; Ivy, R.L.; Evans, R.R.; Coelho, R.W.; Wester, D.B. Tasco-forage: Influence of a seaweed extract on antioxidant activity in tall fescue and in ruminants. J. Anim. Sci. 2001, 79, 1011–1021. [Google Scholar] [CrossRef] [PubMed]
- Ayad, J.Y. The Effect of Seaweed (Ascophyllum nodosum) Extract on Antioxidant Activities and Drought Tolerance of Tall Fescue (Festuca arundinacea Schreb.). Ph.D. Dissertation, Texas Tech University, Lubbock, TX, USA, 1998. [Google Scholar]
- Lee, J.H.; Kim, G.H. Evaluation of antioxidant activity of marine algae-extracts from Korea. J. Aquat. Food Prod. Technol. 2015, 24, 227–240. [Google Scholar] [CrossRef]
- Kang, H.S.; Chung, H.Y.; Kim, J.Y.; Son, B.W.; Jung, H.A.; Choi, J.S. Inhibitory phlorotannins from the edible brown alga Ecklonia stolonifera on total reactive oxygen species (ROS) generation. Arch. Pharmacal Res. 2004, 27, 194–198. [Google Scholar] [CrossRef]
- Fernando, I.S.; Kim, M.; Son, K.T.; Jeong, Y.; Jeon, Y.J. Antioxidant activity of marine algal polyphenolic compounds: A mechanistic approach. J. Med. Food 2016, 19, 615–628. [Google Scholar] [CrossRef]
- Burchett, S.; Fuller, M.P.; Jellings, A.J. Application of seaweed extract improves winter hardiness of winter barley cv. Igri. In Proceedings of the Society for Experimental Biology, Annual Meeting, Experimental Biology Online; The York University: North York, NY, USA; Toronto, ON, Canada, 1998. [Google Scholar]
- Ton, J.; Corne, M.J.; Pieterse, D.; van Loon, L.C. The relationship between basal and induced resistance in Arabidopsis. Multigenic Induc. Syst. Resist. Plants 2006, 197–225. [Google Scholar]
- Lion, U.; Wiesemeier, T.; Weinberger, F.; Beltran, J.; Flores, V.; Faugeron, S.; Correa, J.; Pohnert, G. Phospholipases and galactolipases trigger oxylipin mediated wound activated defence in the red alga Gracilaria chilensis against epiphytes. ChemBioChem 2006, 7, 457–462. [Google Scholar] [CrossRef]
- Pardee, K.I.; Ellis, P.; Bouthillier, M.; Towers, G.H.N.; French, C.J. Plant virus inhibitors from marine algae. Can. J. Bot. 2004, 82, 304–309. [Google Scholar] [CrossRef]
- Mercier, L.; Lafitte, C.; Borderies, G.; Briand, X.; Esquerre-Tugaye, M.T.; Fournier, J. The algal polysaccharide carrageenans can act as an elicitor of plant defence. New Phytol. 2001, 149, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Stadnik, M.J.; Freitas, M.B.D. Algal polysaccharides as source of plant resistance inducers. Trop. Plant Pathol. 2014, 39, 111–118. [Google Scholar] [CrossRef]
- Jayaraj, J.; Wan, A.; Rahman, M.; Punja, Z.K. Seaweed extracts reduces foliar fungal disease on carrot. Crop Prot. 2008, 27, 1360–1366. [Google Scholar] [CrossRef]
- Cluzet, S.; Torregrosa, C.; Jacquet, C.; Lafitte, C.; Fournier, J.; Mercier, L.; Salamagne, S.; Briand, X.; Esquerre-Tugaye, M.T.; Dumas, B. Gene expression profiling and protection of Medicago truncatula against a fungal infection in response to an elicitor from green algae Ulva spp. Plant Cell Environ. 2004, 27, 917–928. [Google Scholar] [CrossRef]
- Lizzi, Y.; Coulomb, C.; Polian, C.; Coulomb, P.J.; Coulomb, P.O. Seaweed and Mildew: What does the future hold? Encouraging laboratory results. Phytoma Def. Plants 1998, 508, 29–30. [Google Scholar]
- Masny, A.; Basak, A.; Zurawicz, E. Effect of foliar applications of kelpak SL and Goemar BM 86 preparations on yield and fruit quality in two strawberry cultivars. J. Fruit Ornam. Plant Res. 2004, 12, 23–27. [Google Scholar]
- Weller, D.M.; Raaijimakers, J.M.; Gardner, B.B.M.; Thomashow, L.S. Microbial population responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 2002, 40, 309–348. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, H.; Gray, S.N.; Crump, D.H. Interactions between nematophagous fungi and consequences for their potential as biological agents for the control of potato cyst nematodes. Mycol. Res. 2003, 107, 47–56. [Google Scholar] [CrossRef]
- Sultana, V.; Ehteshamul-Haque, S.; Ara, J.; Athar, M. Comparative efficacy of brown, green and red seaweeds in the control of root infecting fungi and okra. Int. J. Environ. Sci. Technol. 2005, 2, 129–132. [Google Scholar] [CrossRef]
- Hankins, S.D.; Hockey, H.P. The effect of a liquid seaweed extract from Ascophyllum nodosum (Fucales, Phaeophyta) on the two spotted red spider mite Tetranychus urticae. Hydrobiologia 1990, 204, 555–559. [Google Scholar] [CrossRef]
- Saifullah, M.; Stephen, M.M.; Khattak, B. Isolation of Trichoderma harzianum and in vitro screening for its effectiveness against root-knot nematodes (Meloidogyne sp.) from Swat, Pakistan. Pak. J. Nematol. 2007, 25, 313–322. [Google Scholar]
- Zhang, Q.; Zhang, J.; Shen, J.; Silva, A.; Dennis, D.A.; Barrow, C.J. A simple 96-well microplate method for estimation of total polyphenol content in seaweeds. J. Appl. Phycol. 2006, 18, 445–450. [Google Scholar] [CrossRef]
- Hervè, R.A.; Roullier, D.L. Method and apparatus for communiting marine algae and the resulting product. United States Pat. 1977, 4, 734. [Google Scholar]
- Stirk, W.A.; van Staden, J. Seaweed products as biostimulants in agriculture. In World Seaweed Resources; Largo, D.B., Ed.; World Seaweed Resources, University Amsterdam: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Stephenson, W. Seaweed in Agriculture and Horticulture; Bargyla and Gylver Rateaver: Pauma Valley, CA, USA, 1974; 241p. [Google Scholar]
- Hashem, H.; Mansour, H.; El-Khawas, S.; Hassanein, R. The Potentiality of Marine Macro-Algae as BioFertilizers to Improve the Productivity and Salt Stress Tolerance of Canola (Brassica napus L.). Plants. Agron. 2019, 9, 146. [Google Scholar] [CrossRef]
- Uribe-Orozco, M.; Mateo-Cid, L.; Mendoza-González, A.; Amora-Lazcano, E.; González-Mendoza, D.; y DuránHernández, D. Efecto del Alga Marina Sargassum Vulgare C. agardhen Suelo y el Desarrollo de Plantas de Cilantro; IDESIA: Santiago del Chile, Chile, 2018; Volume 36, pp. 69–76. [Google Scholar]
- Lacatusu, A.; Burtan, L.; Coronado, M.; Preda, C.; Lacatusu, R. Assessment of soil quality under different agricultural systems. Int. J. Agric. Sci. 2017, 2, 51–58. [Google Scholar]
- Michalak, I.; Chojnacka, K. Algae as production systems of bioactive compounds. Eng Life Sci. 2015, 15, 160–176. [Google Scholar] [CrossRef]
- Blunden, G.; Morse, P.F.; Mathe, I.; Hohmann, J.; Critchleye, A.T.; Morrell, S. Betaine yields from marine algal species utilized in the preparation of seaweed extracts used in agriculture. Nat. Prod. Commun. 2010, 5, 581–585. [Google Scholar] [CrossRef] [PubMed]
- Steveni, C.M.; Norrington-Davies, J.; Hankins, S.D. Effect of seaweed concentrate on hydroponically grown spring barley. J. Appl. Phycol. 1992, 4, 173–180. [Google Scholar] [CrossRef]
- Kowalski, B.; Jager, A.K.; van Staden, J. The effect of a seaweed concentrate on the in vitro growth and acclimatization of potato plantlets. Potato Res. 1999, 41, 131–139. [Google Scholar] [CrossRef]
Trade Name | Macroalgae | Producer and Country of Origin | Application |
---|---|---|---|
Akadian Plant HealthTM | Ascophyllum nodosum | Acadian Seaplants —Canada | Biostimulant |
Algalis | A. nodosum | LG—Italy | Biostimulant |
AgroKelp | Ascophyllum nodosum | Algas y Biod. S.A.—Mexico | Biostimulant—Fertilizer |
Alga Special | A. nodosum | L. Gobbi srl—Italy | Fertilizer |
AlgaMaxima | Ecklonia maxima | C.R.A. srl—Italy | Biostimulant |
Algaenzims | Sargassum spp. | Palau Bioquim—Mexico | Biostimulant |
AlgaPlus FL | Brown Algae | Icas—Italy | Fertilizer |
Algaroot | Sargassum spp. | Palau Bioquim—Mexico | Radicant |
Biovita | A. nodosum | PI Industries Ltd.—India | Biostimulant |
Cremalga | A. nodosum, E. maxima, Macrocystis pyrifera | Biolchim SPA—Italy | Biostimulant |
Espoma | A. nodosum | The Espoma Company—USA | Biostimulant |
Fylloton | Brown algae | Biolchim SPA—Italy | Biostimulant—Fertilizer |
Guarantee | A. nodosum | Ocean Organics—New Zealand | Biostimulant |
Kelp Meal | A. nodosum | Acadian Seaplants Ltd.—Canada | Biostimulant |
Kelpak | E. maxima | BASF—Germany | Biostimulant |
Kelprosoil | M. pyrifera | Productos del Pacifico | Biostimulant |
Laminex | Brown algae | LG—Italy | Biostimulant |
Mc Cream | A. nodosum | Valagro—Italy | Biostimulant |
Micronalga | A nodosum | Biolchim SPA—Italy | Biostimulant |
Seasol | Durvillaea potatorum | Seasol International—Australia | Biostimulant |
Seaweed | M. pyrifera | Algas Marinas—Mexico | Biostimulant |
Radicifo L 24 | Macrocystis pyrifera, Zinc | Cifo srl—Italy | Biostimulant |
Stimplex | A. nodosum | Acadian Agritech—Canada | Biostimulant |
Turboenzims | Sargassum spp. | Palau Bioquim—Mexico | Bioinducer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prisa, D.; Fresco, R.; Jamal, A.; Saeed, M.F.; Spagnuolo, D. Exploring the Potential of Macroalgae for Sustainable Crop Production in Agriculture. Life 2024, 14, 1263. https://doi.org/10.3390/life14101263
Prisa D, Fresco R, Jamal A, Saeed MF, Spagnuolo D. Exploring the Potential of Macroalgae for Sustainable Crop Production in Agriculture. Life. 2024; 14(10):1263. https://doi.org/10.3390/life14101263
Chicago/Turabian StylePrisa, Domenico, Roberto Fresco, Aftab Jamal, Muhammad Farhan Saeed, and Damiano Spagnuolo. 2024. "Exploring the Potential of Macroalgae for Sustainable Crop Production in Agriculture" Life 14, no. 10: 1263. https://doi.org/10.3390/life14101263
APA StylePrisa, D., Fresco, R., Jamal, A., Saeed, M. F., & Spagnuolo, D. (2024). Exploring the Potential of Macroalgae for Sustainable Crop Production in Agriculture. Life, 14(10), 1263. https://doi.org/10.3390/life14101263