Pulmonary Hypertension: Pharmacological and Non-Pharmacological Therapies
Abstract
:1. Introduction
2. Demographics and Cost
3. Diagnosis and Biomarkers
4. Mechanisms and Established Treatments
4.1. Vasoconstrictor–Vasodilator Imbalances
4.2. Hypoxia and Oxygen Therapy
4.3. Genetics and Signaling Pathways
4.4. Inflammation
4.5. General Therapies
5. Potential Therapies
5.1. Prostacyclin Analogs
5.2. sGC Stimulators
5.3. CGRP
5.4. HIF-Related Therapies
5.5. BMPR2-Related Therapies
5.6. Additional Immunological Therapies
5.7. Potential Neurostimulation and Autonomic-Related Therapies
5.7.1. Multiple Pharmacological Therapies Have Been Tested to Assess the Role of the Autonomic System in the Pathogenesis of PH
5.7.2. Non-Pharmacological Therapies: Sympathetic Activity Modulation and Vagal Nerve Stimulation (VNS)
5.7.3. Potential for Additional Integrative Therapies
References | Model | Technique | Findings Potentially Relevant to Pulmonary Hypertension (PH) |
---|---|---|---|
[251] | Pre-clinical Hypoxic-induced PH | Electroacupuncture (EA) | Mean pulmonary arterial pressure (mPAP) ↓, right ventricular (RV) size ↓ Pathological pulmonary remodeling ↓ Serum/lung endothelial nitric oxide synthase (eNOS) ↑, serum/lung endothelin-1 (ET-1) ↓ |
[253,297] | Pre-clinical Hypertension | EA Non-EA | Sympathetic activity (e.g., via nitric oxide synthase (NOS) pathways) ↓ Serum norepinephrine ↓ Serum interleukins/C-reactive protein ↓ Serum ET-1 ↓, myocardial eNOS ↑ |
[256,257] | Clinical Hypertension | Non-EA + enhanced external counterpulsation (EECP) | Serum nitric oxide (NO) ↑, serum ET-1 ↓ |
[260,261,262,263,264,265,266] | Clinical Chronic obstructive pulmonary disease (COPD) | EA Non-EA | Oxygen utilization/efficiency ↑, dyspnea ↓, exercise capacity ↑ |
[298,299,300,301,302,303,304] | Pre-clinical Systemic inflammation | EA Non-EA | Serum/lung tumor necrosis factor alpha (TNF-α), interleukins ↓ Parasympathetic (vagus) outflow ↑ Ejection fraction ↑ |
[267,268,269,272] | Pre-clinical Heart failure/cardiac insult | EA | Sympathetic outflow ↓ Heart function ↑ (i.e., left ventricle ejection fraction ↑, left ventricle size ↓ |
[271,273,274,275,276,277,278,279,280,281,291,292,294] | Pre-clinical Sympathetically stressed | EA | Sympathetic outflow ↓ (i.e., via central opioid, corticotropin-releasing hormone (CRH) pathways) Serum CRH, cortisol, norepinephrine, adrenaline ↓ |
[305] | Clinical Post-surgery secondary to lung cancer | EA | Arterial oxygen partial pressure (PaO2)/fraction of inspired oxygen (FiO2) ↑ Superoxide dismutase (SOD) activity ↑ Length of hospital stay ↓ |
[258] | Clinical Systemic sclerosis | EA | Plasma ET-1 ↓ |
[306,307,308] | Pre-clinical Lung injury | EA | Lung SOD activity ↑ Serum/lung cytokines ↓ PaO2 ↑ Lung injury score ↓ |
[252,309] | Pre-clinical COPD | EA | Pathological pulmonary remodeling ↓ Lung cytokines ↓ Lung function (i.e., expiratory volume) ↑ |
6. Conclusions
Funding
Conflicts of Interest
References
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.; Brida, M.; Carlsen, J.; Coats, A.J.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Respir. J. 2022, 61, 2200879. [Google Scholar] [CrossRef]
- Simonneau, G.; Montani, D.; Celermajer, D.S.; Denton, C.P.; Gatzoulis, M.A.; Krowka, M.; Williams, P.G.; Souza, R. Haemo-dynamic definitions and updated clinical classification of pulmonary hypertension. Eur. Respir. J. 2019, 53, 1801913. [Google Scholar] [CrossRef]
- Hoeper, M.M.; Ghofrani, H.A.; Grünig, E.; Klose, H.; Olschewski, H.; Rosenkranz, S. Pulmonary Hypertension. Dtsch. Arztebl. Int. 2017, 114, 73–84. [Google Scholar] [CrossRef]
- Barst, R.J.; Chung, L.; Zamanian, R.T.; Turner, M.; McGoon, M.D. Functional Class Improvement and 3-Year Survival Outcomes in Patients with Pulmonary Arterial Hypertension in the REVEAL Registry. Chest 2013, 144, 160–168. [Google Scholar] [CrossRef]
- Sitbon, O.; Humbert, M.; Nunes, H.; Parent, F.; Garcia, G.; Hervé, P.; Rainisio, M.; Simonneau, G. Long-term intravenous epoprostenol infusion in primary pulmonary hypertension: Prognostic factors and survival. J. Am. Coll. Cardiol. 2002, 40, 780–788. [Google Scholar] [CrossRef]
- Hoeper, M.M.; Humbert, M.; Souza, R.; Idrees, M.; Kawut, S.M.; Sliwa-Hahnle, K.; Jing, Z.-C.; Gibbs, J.S.R. A global view of pulmonary hypertension. Lancet Respir. Med. 2016, 4, 306–322. [Google Scholar] [CrossRef]
- Zlotnick, D.M.; Ouellette, M.L.; Malenka, D.J.; DeSimone, J.P.; Leavitt, B.J.; Helm, R.E.; Olmstead, E.M.; Costa, S.P.; DiScipio, A.W.; Likosky, D.S.; et al. Effect of Preoperative Pulmonary Hypertension on Outcomes in Patients With Severe Aortic Stenosis Following Surgical Aortic Valve Replacement. Am. J. Cardiol. 2013, 112, 1635–1640. [Google Scholar] [CrossRef]
- Tichelbäcker, T.; Dumitrescu, D.; Gerhardt, F.; Stern, D.; Wissmüller, M.; Adam, M.; Schmidt, T.; Frerker, C.; Pfister, R.; Halbach, M.; et al. Pulmonary hypertension and valvular heart disease. Herz 2019, 44, 491–501. [Google Scholar] [CrossRef]
- Ovchinnikov, A.; Potekhina, A.; Belyavskiy, E.; Ageev, F. Heart Failure with Preserved Ejection Fraction and Pulmonary Hypertension: Focus on Phosphodiesterase Inhibitors. Pharmaceuticals 2022, 15, 1024. [Google Scholar] [CrossRef]
- Mocumbi, A.; Humbert, M.; Saxena, A.; Jing, Z.-C.; Sliwa, K.; Thienemann, F.; Archer, S.L.; Stewart, S. Pulmonary hypertension. Nat. Rev. Dis. Prim. 2024, 10, 1. [Google Scholar] [CrossRef]
- Thienemann, F.; Dzudie, A.; Mocumbi, A.O.; Blauwet, L.; Sani, M.U.; Karaye, K.M.; Ogah, O.S.; Mbanze, I.; Mbakwem, A.; Udo, P.; et al. The causes, treatment, and outcome of pulmonary hypertension in Africa: Insights from the Pan African Pulmonary Hypertension Cohort (PAPUCO) Registry. Int. J. Cardiol. 2016, 221, 205–211. [Google Scholar] [CrossRef]
- Katoto, P.D.M.C.; Mukasa, S.L.; Sani, M.U.; Karaye, K.M.; Mbanze, I.; Damasceno, A.; Mocumbi, A.O.; Dzudie, A.; Sliwa, K.; Thienemann, F. HIV status and survival of patients with pulmonary hypertension due to left heart disease: The Pan African Pulmonary Hypertension Cohort. Sci. Rep. 2023, 13, 9790. [Google Scholar] [CrossRef]
- Schikowski, E.M.; Swabe, G.; Chan, S.Y.; Magnani, J.W. Association between income and likelihood of right heart catheterization in individuals with pulmonary hypertension: A US claims database analysis. Pulm. Circ. 2022, 12, e12132. [Google Scholar] [CrossRef]
- Harikrishnan, S.; Mani, A.; Sanjau, G.; Ashishkumar, M.; Menon, J.; Rajesh, G.; Kumar, R.K.; Koshy, A.G.; Attacheril, T.V.; George, R.; et al. Pulmonary Hypertension Registry of Kerala, India (PRO-KERALA): One-year outcomes. Indian Heart J. 2021, 74, 34–39. [Google Scholar] [CrossRef]
- Talwar, A.; Sahni, S.; Talwar, A.; Kohn, N.; Klinger, J.R. Socioeconomic Status Affects Pulmonary Hypertension Disease Severity at Time of First Evaluation. Pulm. Circ. 2016, 6, 191–195. [Google Scholar] [CrossRef]
- Caravita, S.; Baratto, C.; Di Marco, F.; Calabrese, A.; Balestrieri, G.; Russo, F.; Faini, A.; Soranna, D.; Perego, G.B.; Badano, L.P.; et al. Haemodynamic characteristics of COVID-19 patients with acute respiratory distress syndrome requiring mechanical ventilation. An invasive assessment using right heart catheterization. Eur. J. Hear Fail. 2020, 22, 2228–2237. [Google Scholar] [CrossRef]
- Pagnesi, M.; Baldetti, L.; Beneduce, A.; Calvo, F.; Gramegna, M.; Pazzanese, V.; Ingallina, G.; Napolano, A.; Finazzi, R.; Ruggeri, A.; et al. Pulmonary hypertension and right ventricular involvement in hospitalised patients with COVID-19. Heart 2020, 106, 1324–1331. [Google Scholar] [CrossRef]
- Charif, F.; Dakroub, F.; Akl, I.B.; Kularatne, M.; Montani, D. Pulmonary arterial hypertension and COVID-19: Piecing the puzzle. Respir. Med. Res. 2023, 84, 101053. [Google Scholar] [CrossRef]
- Tudoran, C.; Tudoran, M.; Lazureanu, V.E.; Marinescu, A.R.; Pop, G.N.; Pescariu, A.S.; Enache, A.; Cut, T.G. Evidence of Pulmonary Hypertension after SARS-CoV-2 Infection in Subjects without Previous Significant Cardiovascular Pathology. J. Clin. Med. 2021, 10, 199. [Google Scholar] [CrossRef]
- Khan, A.W.; Ullah, I.; Khan, K.S.; Tahir, M.J.; Masyeni, S.; Harapan, H. Pulmonary arterial hypertension post COVID-19: A sequala of SARS-CoV-2 infection? Respir. Med. Case Rep. 2021, 33, 101429. [Google Scholar] [CrossRef]
- Scudiero, F.; Silverio, A.; Di Maio, M.; Russo, V.; Citro, R.; Personeni, D.; Cafro, A.; D′Andrea, A.; Attena, E.; Pezzullo, S.; et al. Pulmonary embolism in COVID-19 patients: Prevalence, predictors and clinical outcome. Thromb. Res. 2020, 198, 34–39. [Google Scholar] [CrossRef]
- Vlachou, M.; Drebes, A.; Candilio, L.; Weeraman, D.; Mir, N.; Murch, N.; Davies, N.; Coghlan, J.G. Pulmonary thrombosis in Covid-19: Before, during and after hospital admission. J. Thromb. Thrombolysis 2021, 51, 978–984. [Google Scholar] [CrossRef]
- Tudoran, C.; Tudoran, M.; Cut, T.G.; Lazureanu, V.E.; Oancea, C.; Marinescu, A.R.; Pescariu, S.A.; Pop, G.N.; Bende, F. Evolution of Echocardiographic Abnormalities Identified in Previously Healthy Individuals Recovering from COVID-19. J. Pers. Med. 2022, 12, 46. [Google Scholar] [CrossRef]
- Madjid, M.; Safavi-Naeini, P.; Solomon, S.D.; Vardeny, O. Potential effects of coronaviruses on the cardiovascular system: A review. JAMA Cardiol. 2020, 5, 831–840. [Google Scholar] [CrossRef]
- Satterfield, B.A.; Bhatt, D.L.; Gersh, B.J. Cardiac involvement in the long-term implications of COVID-19. Nat. Rev. Cardiol. 2021, 19, 332–341. [Google Scholar] [CrossRef]
- Wijeratne, D.T.; Lajkosz, K.; Brogly, S.B.; Lougheed, M.D.; Jiang, L.; Housin, A.; Barber, D.; Johnson, A.; Doliszny, K.M.; Archer, S.L. Increasing Incidence and Prevalence of World Health Organization Groups 1 to 4 Pulmonary Hypertension: A Population-Based Cohort Study in Ontario, Canada. Circ. Cardiovasc. Qual. Outcomes 2018, 11, e003973. [Google Scholar] [CrossRef]
- NHS Digital. National Audit of Pulmonary Hypertension 10th Annual Report, Great Britain, 2018–2019. Available online: https://digital.nhs.uk/data-and-information/publications/statistical/national-pulmonary-hypertension-audit/2019# (accessed on 15 August 2024).
- Zozaya, N.; Abdalla, F.; Moreno, I.C.; Crespo-Diz, C.; Gallardo, A.M.R.; Soriano, J.R.; Galán, M.A.; Hidalgo-Vega, A. The economic burden of pulmonary arterial hypertension in Spain. BMC Pulm. Med. 2022, 22, 105. [Google Scholar] [CrossRef]
- Burger, C.D.; Ghandour, M.; Menon, D.P.; Helmi, H.; Benza, R.L. Early intervention in the management of pulmonary arterial hypertension: Clinical and economic outcomes. Clin. Outcomes Res. 2017, 9, 731–739. [Google Scholar] [CrossRef]
- Bergot, E.; De Leotoing, L.; Bendjenana, H.; Tournier, C.; Vainchtock, A.; Nachbaur, G.; Humbert, M. Hospital burden of pulmonary arterial hypertension in France. PLoS ONE 2019, 14, e0221211. [Google Scholar] [CrossRef]
- Selexipag (Uptravi) for pulmonary arterial hypertension. Med. Lett. Drugs Ther. 2016, 58, 21–23.
- Sikirica, M.; Iorga, S.R.; Bancroft, T.; Potash, J. The economic burden of pulmonary arterial hypertension (PAH) in the US on payers and patients. BMC Heal Serv. Res. 2014, 14, 676. [Google Scholar] [CrossRef]
- Ogbomo, A.; Tsang, Y.; Mallampati, R.; Panjabi, S. The direct and indirect health care costs associated with pulmonary arterial hypertension among commercially insured patients in the United States. J. Manag. Care Spéc. Pharm. 2022, 28, 608–616. [Google Scholar] [CrossRef]
- Sherif, A.A.; Gilvaz, V.J.; Abraham, S.; Saji, A.M.; Mathew, D.; Isath, A.; Rajendran, A.; Contreras, J.; Lanier, G.M.; Reginato, A.M. Systemic sclerosis is associated with increased in-patient mortality in patients hospitalized for heart failure. ESC Hear Fail. 2024, 11, 1900–1910. [Google Scholar] [CrossRef]
- Said, Q.; Martin, B.C.; Joish, V.N.; Kreilick, C.; Mathai, S.C. The cost to managed care of managing pulmonary hypertension. J. Med. Econ. 2012, 15, 500–508. [Google Scholar] [CrossRef]
- Weiss, T.; Near, A.M.; Zhao, X.; Ramey, D.R.; Banerji, T.; Xie, H.; Nathan, S.D. Healthcare resource utilization in patients with pulmonary hypertension associated with chronic obstructive pulmonary disease (PH-COPD): A real-world data analysis. BMC Pulm. Med. 2023, 23, 455. [Google Scholar] [CrossRef]
- Delcroix, M.; Howard, L. Pulmonary arterial hypertension: The burden of disease and impact on quality of life. Eur. Respir. Rev. 2015, 24, 621–629. [Google Scholar] [CrossRef]
- Fuge, J.; Park, D.-H.; von Lengerke, T.; Richter, M.J.; Gall, H.; Ghofrani, H.A.; Kamp, J.C.; Hoeper, M.M.; Olsson, K.M. Impact of Pulmonary Arterial Hypertension on Employment, Work Productivity, and Quality of Life—Results of a Cross-Sectional Multi-Center Study. Front. Psychiatry 2022, 12, 781532. [Google Scholar] [CrossRef]
- Runheim, H.; Kjellström, B.; Beaudet, A.; Ivarsson, B.; Husberg, M.; Pillai, N.; Levin, L.; Bernfort, L. Societal costs associated with pulmonary arterial hypertension: A study utilizing linked national registries. Pulm. Circ. 2023, 13, e12190. [Google Scholar] [CrossRef]
- Kjellström, B.; Runheim, H.; Beaudet, A.; Husberg, M.; Ivarsson, B.; Pillai, N.; Levin, L.; Bernfort, L. Societal costs associated to chronic thromboembolic pulmonary hypertension: A study utilizing linked national registries. Pulm. Circ. 2023, 13, e12254. [Google Scholar] [CrossRef] [PubMed]
- Eskandarian, R.; Sakhdari, M.S.; Yarmohamadi, M.; Mirmohammadkhani, M. Pulmonary Artery Pressure Status in Hemodialysis Patients and Its Association with Nutritional and Biochemical Markers. Middle East J. Rehabil. Health Stud. 2023, 11, e129698. [Google Scholar] [CrossRef]
- Mukhtar, K.N.; Mohkumuddin, S.; Mahmood, S.N. Frequency of Pulmonary Hypertension in hemodialysis patients. Pak. J. Med. Sci. 2014, 30, 1319–1322. [Google Scholar] [CrossRef] [PubMed]
- Tudoran, C.; Tudoran, M.; Ciocarlie, T.; Mates, A.; Pescariu, S.; AbuAwwad, A. Pulmonary hypertension in patients with end stage renal disease undergoing hemodialysis. Niger. J. Clin. Pr. 2020, 23, 198–204. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, X.-H.; Rao, R.; Wang, Y.; Pang, F.; Tang, S.; Nie, L.; Bian, S.-Z. The Prevalence of Pulmonary Hypertension Among Maintenance Dialysis Patients with ESRD and Its Associated Factors: A Retrospective Study. Front. Med. 2020, 7, 570874. [Google Scholar] [CrossRef] [PubMed]
- Lang, I.M.; Palazzini, M. The burden of comorbidities in pulmonary arterial hypertension. Eur. Heart J. Suppl. 2019, 21, K21–K28. [Google Scholar] [CrossRef] [PubMed]
- Marvisi, M.; Balzarini, L.; Mancini, C.; Mouzakiti, P. Thyroid gland and pulmonary hypertension. What’s the link? Panminerva Med. 2013, 55, 93–97. [Google Scholar] [PubMed]
- Ghofrani, H.-A.; Galiè, N.; Grimminger, F.; Grünig, E.; Humbert, M.; Jing, Z.-C.; Keogh, A.M.; Langleben, D.; Kilama, M.O.; Fritsch, A.; et al. Riociguat for the Treatment of Pulmonary Arterial Hypertension. N. Engl. J. Med. 2013, 369, 330–340. [Google Scholar] [CrossRef]
- Montani, D.; Günther, S.; Dorfmüller, P.; Perros, F.; Girerd, B.; Garcia, G.; Jaïs, X.; Savale, L.; Artaud-Macari, E.; Price, L.C.; et al. Pulmonary arterial hypertension. Orphanet J. Rare Dis. 2013, 8, 97. [Google Scholar] [CrossRef]
- Kanwar, M.K.; Tedford, R.J.; Thenappan, T.; De Marco, T.; Park, M.; McLaughlin, V. Elevated Pulmonary Pressure Noted on Echocardiogram: A Simplified Approach to Next Steps. J. Am. Hear Assoc. 2021, 10, e017684. [Google Scholar] [CrossRef]
- Guazzi, M.; Dixon, D.; Labate, V.; Beussink-Nelson, L.; Bandera, F.; Cuttica, M.J.; Shah, S.J. RV Contractile Function and its Coupling to Pulmonary Circulation in Heart Failure with Preserved Ejection Fraction: Stratification of Clinical Phenotypes and Outcomes. JACC Cardiovasc. Imaging 2017, 10, 1211–1221. [Google Scholar] [CrossRef]
- Tello, K.; Axmann, J.; Ghofrani, H.A.; Naeije, R.; Narcin, N.; Rieth, A.; Seeger, W.; Gall, H.; Richter, M.J. Relevance of the TAPSE/PASP ratio in pulmonary arterial hypertension. Int. J. Cardiol. 2018, 266, 229–235. [Google Scholar] [CrossRef]
- Rich, S.; Dantzker, D.R.; Ayres, S.M.; Bergofsky, E.H.; Brundage, B.H.; Detre, K.M.; Fishman, A.P.; Goldring, R.M.; Groves, B.M.; Koerner, S.K.; et al. Primary Pulmonary Hypertension. A national prospective study. Ann. Intern. Med. 1987, 107, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Henkens, I.R.; Mouchaers, K.T.B.; Vonk-Noordegraaf, A.; Boonstra, A.; Swenne, C.A.; Maan, A.C.; Man, S.-C.; Twisk, J.W.R.; van der Wall, E.E.; Schalij, M.J.; et al. Improved ECG detection of presence and severity of right ventricular pressure load validated with cardiac magnetic resonance imaging. Am. J. Physiol. Circ. Physiol. 2008, 294, H2150–H2157. [Google Scholar] [CrossRef] [PubMed]
- Wanamaker, B.; Cascino, T.; McLaughlin, V.; Oral, H.; Latchamsetty, R.; Siontis, K.C. Atrial Arrhythmias in Pulmonary Hypertension: Pathogenesis, Prognosis and Management. Arrhythmia Electrophysiol. Rev. 2018, 7, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Diller, G.-P.; Gatzoulis, M.A. Pulmonary Vascular Disease in Adults with Congenital Heart Disease. Circulation 2007, 115, 1039–1050. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, V.V.; Archer, S.L.; Badesch, D.B.; Barst, R.J.; Farber, H.W.; Lindner, J.R.; Mathier, M.A.; McGoon, M.D.; Park, M.H.; Rosenson, R.S.; et al. American College of Cardiology Foundation Task Force on Expert Consensus Documents, American Heart Association, American College of Chest Physicians, American Thoracic Society, Inc, & Pulmonary Hypertension Association (2009). ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J. Am. Coll. Cardiol. 2009, 53, 1573–1619. [Google Scholar] [CrossRef]
- Warwick, G.; Thomas, P.S.; Yates, D.H. Biomarkers in pulmonary hypertension. Eur. Respir. J. 2008, 32, 503–512. [Google Scholar] [CrossRef]
- Pfeuffer, E.; Krannich, H.; Halank, M.; Wilkens, H.; Kolb, P.; Jany, B.; Held, M. Anxiety, Depression, and Health-Related QOL in Patients Diagnosed with PAH or CTEPH. Lung 2017, 195, 759–768. [Google Scholar] [CrossRef]
- Harzheim, D.; Klose, H.; Pinado, F.P.; Ehlken, N.; Nagel, C.; Fischer, C.; Ghofrani, A.; Rosenkranz, S.; Seyfarth, H.-J.; Halank, M.; et al. Anxiety and depression disorders in patients with pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Respir. Res. 2013, 14, 104. [Google Scholar] [CrossRef]
- Tuder, R.M.; Abman, S.H.; Braun, T.; Capron, F.; Stevens, T.; Thistlethwaite, P.A.; Haworth, S.G. Development and Pathology of Pulmonary Hypertension. J. Am. Coll. Cardiol. 2009, 54, S3–S9. [Google Scholar] [CrossRef]
- Stacher, E.; Graham, B.B.; Hunt, J.M.; Gandjeva, A.; Groshong, S.D.; McLaughlin, V.V.; Jessup, M.; Grizzle, W.E.; Aldred, M.A.; Cool, C.D.; et al. Modern Age Pathology of Pulmonary Arterial Hypertension. Am. J. Respir. Crit. Care Med. 2012, 186, 261–272. [Google Scholar] [CrossRef]
- Chazova, I.E.; Loyd, J.; Zhdanov, V.S.; Newman, J.H.; Belenkov, Y.; Meyrick, B. Pulmonary artery adventitial changes and venous involvement in primary pulmonary hypertension. Am. J. Pathol. 1995, 146, 389–397. [Google Scholar] [PubMed]
- Cool, C.D.; Stewart, J.S.; Werahera, P.; Miller, G.J.; Williams, R.L.; Voelkel, N.F.; Tuder, R.M. Three-Dimensional Reconstruction of Pulmonary Arteries in Plexiform Pulmonary Hypertension Using Cell-Specific Markers. Evidence for a dynamic and heterogeneous process of pulmonary endothelial cell growth. Am. J. Pathol. 1999, 155, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Al-Omary, M.S.; Sugito, S.; Boyle, A.J.; Sverdlov, A.L.; Collins, N.J. Pulmonary Hypertension Due to Left Heart Disease. Hypertension 2020, 75, 1397–1408. [Google Scholar] [CrossRef] [PubMed]
- Valentini, A.; Franchi, P.; Cicchetti, G.; Messana, G.; Chiffi, G.; Strappa, C.; Calandriello, L.; del Ciello, A.; Farchione, A.; Preda, L.; et al. Pulmonary Hypertension in Chronic Lung Diseases: What Role Do Radiologists Play? Diagnostics 2023, 13, 1607. [Google Scholar] [CrossRef] [PubMed]
- Stenmark, K.R.; Gerasimovskaya, E.; Nemenoff, R.A.; Das, M. Hypoxic activation of adventitial fibroblasts: Role in vascular remodeling. Chest 2002, 122, 326S–334S. [Google Scholar] [CrossRef] [PubMed]
- Davie, N.J.; Crossno, J.T.; Frid, M.G.; Hofmeister, S.E.; Reeves, J.T.; Hyde, D.M.; Carpenter, T.C.; Brunetti, J.A.; McNiece, I.K.; Stenmark, K.R.; et al. Hypoxia-induced pulmonary artery adventitial remodeling and neovascularization: Contribution of progenitor cells. Am. J. Physiol. Cell Mol. Physiol. 2004, 286, L668–L678. [Google Scholar] [CrossRef]
- Tuder, R.M. Pulmonary vascular remodeling in pulmonary hypertension. Cell Tissue Res. 2016, 367, 643–649. [Google Scholar] [CrossRef]
- Delcroix, M.; Torbicki, A.; Gopalan, D.; Sitbon, O.; Klok, F.A.; Lang, I.; Jenkins, D.; Kim, N.H.; Humbert, M.; Jais, X.; et al. ERS statement on chronic thromboembolic pulmonary hypertension. Eur. Respir. J. 2020, 57, 2002828. [Google Scholar] [CrossRef]
- Giaid, A.; Yanagisawa, M.; Langleben, D.; Michel, R.P.; Levy, R.; Shennib, H.; Kimura, S.; Masaki, T.; Duguid, W.P.; Stewart, D.J. Expression of Endothelin-1 in the Lungs of Patients with Pulmonary Hypertension. N. Engl. J. Med. 1993, 328, 1732–1739. [Google Scholar] [CrossRef]
- Reesink, H.J.; Meijer, R.C.; Lutter, R.; Boomsma, F.; Jansen, H.M.; Kloek, J.J.; Bresser, P. Hemodynamic and Clinical Correlates of Endothelin-1 in Chronic Thromboembolic Pulmonary Hypertension. Circ. J. 2006, 70, 1058–1063. [Google Scholar] [CrossRef]
- Goerre, S.; Wenk, M.; Bärtsch, P.; Lüscher, T.F.; Niroomand, F.; Hohenhaus, E.; Oelz, O.; Reinhart, W.H. Endothelin-1 in Pulmonary Hypertension Associated with High-Altitude Exposure. Circulation 1995, 91, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Cacoub, P.; Dorent, R.; Nataf, P.; Carayon, A.; Riquet, M.; Noe, E.; Piette, J.C.; Godeau, P.; Gandjbakhch, I. Endothelin-1 in the lungs of patients with pulmonary hypertension. Cardiovasc. Res. 1997, 33, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Galié, N.; Manes, A.; Branzi, A. The endothelin system in pulmonary arterial hypertension. Cardiovasc. Res. 2004, 61, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Yuan, T.; Wang, R.; Gong, D.; Wang, S.; Du, G.; Fang, L. Insights into Endothelin Receptors in Pulmonary Hypertension. Int. J. Mol. Sci. 2023, 24, 10206. [Google Scholar] [CrossRef]
- Brewster, L.M.M.; Garcia, V.P.; Levy, M.V.; Stockelman, K.A.; Goulding, A.; DeSouza, N.M.; Greiner, J.J.; Hijmans, J.G.; DeSouza, C.A. Endothelin-1-induced endothelial microvesicles impair endothelial cell function. J. Appl. Physiol. 2020, 128, 1497–1505. [Google Scholar] [CrossRef]
- Marsden, P.A.; Danthuluri, N.R.; Brenner, B.M.; Ballermann, B.J.; Brock, T.A. Endothelin action on vascular smooth muscle involves inositol trisphosphate and calcium mobilization. Biochem. Biophys. Res. Commun. 1989, 158, 86–93. [Google Scholar] [CrossRef]
- Zhang, Y.-M.; Wang, K.-Q.; Zhou, G.-M.; Zuo, J.; Ge, J.-B. Endothelin-1 promoted proliferation of vascular smooth muscle cell through pathway of extracellular signal-regulated kinase and cyclin D1. Acta Pharmacol. Sin. 2003, 24, 563–568. [Google Scholar]
- Douglas, S.A.; Ohlstein, E.H. Signal Transduction Mechanisms Mediating the Vascular Actions of Endothelin. J. Vasc. Res. 1997, 34, 152–164. [Google Scholar] [CrossRef]
- Simonson, M.S.; Wann, S.; Mené, P.; Dubyak, G.R.; Kester, M.; Nakazato, Y.; Sedor, J.R.; Dunn, M.J. Endothelin stimulates phospholipase C, Na+/H+ exchange, c-fos expression, and mitogenesis in rat mesangial cells. J. Clin. Investig. 1989, 83, 708–712. [Google Scholar] [CrossRef]
- Koller, B.; Steringer-Mascherbauer, R.; Ebner, C.; Weber, T.; Ammer, M.; Eichinger, J.; Pretsch, I.; Herold, M.; Schwaiger, J.; Ulmer, H.; et al. Pilot Study of Endothelin Receptor Blockade in Heart Failure with Diastolic Dysfunction and Pulmonary Hypertension (BADDHY-Trial). Hear Lung Circ. 2017, 26, 433–441. [Google Scholar] [CrossRef]
- Vachiéry, J.-L.; Delcroix, M.; Al-Hiti, H.; Efficace, M.; Hutyra, M.; Lack, G.; Papadakis, K.; Rubin, L.J. Macitentan in pulmonary hypertension due to left ventricular dysfunction. Eur. Respir. J. 2018, 51, 1701886. [Google Scholar] [CrossRef] [PubMed]
- Packer, M.; McMurray, J.J.; Krum, H.; Kiowski, W.; Massie, B.M.; Caspi, A.; Pratt, C.M.; Petrie, M.C.; DeMets, D.; Kobrin, I.; et al. Long-Term Effect of Endothelin Receptor Antagonism with Bosentan on the Morbidity and Mortality of Patients with Severe Chronic Heart Failure. Primary Results of the ENABLE Trials. JACC Hear Fail. 2017, 5, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Song, J.H.; Park, D.-A.; Lee, J.S.; Lee, S.-D.; Oh, Y.-M. Systematic Review and Meta-Analysis of Pulmonary Hypertension Specific Therapy for Exercise Capacity in Chronic Obstructive Pulmonary Disease. J. Korean Med. Sci. 2013, 28, 1200–1206. [Google Scholar] [CrossRef] [PubMed]
- Rubin, L.J.; Badesch, D.B.; Barst, R.J.; Galiè, N.; Black, C.M.; Keogh, A.; Pulido, T.; Frost, A.; Roux, S.; Leconte, I.; et al. Bosentan Therapy for Pulmonary Arterial Hypertension. N. Engl. J. Med. 2002, 346, 896–903. [Google Scholar] [CrossRef] [PubMed]
- Galiè, N.; Rubin, L.; Hoeper, M.; Jansa, P.; Al-Hiti, H.; Meyer, G.; Chiossi, E.; Kusic-Pajic, A.; Simonneau, G. Treatment of patients with mildly symptomatic pulmonary arterial hypertension with bosentan (EARLY study): A double-blind, randomised controlled trial. Lancet 2008, 371, 2093–2100. [Google Scholar] [CrossRef]
- Pulido, T.; Adzerikho, I.; Channick, R.N.; Delcroix, M.; Galiè, N.; Ghofrani, A.; Jansa, P.; Jing, Z.-C.; Le Brun, F.-O.; Mehta, S.; et al. Macitentan and Morbidity and Mortality in Pulmonary Arterial Hypertension. N. Engl. J. Med. 2013, 369, 809–818. [Google Scholar] [CrossRef]
- Galiè, N.; Olschewski, H.; Oudiz, R.J.; Torres, F.; Frost, A.; Ghofrani, H.A.; Badesch, D.B.; McGoon, M.D.; McLaughlin, V.V.; Roecker, E.B.; et al. Ambrisentan for the treatment of pulmonary arterial hypertension: Results of the ambrisentan in pulmonary arterial hypertension, randomized, double-blind, placebo-controlled, multicenter, efficacy (ARIES) study 1 and 2. Circulation 2008, 117, 3010–3019. [Google Scholar] [CrossRef]
- Lumb, A.B.; Slinger, P. Hypoxic Pulmonary Vasoconstriction. Anesthesiology 2015, 122, 932–946. [Google Scholar] [CrossRef]
- Giaid, A.; Saleh, D. Reduced Expression of Endothelial Nitric Oxide Synthase in the Lungs of Patients with Pulmonary Hypertension. N. Engl. J. Med. 1995, 333, 214–221. [Google Scholar] [CrossRef]
- Wharton, J.; Strange, J.W.; Møller, G.M.O.; Growcott, E.J.; Ren, X.; Franklyn, A.P.; Phillips, S.C.; Wilkins, M.R. Antiproliferative Effects of Phosphodiesterase Type 5 Inhibition in Human Pulmonary Artery Cells. Am. J. Respir. Crit. Care Med. 2005, 172, 105–113. [Google Scholar] [CrossRef]
- Galiè, N.; Ghofrani, H.A.; Torbicki, A.; Barst, R.J.; Rubin, L.J.; Badesch, D.; Fleming, T.; Parpia, T.; Burgess, G.; Branzi, A.; et al. Sildenafil Citrate Therapy for Pulmonary Arterial Hypertension. N. Engl. J. Med. 2005, 353, 2148–2157. [Google Scholar] [CrossRef] [PubMed]
- Galiè, N.; Brundage, B.H.; Ghofrani, H.A.; Oudiz, R.J.; Simonneau, G.; Safdar, Z.; Shapiro, S.; White, R.J.; Chan, M.; Beardsworth, A.; et al. Tadalafil Therapy for Pulmonary Arterial Hypertension. Circulation 2009, 119, 2894–2903. [Google Scholar] [CrossRef] [PubMed]
- Ghofrani, H.-A.; D’Armini, A.M.; Grimminger, F.; Hoeper, M.M.; Jansa, P.; Kim, N.H.; Mayer, E.; Simonneau, G.; Wilkins, M.R.; Fritsch, A.; et al. Riociguat for the Treatment of Chronic Thromboembolic Pulmonary Hypertension. N. Engl. J. Med. 2013, 369, 319–329. [Google Scholar] [CrossRef]
- Tuder, R.M.; Cool, C.D.; Geraci, M.W.; Wang, J.; Abman, S.H.; Wright, L.; Badesch, D.; Voelkel, N.F. Prostacyclin Synthase Expression Is Decreased in Lungs from Patients with Severe Pulmonary Hypertension. Am. J. Respir. Crit. Care Med. 1999, 159, 1925–1932. [Google Scholar] [CrossRef] [PubMed]
- Barst, R.J.; Rubin, L.J.; Long, W.A.; McGoon, M.D.; Rich, S.; Badesch, D.B.; Groves, B.M.; Tapson, V.F.; Bourge, R.C.; Brundage, B.H.; et al. A Comparison of Continuous Intravenous Epoprostenol (Prostacyclin) with Conventional Therapy for Primary Pulmonary Hypertension. N. Engl. J. Med. 1996, 334, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Badesch, D.B.; Tapson, V.F.; McGoon, M.D.; Brundage, B.H.; Rubin, L.J.; Wigley, F.M.; Rich, S.; Barst, R.J.; Barrett, P.S.; Kral, K.M.; et al. Continuous Intravenous Epoprostenol for Pulmonary Hypertension Due to the Scleroderma Spectrum of Disease. Ann. Intern. Med. 2000, 132, 425–434. [Google Scholar] [CrossRef]
- Simonneau, G.; Barst, R.J.; Galie, N.; Naeije, R.; Rich, S.; Bourge, R.C.; Keogh, A.; Oudiz, R.; Frost, A.; Blackburn, S.D.; et al. Continuous subcutaneous infusion of treprostinil, a prostacyclin analogue, in patients with pulmonary arterial hypertension: A double-blind, randomized, placebo-controlled trial. Am. J. Respir. Crit. Care Med. 2002, 165, 800–804. [Google Scholar] [CrossRef]
- McLaughlin, V.V.; Benza, R.L.; Rubin, L.J.; Channick, R.N.; Voswinckel, R.; Tapson, V.F.; Robbins, I.M.; Olschewski, H.; Rubenfire, M.; Seeger, W. Addition of inhaled treprostinil to oral therapy for pulmonary arterial hypertension: A randomized controlled clinical trial. J. Am. Coll. Cardiol. 2010, 55, 1915–1922. [Google Scholar] [CrossRef]
- Tapson, V.F.; Jing, Z.-C.; Xu, K.-F.; Pan, L.; Feldman, J.; Kiely, D.G.; Kotlyar, E.; McSwain, C.S.; Laliberte, K.; Arneson, C.; et al. Oral Treprostinil for the Treatment of Pulmonary Arterial Hypertension in Patients Receiving Background Endothelin Receptor Antagonist and Phosphodiesterase Type 5 Inhibitor Therapy (The FREEDOM-C2 Study). Chest 2013, 144, 952–958. [Google Scholar] [CrossRef]
- Tapson, V.F.; Torres, F.; Kermeen, F.; Keogh, A.M.; Allen, R.P.; Frantz, R.P.; Badesch, D.B.; Frost, A.E.; Shapiro, S.M.; Laliberte, K.; et al. Oral Treprostinil for the Treatment of Pulmonary Arterial Hypertension in Patients on Background Endothelin Receptor Antagonist and/or Phosphodiesterase Type 5 Inhibitor Therapy (The FREEDOM-C Study): A randomized controlled trial. Chest 2012, 142, 1383–1390. [Google Scholar] [CrossRef]
- Nathan, S.D.; Tapson, V.F.; Elwing, J.; Rischard, F.; Mehta, J.; Shapiro, S.; Shen, E.; Deng, C.; Smith, P.; Waxman, A. Efficacy of Inhaled Treprostinil on Multiple Disease Progression Events in Patients with Pulmonary Hypertension due to Parenchymal Lung Disease in the INCREASE Trial. Am. J. Respir. Crit. Care Med. 2021, 205, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Waxman, A.; Restrepo-Jaramillo, R.; Thenappan, T.; Ravichandran, A.; Engel, P.; Bajwa, A.; Allen, R.; Feldman, J.; Argula, R.; Smith, P.; et al. Inhaled Treprostinil in Pulmonary Hypertension Due to Interstitial Lung Disease. N. Engl. J. Med. 2021, 384, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Olschewski, H.; Simonneau, G.; Galiè, N.; Higenbottam, T.; Naeije, R.; Rubin, L.J.; Nikkho, S.; Speich, R.; Hoeper, M.M.; Behr, J.; et al. Inhaled Iloprost for Severe Pulmonary Hypertension. N. Engl. J. Med. 2002, 347, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Simonneau, G.; Torbicki, A.; Hoeper, M.M.; Delcroix, M.; Karlócai, K.; Galiè, N.; Degano, B.; Bonderman, D.; Kurzyna, M.; Efficace, M.; et al. Selexipag: An oral, selective prostacyclin receptor agonist for the treatment of pulmonary arterial hypertension. Eur. Respir. J. 2012, 40, 874–880. [Google Scholar] [CrossRef]
- Sitbon, O.; Channick, R.; Chin, K.M.; Frey, A.; Gaine, S.; Galiè, N.; Ghofrani, H.-A.; Hoeper, M.M.; Lang, I.M.; Preiss, R.; et al. Selexipag for the Treatment of Pulmonary Arterial Hypertension. N. Engl. J. Med. 2015, 373, 2522–2533. [Google Scholar] [CrossRef]
- Galiè, N.; Humbert, M.; Vachiéry, J.-L.; Vizza, C.; Kneussl, M.; Manes, A.; Sitbon, O.; Torbicki, A.; Delcroix, M.; Naeije, R.; et al. Effects of beraprost sodium, an oral prostacyclin analogue, in patients with pulmonary arterial hypertension: A randomized, double-blind, placebo-controlled trial. J. Am. Coll. Cardiol. 2002, 39, 1496–1502. [Google Scholar] [CrossRef]
- Barst, R.J.; McGoon, M.; McLaughlin, V.; Tapson, V.; Oudiz, R.; Shapiro, S.; Robbins, I.M.; Channick, R.; Badesch, D.; Rayburn, B.K.; et al. Beraprost therapy for pulmonary arterial hypertension. J. Am. Coll. Cardiol. 2003, 41, 2119–2125. [Google Scholar] [CrossRef]
- Sylvester, J.T.; Shimoda, L.A.; Aaronson, P.I.; Ward, J.P.T. Hypoxic Pulmonary Vasoconstriction. Physiol. Rev. 2012, 92, 367–520. [Google Scholar] [CrossRef]
- Green, S.; Stuart, D. Oxygen and pulmonary arterial hypertension: Effects, mechanisms, and therapeutic benefits. Eur. J. Prev. Cardiol. 2020, 28, 127–136. [Google Scholar] [CrossRef]
- Rawat, M.; Lakshminrusimha, S.; Vento, M.; Rawat, M.; Lakshminrusimha, S.; Vento, M. Pulmonary hypertension and oxidative stress: Where is the link? Semin. Fetal Neonatal Med. 2022, 27, 101347. [Google Scholar] [CrossRef]
- Dunham-Snary, K.J.; Wu, D.; Sykes, E.A.; Thakrar, A.; Parlow, L.R.; Mewburn, J.D.; Parlow, J.L.; Archer, S.L. Hypoxic pulmonary vasoconstriction: From molecular mechanisms to medicine. Chest 2017, 151, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Post, J.M.; Hume, J.R.; Archer, S.L.; Weir, E.K. Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction. Am. J. Physiol. Physiol. 1992, 262, C882–C890. [Google Scholar] [CrossRef] [PubMed]
- McMurtry, I.F.; Davidson, A.B.; Reeves, J.T.; Grover, R.F. Inhibition of hypoxic pulmonary vasoconstriction by calcium antagonists in isolated rat lungs. Circ. Res. 1976, 38, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Rhoades, R.A.; Packer, C.S.; Roepke, D.A.; Jin, N.; Meiss, R.A. Reactive oxygen species alter contractile properties of pulmonary arterial smooth muscle. Can. J. Physiol. Pharmacol. 1990, 68, 1581–1589. [Google Scholar] [CrossRef] [PubMed]
- Black, S.M.; Johengen, M.J.; Soifer, S.J. Coordinated Regulation of Genes of the Nitric Oxide and Endothelin Pathways during the Development of Pulmonary Hypertension in Fetal Lambs. Pediatr. Res. 1998, 44, 821–830. [Google Scholar] [CrossRef]
- Steinhorn, R.H.; Russell, J.A.; Morin, F.C. Disruption of cGMP production in pulmonary arteries isolated from fetal lambs with pulmonary hypertension. Am. J. Physiol. Circ. Physiol. 1995, 268, H1483–H1489. [Google Scholar] [CrossRef]
- Ivy, D.D.; Ziegler, J.W.; Dubus, M.F.; Fox, J.J.; Kinsella, J.P.; Abman, S.H. Chronic Intrauterine Pulmonary Hypertension Alters Endothelin Receptor Activity in the Ovine Fetal Lung. Pediatr. Res. 1996, 39, 435–442. [Google Scholar] [CrossRef]
- Bailey, D.M.; Dehnert, C.; Luks, A.M.; Menold, E.; Castell, C.; Schendler, G.; Faoro, V.; Gutowski, M.; Evans, K.A.; Taudorf, S.; et al. High-altitude pulmonary hypertension is associated with a free radical-mediated reduction in pulmonary nitric oxide bioavailability. J. Physiol. 2010, 588, 4837–4847. [Google Scholar] [CrossRef]
- Xu, W.; Kaneko, F.T.; Zheng, S.; Comhair, S.A.A.; Janocha, A.J.; Goggans, T.; Thunnissen, F.B.J.M.; Farver, C.; Hazen, S.L.; Jennings, C.; et al. Increased arginase II and decreased NO synthesis in endothelial cells of patients with pulmonary arterial hypertension. FASEB J. 2004, 18, 1746–1748. [Google Scholar] [CrossRef]
- Block, E.R.; Herrera, H.; Couch, M. Hypoxia inhibits L-arginine uptake by pulmonary artery endothelial cells. Am. J. Physiol. Cell Mol. Physiol. 1995, 269, L574–L580. [Google Scholar] [CrossRef]
- Heath, D.; Yacoub, M.; Gosney, J.; Madden, B.; Caslin, A.; Smith, P. Pulmonary endocrine cells in hypertensive pulmonary vascular disease. Histopathology 1990, 16, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, M.; Furukawa, K.T.; Morimoto, M. Pulmonary neuroendocrine cells: Physiology, tissue homeostasis and disease. Dis. Model. Mech. 2020, 13, dmm046920. [Google Scholar] [CrossRef] [PubMed]
- Tjen-A-Looi, S.C.; Fu, L.W.; Nguyen, A.T.; Gong, Y.; Malik, S. Autonomic Function and Electroacupuncture. In Advanced Acupuncture Research: From Bench to Bedside; Xia, Y., Ed.; Springer: Cham, Switzerland, 2022; pp. 345–360. [Google Scholar] [CrossRef]
- Fu, X.W.; Nurse, C.A.; Wong, V.; Cutz, E. Hypoxia-induced secretion of serotonin from intact pulmonary neuroepithelial bodies in neonatal rabbit. J. Physiol. 2002, 539, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Pullamsetti, S.S.; Mamazhakypov, A.; Weissmann, N.; Seeger, W.; Savai, R. Hypoxia-inducible factor signaling in pulmonary hypertension. J. Clin. Investig. 2020, 130, 5638–5651. [Google Scholar] [CrossRef]
- Hewes, J.L.; Lee, J.Y.; Fagan, K.A.; Bauer, N.N. The changing face of pulmonary hypertension diagnosis: A historical perspective on the influence of diagnostics and biomarkers. Pulm. Circ. 2020, 10, 2045894019892801. [Google Scholar] [CrossRef]
- Jaitovich, A.; Jourd’heuil, D. A Brief Overview of Nitric Oxide and Reactive Oxygen Species Signaling in Hypoxia-Induced Pulmonary Hypertension. Adv. Exp. Med. Biol. 2017, 967, 71–81. [Google Scholar] [CrossRef]
- Brunelle, J.K.; Bell, E.L.; Quesada, N.M.; Vercauteren, K.; Tiranti, V.; Zeviani, M.; Scarpulla, R.C.; Chandel, N.S. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab. 2005, 1, 409–414. [Google Scholar] [CrossRef]
- Guzy, R.D.; Hoyos, B.; Robin, E.; Chen, H.; Liu, L.; Mansfield, K.D.; Simon, M.C.; Hammerling, U.; Schumacker, P.T. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005, 1, 401–408. [Google Scholar] [CrossRef]
- Mansfield, K.D.; Guzy, R.D.; Pan, Y.; Young, R.M.; Cash, T.P.; Schumacker, P.T.; Simon, M.C. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-α activation. Cell Metab. 2005, 1, 393–399. [Google Scholar] [CrossRef]
- Shimoda, L.A.; Manalo, D.J.; Sham, J.S.K.; Semenza, G.L.; Sylvester, J.T. Partial HIF-1α deficiency impairs pulmonary arterial myocyte electrophysiological responses to hypoxia. Am. J. Physiol. Cell Mol. Physiol. 2001, 281, L202–L208. [Google Scholar] [CrossRef]
- Bonnet, S.; Michelakis, E.D.; Porter, C.J.; Andrade-Navarro, M.A.; Thébaud, B.; Bonnet, S.; Haromy, A.; Harry, G.; Moudgil, R.; McMurtry, M.S.; et al. An abnormal mitochondrial–hypoxia inducible factor-1α–kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: Similarities to human pulmonary arterial hypertension. Circulation 2006, 113, 2630–2641. [Google Scholar] [CrossRef] [PubMed]
- Shimoda, L.A.; Fallon, M.; Pisarcik, S.; Wang, J.; Semenza, G.L. HIF-1 regulates hypoxic induction of NHE1 expression and alkalinization of intracellular pH in pulmonary arterial myocytes. Am. J. Physiol. Cell Mol. Physiol. 2006, 291, L941–L949. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, K.; Discher, D.J.; Hu, J.; Bishopric, N.H.; Webster, K.A. Molecular Regulation of the endothelin-1 gene by hypoxia. Contributions of hypoxia-inducible factor-1, activator protein-1, GATA-2, AND p300/CBP. J. Biol. Chem. 2001, 276, 12645–12653. [Google Scholar] [CrossRef] [PubMed]
- Tuder, R.M.; Chacon, M.; Alger, L.; Wang, J.; Taraseviciene-Stewart, L.; Kasahara, Y.; Cool, C.D.; Bishop, A.E.; Geraci, M.; Semenza, G.L.; et al. Expression of angiogenesis-related molecules in plexiform lesions in severe pulmonary hypertension: Evidence for a process of disordered angiogenesis. J. Pathol. 2001, 195, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Alba, G.A.; Samokhin, A.O.; Wang, R.-S.; Zhang, Y.-Y.; Wertheim, B.M.; Arons, E.; Greenfield, E.A.; Slingsby, M.H.L.; Ceglowski, J.R.; Haley, K.J.; et al. NEDD9 Is a Novel and Modifiable Mediator of Platelet–Endothelial Adhesion in the Pulmonary Circulation. Am. J. Respir. Crit. Care Med. 2021, 203, 1533–1545. [Google Scholar] [CrossRef]
- Chai, X.; Sun, D.; Han, Q.; Yi, L.; Wu, Y.; Liu, X. Hypoxia induces pulmonary arterial fibroblast proliferation, migration, differentiation and vascular remodeling via the PI3K/Akt/p70S6K signaling pathway. Int. J. Mol. Med. 2018, 41, 2461–2472. [Google Scholar] [CrossRef]
- Ryanto, G.R.T.; Ikeda, K.; Miyagawa, K.; Tu, L.; Guignabert, C.; Humbert, M.; Fujiyama, T.; Yanagisawa, M.; Hirata, K.-I.; Emoto, N. An endothelial activin A-bone morphogenetic protein receptor type 2 link is overdriven in pulmonary hypertension. Nat. Commun. 2021, 12, 1720. [Google Scholar] [CrossRef]
- Merfeld-Clauss, S.; Lu, H.; Wu, X.; March, K.L.; Traktuev, D.O. Hypoxia-induced activin A diminishes endothelial cell vasculogenic activity. J. Cell. Mol. Med. 2017, 22, 173–184. [Google Scholar] [CrossRef]
- Sandoval, J.; Aguirre, J.S.; Pulido, T.; Martinez-Guerra, M.L.; Santos, E.; Alvarado, P.; Rosas, M.; Bautista, E. Nocturnal Oxygen Therapy in Patients with the Eisenmenger Syndrome. Am. J. Respir. Crit. Care Med. 2001, 164, 1682–1687. [Google Scholar] [CrossRef]
- Din, S.; Sarathchandra, P.; Yacoub, M.H.; Chester, A.H. Interaction between bone morphogenetic proteins and endothelin-1 in human pulmonary artery smooth muscle. Vasc. Pharmacol. 2009, 51, 344–349. [Google Scholar] [CrossRef]
- Maruyama, H.; Dewachter, C.; Belhaj, A.; Rondelet, B.; Sakai, S.; Remmelink, M.; Vachiery, J.-L.; Naeije, R.; Dewachter, L. Endothelin-Bone morphogenetic protein type 2 receptor interaction induces pulmonary artery smooth muscle cell hyperplasia in pulmonary arterial hypertension. J. Hear Lung Transplant. 2015, 34, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Soon, E.; Crosby, A.; Southwood, M.; Yang, P.; Tajsic, T.; Toshner, M.; Appleby, S.; Shanahan, C.M.; Bloch, K.D.; Pepke-Zaba, J.; et al. Bone Morphogenetic Protein Receptor Type II Deficiency and Increased Inflammatory Cytokine Production. A Gateway to Pulmonary Arterial Hypertension. Am. J. Respir. Crit. Care Med. 2015, 192, 859–872. [Google Scholar] [CrossRef] [PubMed]
- Talati, M.; West, J.; Zaynagetdinov, R.; Hong, C.C.; Han, W.; Blackwell, T.; Robinson, L.; Blackwell, T.S.; Lane, K. BMP Pathway Regulation of and by Macrophages. PLoS ONE 2014, 9, e94119. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.W.; Song, H.; Kumar, S.; Nam, D.; Kwon, H.S.; Chang, K.H.; Son, D.J.; Kang, D.-W.; Brodie, S.A.; Weiss, D.; et al. Anti-Inflammatory and Antiatherogenic Role of BMP Receptor II in Endothelial Cells. Arter. Thromb. Vasc. Biol. 2013, 33, 1350–1359. [Google Scholar] [CrossRef] [PubMed]
- Sawada, H.; Saito, T.; Nickel, N.P.; Alastalo, T.-P.; Glotzbach, J.P.; Chan, R.; Haghighat, L.; Fuchs, G.; Januszyk, M.; Cao, A.; et al. Reduced BMPR2 expression induces GM-CSF translation and macrophage recruitment in humans and mice to exacerbate pulmonary hypertension. J. Exp. Med. 2014, 211, 263–280. [Google Scholar] [CrossRef] [PubMed]
- Palakeel, J.J.; Ali, M.; Chaduvula, P.; Chhabra, S.; Lamichhane, S.L.; Ramesh, V.; Opara, O.C.; Khan, F.Y.; Kabiraj, G.; Kauser, H.; et al. An Outlook on the Etiopathogenesis of Pulmonary Hypertension in HIV. Cureus 2022, 14, e27390. [Google Scholar] [CrossRef]
- Diebold, I.; Hennigs, J.K.; Miyagawa, K.; Li, C.G.; Nickel, N.P.; Kaschwich, M.; Cao, A.; Wang, L.; Reddy, S.; Chen, P.-I.; et al. BMPR2 Preserves Mitochondrial Function and DNA during Reoxygenation to Promote Endothelial Cell Survival and Reverse Pulmonary Hypertension. Cell Metab. 2015, 21, 596–608. [Google Scholar] [CrossRef]
- Sutendra, G.; Michelakis, E.D. The Metabolic Basis of Pulmonary Arterial Hypertension. Cell Metab. 2014, 19, 558–573. [Google Scholar] [CrossRef]
- Ryanto, G.R.T.; Musthafa, A.; Hara, T.; Emoto, N. Inactivating the Uninhibited: The Tale of Activins and Inhibins in Pulmonary Arterial Hypertension. Int. J. Mol. Sci. 2023, 24, 3332. [Google Scholar] [CrossRef]
- Olsen, O.E.; Sankar, M.; Elsaadi, S.; Hella, H.; Buene, G.; Darvekar, S.R.; Misund, K.; Katagiri, T.; Knaus, P.; Holien, T. BMPR2 inhibits activin and BMP signaling via wild-type ALK2. J. Cell Sci. 2018, 131, jcs.213512. [Google Scholar] [CrossRef]
- Yung, L.-M.; Yang, P.; Joshi, S.; Augur, Z.M.; Kim, S.S.J.; Bocobo, G.A.; Dinter, T.; Troncone, L.; Chen, P.-S.; McNeil, M.E.; et al. ACTRIIA-Fc rebalances activin/GDF versus BMP signaling in pulmonary hypertension. Sci. Transl. Med. 2020, 12, eaaz5660. [Google Scholar] [CrossRef] [PubMed]
- Humbert, M.; McLaughlin, V.; Gibbs, J.S.R.; Gomberg-Maitland, M.; Hoeper, M.M.; Preston, I.R.; Souza, R.; Waxman, A.; Subias, P.E.; Feldman, J.; et al. Sotatercept for the Treatment of Pulmonary Arterial Hypertension. N. Engl. J. Med. 2021, 384, 1204–1215. [Google Scholar] [CrossRef] [PubMed]
- Hoeper, M.M.; Badesch, D.B.; Ghofrani, H.A.; Gibbs, J.S.R.; Gomberg-Maitland, M.; McLaughlin, V.V.; Preston, I.R.; Souza, R.; Waxman, A.B.; Grünig, E.; et al. Phase 3 Trial of Sotatercept for Treatment of Pulmonary Arterial Hypertension. N. Engl. J. Med. 2023, 388, 1478–1490. [Google Scholar] [CrossRef] [PubMed]
- Tuder, R.M.; Marecki, J.C.; Richter, A.; Fijalkowska, I.; Flores, S. Pathology of Pulmonary Hypertension. Clin. Chest Med. 2007, 28, 23–42. [Google Scholar] [CrossRef] [PubMed]
- Heath, D.; Yacoub, M. Lung mast cells in plexogenic pulmonary arteriopathy. J. Clin. Pathol. 1991, 44, 1003–1006. [Google Scholar] [CrossRef]
- Perros, F.; Dorfmuller, P.; Souza, R.; Durand-Gasselin, I.; Mussot, S.; Mazmanian, M.; Herve, P.; Emilie, D.; Simonneau, G.; Humbert, M. Dendritic cell recruitment in lesions of human and experimental pulmonary hypertension. Eur. Respir. J. 2007, 29, 462–468. [Google Scholar] [CrossRef]
- Tuder, R.M.; Groves, B.; Badesch, D.B.; Voelkel, N.F. Exuberant endothelial cell growth and elements of inflam-mation are present in plexiform lesions of pulmonary hypertension. Am. J. Pathol. 1994, 144, 275–285. [Google Scholar]
- Soon, E.; Holmes, A.M.; Treacy, C.M.; Doughty, N.J.; Southgate, L.; Machado, R.D.; Trembath, R.C.; Jennings, S.; Barker, L.; Nicklin, P.; et al. Elevated Levels of Inflammatory Cytokines Predict Survival in Idiopathic and Familial Pulmonary Arterial Hypertension. Circulation 2010, 122, 920–927. [Google Scholar] [CrossRef]
- Humbert, M.; Monti, G.; Brenot, F.; Sitbon, O.; Portier, A.; Grangeot-Keros, L.; Duroux, P.; Galanaud, P.; Simonneau, G.; Emilie, D. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am. J. Respir. Crit. Care Med. 1995, 151, 1628–1631. [Google Scholar] [CrossRef]
- Smolders, V.F.E.D.; Lodder, K.; Rodríguez, C.; Tura-Ceide, O.; Barberà, J.A.; Jukema, J.W.; Quax, P.H.A.; Goumans, M.J.; Kurakula, K. The Inflammatory Profile of CTEPH-Derived Endothelial Cells Is a Possible Driver of Disease Progression. Cells 2021, 10, 737. [Google Scholar] [CrossRef]
- Parpaleix, A.; Amsellem, V.; Houssaini, A.; Abid, S.; Breau, M.; Marcos, E.; Sawaki, D.; Delcroix, M.; Quarck, R.; Maillard, A.; et al. Role of interleukin-1 receptor 1/MyD88 signalling in the development and progression of pulmonary hypertension. Eur. Respir. J. 2016, 48, 470–483. [Google Scholar] [CrossRef] [PubMed]
- Brock, M.; Trenkmann, M.; Gay, R.E.; Michel, B.A.; Gay, S.; Fischler, M.; Ulrich, S.; Speich, R.; Huber, L.C. Interleukin-6 Modulates the Expression of the Bone Morphogenic Protein Receptor Type II Through a Novel STAT3–microRNA Cluster 17/92 Pathway. Circ. Res. 2009, 104, 1184–1191. [Google Scholar] [CrossRef] [PubMed]
- Steiner, M.K.; Syrkina, O.L.; Kolliputi, N.; Mark, E.J.; Hales, C.A.; Waxman, A.B. Interleukin-6 Overexpression Induces Pulmonary Hypertension. Circ. Res. 2009, 104, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Coll-Bonfill, N.; Musri, M.M.; Ivo, V.; Barberà, J.A.; Tura-Ceide, O. Transdifferentiation of endothelial cells to smooth muscle cells play an important role in vascular remodelling. Am. J. Stem. Cells. 2015, 4, 13–21. [Google Scholar] [PubMed]
- Selimovic, N.; Bergh, C.-H.; Andersson, B.; Sakiniene, E.; Carlsten, H.; Rundqvist, B. Growth factors and interleukin-6 across the lung circulation in pulmonary hypertension. Eur. Respir. J. 2009, 34, 662–668. [Google Scholar] [CrossRef]
- Li, A.; Varney, M.L.; Valasek, J.; Godfrey, M.; Dave, B.J.; Singh, R.K. Autocrine Role of Interleukin-8 in Induction of Endothelial Cell Proliferation, Survival, Migration and MMP-2 Production and Angiogenesis. Angiogenesis 2005, 8, 63–71. [Google Scholar] [CrossRef]
- Zimmermann, N.; King, N.E.; Laporte, J.; Yang, M.; Mishra, A.; Pope, S.M.; Muntel, E.E.; Witte, D.P.; Pegg, A.A.; Foster, P.S.; et al. Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis. J. Clin. Investig. 2003, 111, 1863–1874. [Google Scholar] [CrossRef]
- Tamosiuniene, R.; Tian, W.; Dhillon, G.; Wang, L.; Sung, Y.K.; Gera, L.; Patterson, A.J.; Agrawal, R.; Rabinovitch, M.; Ambler, K.; et al. Regulatory T Cells Limit Vascular Endothelial Injury and Prevent Pulmonary Hypertension. Circ. Res. 2011, 109, 867–879. [Google Scholar] [CrossRef]
- Huertas, A.; Tu, L.; Gambaryan, N.; Girerd, B.; Perros, F.; Montani, D.; Fabre, D.; Fadel, E.; Eddahibi, S.; Cohen-Kaminsky, S.; et al. Leptin and regulatory T-lymphocytes in idiopathic pulmonary arterial hypertension. Eur. Respir. J. 2012, 40, 895–904. [Google Scholar] [CrossRef]
- Becker, M.O.; Kill, A.; Kutsche, M.; Guenther, J.; Rose, A.; Tabeling, C.; Witzenrath, M.; Kühl, A.A.; Heidecke, H.; Ghofrani, H.A.; et al. Vascular Receptor Autoantibodies in Pulmonary Arterial Hypertension Associated with Systemic Sclerosis. Am. J. Respir. Crit. Care Med. 2014, 190, 808–817. [Google Scholar] [CrossRef]
- Isern, R.A.; Yaneva, M.; Weiner, E.; Parke, A.; Rothfield, N.; Dantzker, D.; Rich, S.; Arnett, F.C. Autoantibodies in patients with primary pulmonary hypertension: Association with anti-Ku. Am. J. Med. 1992, 93, 307–312. [Google Scholar] [CrossRef]
- Zaid, Y.; Puhm, F.; Allaeys, I.; Naya, A.; Oudghiri, M.; Khalki, L.; Limami, Y.; Zaid, N.; Sadki, K.; Ben El Haj, R.; et al. Platelets Can Associate With SARS-CoV-2 RNA and Are Hyperactivated in COVID-19. Circ. Res. 2020, 127, 1404–1418. [Google Scholar] [CrossRef] [PubMed]
- Connors, J.M.; Levy, J.H. COVID-19 and its implications for thrombosis and anticoagulation. Blood 2020, 135, 2033–2040. [Google Scholar] [CrossRef] [PubMed]
- Voelkel, N.F.; Tamosiuniene, R.; Nicolls, M.R. Challenges and opportunities in treating inflammation associated with pulmonary hypertension. Expert Rev. Cardiovasc. Ther. 2016, 14, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.R.; Liu, J.; Bloom, T.; Atabay, E.K.; Kuo, T.-H.; Lee, M.; Belcheva, E.; Spaits, M.; Grenha, R.; Maguire, M.C.; et al. Sotatercept analog suppresses inflammation to reverse experimental pulmonary arterial hypertension. Sci. Rep. 2022, 12, 7803. [Google Scholar] [CrossRef] [PubMed]
- Beyer, C.; Zenzmaier, C.; Palumbo-Zerr, K.; Mancuso, R.; Distler, A.; Dees, C.; Zerr, P.; Huang, J.; Maier, C.; Pachowsky, M.L.; et al. Stimulation of the soluble guanylate cyclase (sGC) inhibits fibrosis by blocking non-canonical TGFβ signalling. Ann. Rheum. Dis. 2014, 74, 1408–1416. [Google Scholar] [CrossRef] [PubMed]
- Uzun, N.; Durmus, S.; Gercel, G.; Aksu, B.; Misirlioglu, N.F.; Uzun, H. Effects of Bosentan on Hypoxia, Inflammation and Oxidative Stress in Experimental Blunt Thoracic Trauma Model. Medicina 2024, 60, 1148. [Google Scholar] [CrossRef]
- Bellisai, F.; Morozzi, G.; Scaccia, F.; Chellini, F.; Simpatico, A.; Pecetti, G.; Galeazzi, M. Evaluation of the Effect of Bosentan Treatment on Proinflammatory Cytokine Serum Levels in Patients Affected by Systemic Sclerosis. Int. J. Immunopathol. Pharmacol. 2011, 24, 261–264. [Google Scholar] [CrossRef]
- Ghofrani, H.-A.; Simonneau, G.; D’Armini, A.M.; Fedullo, P.; Howard, L.S.; Jaïs, X.; Jenkins, D.P.; Jing, Z.-C.; Madani, M.M.; Martin, N.; et al. Macitentan for the treatment of inoperable chronic thromboembolic pulmonary hypertension (MERIT-1): Results from the multicentre, phase 2, randomised, double-blind, placebo-controlled study. Lancet Respir. Med. 2024, 12, e21–e30. [Google Scholar] [CrossRef]
- Ordi-Ros, J.; Sáez-Comet, L.; Pérez-Conesa, M.; Vidal, X.; Riera-Mestre, A.; Castro-Salomó, A.; Cuquet-Pedragosa, J.; Ortiz-Santamaria, V.; Mauri-Plana, M.; Solé, C.; et al. Rivaroxaban Versus Vitamin K Antagonist in Antiphospholipid Syndrome: A randomized noninferiority trial. Ann. Intern. Med. 2019, 171, 685–694. [Google Scholar] [CrossRef]
- Frank, H.; Ruber, K.; Mlczoch, J.; Schuster, E.; Gurtner, H.P.; Kneussl, M.; Huber, K. The Effect of Anticoagulant Therapy in Primary and Anorectic Drug-Induced Pulmonary Hypertension. Chest 1997, 112, 714–721. [Google Scholar] [CrossRef] [PubMed]
- Preston, I.R.; Roberts, K.E.; Miller, D.P.; Sen, G.P.; Selej, M.; Benton, W.W.; Hill, N.S.; Farber, H.W. Effect of Warfarin Treatment on Survival of Patients with Pulmonary Arterial Hypertension (PAH) in the Registry to Evaluate Early and Long-Term PAH Disease Management (REVEAL). Circulation 2015, 132, 2403–2411. [Google Scholar] [CrossRef] [PubMed]
- Ehlken, N.; Lichtblau, M.; Klose, H.; Weidenhammer, J.; Fischer, C.; Nechwatal, R.; Uiker, S.; Halank, M.; Olsson, K.; Seeger, W.; et al. Exercise training improves peak oxygen consumption and haemodynamics in patients with severe pulmonary arterial hypertension and inoperable chronic thrombo-embolic pulmonary hypertension: A prospective, randomized, controlled trial. Eur. Heart J. 2015, 37, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Garg, S.; Khunger, M.; Garg, S.; Kumbhani, D.J.; Chin, K.M.; Berry, J.D. Efficacy and Safety of Exercise Training in Chronic Pulmonary Hypertension. Circ. Hear Fail. 2015, 8, 1032–1043. [Google Scholar] [CrossRef] [PubMed]
- Barberà, J.; Jansa, P.; Klings, E.; Ristić, A.; Keogh, A.; Solum, D.; Rao, Y.; Grover, R.; Saib, I.; Sood, N. Ralinepag Phase II Open-Label Extension Study in Patients with Pulmonary Arterial Hypertension. Adv. Ther. 2024, 41, 1062–1074. [Google Scholar] [CrossRef]
- Torres, F.; Farber, H.; Ristic, A.; McLaughlin, V.; Adams, J.; Zhang, J.; Klassen, P.; Shanahan, W.; Grundy, J.; Hoffmann, I.; et al. Efficacy and safety of ralinepag, a novel oral IP agonist, in PAH patients on mono or dual background therapy: Results from a phase 2 randomised, parallel group, placebo-controlled trial. Eur. Respir. J. 2019, 54, 1901030. [Google Scholar] [CrossRef]
- A Study Evaluating the Efcacy and Safety of Ralinepag to Improve Treatment Outcomes in Pah Patients, NCT03626688. Available online: https://clinicaltrials.gov/ct2/show/NCT03626688 (accessed on 19 April 2023).
- A Study of Ralinepag to Evaluate Efects on Exercise Capacity by CPET in Subjects with WHO Group 1 PH (CAPACITY), NCT04084678. Available online: https://clinicaltrials.gov/ct2/show/NCT04084678 (accessed on 19 April 2023).
- A Study Evaluating the Long-Term Efcacy and Safety of Ralinepag in Subjects with PAH via an Open-Label Extension. Available online: https://clinicaltrials.gov/ct2/show/NCT03683186 (accessed on 19 April 2023).
- Bajwa, E.K.; Cislak, D.; Kumar, A.; Li, D.; Messina, E.J.; Reynders, T.; Denef, J.-F.; Corcea, V.; Buch, K.P.; Lai, E.; et al. Phase 1 Study of MK-5475, an Inhaled Soluble Guanylate Cyclase Stimulator, in Participants with Pulmonary Hypertension Associated with Chronic Obstructive Pulmonary Disease. Int. J. Chronic Obstr. Pulm. Dis. 2024, 19, 1105–1121. [Google Scholar] [CrossRef]
- Bajwa, E.K.; Cislak, D.; Palcza, J.; Feng, H.-P.; Messina, E.J.; Reynders, T.; Denef, J.-F.; Corcea, V.; Lai, E.; Stoch, S.A. Effects of an inhaled soluble guanylate cyclase (sGC) stimulator MK-5475 in pulmonary arterial hypertension (PAH). Respir. Med. 2022, 206, 107065. [Google Scholar] [CrossRef]
- A Study of the Efcacy and Safety of Mk-5475 in Participants with Pulmonary Arterial Hypertension (Insignia-Pah: Phase 2/3 Study of an Inhaled Sgc Stimulator In Pah) (Mk-5475-007). Available online: https://Clinicaltrials.Gov/Ct2/Show/Nct04732221 (accessed on 21 August 2024).
- Keith, I.M.; Ekman, R. Dynamic Aspects of Regulatory Lung Peptides in Chronic Hypoxic Pulmonary Hypertension. Exp. Lung Res. 1992, 18, 205–224. [Google Scholar] [CrossRef]
- Keith, I.M.; Tjen-A-Looi, S.; Kraiczi, H.; Ekman, R.; Norton, C.E.; Segal, S.S.; Masood, A.; Yi, M.; Belcastro, R.; Li, J.; et al. Three-week neonatal hypoxia reduces blood CGRP and causes persistent pulmonary hypertension in rats. Am. J. Physiol. Circ. Physiol. 2000, 279, H1571–H1578. [Google Scholar] [CrossRef]
- Tjen-A-Looi, S.; Ekman, R.; Lippton, H.; Cary, J.; Keith, I. CGRP and somatostatin modulate chronic hypoxic pulmonary hypertension. Am. J. Physiol. Circ. Physiol. 1992, 263, H681–H690. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.C.W.; Moosavi, S.M.; Bubb, K.J. The Regulation of Pulmonary Vascular Tone by Neuropeptides and the Implications for Pulmonary Hypertension. Front. Physiol. 2018, 9, 1167. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Huang, J.; Zeng, Y.; Zhong, X.; Fu, Y.; Xiao, H.; Wang, X.; Lian, H.; Luo, H.; Li, D.; et al. CGRP attenuates pulmonary vascular remodeling by inhibiting the cGAS-STING-NFκB pathway in pulmonary arterial hypertension. Biochem. Pharmacol. 2024, 222, 116093. [Google Scholar] [CrossRef] [PubMed]
- Tjen-A-Looi, S.; Kraiczi, H.; Ekman, R.; Keith, I. Sensory CGRP depletion by capsaicin exacerbates hypoxia-induced pulmonary hypertension in rats. Regul. Pept. 1998, 74, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Champion, H.C.; Bivalacqua, T.J.; Toyoda, K.; Heistad, D.D.; Hyman, A.L.; Kadowitz, P.J. In Vivo Gene Transfer of Prepro-Calcitonin Gene–Related Peptide to the Lung Attenuates Chronic Hypoxia-Induced Pulmonary Hypertension in the Mouse. Circulation 2000, 101, 923–930. [Google Scholar] [CrossRef]
- Macias, D.; Moore, S.; Crosby, A.; Southwood, M.; Du, X.; Tan, H.; Xie, S.; Vassallo, A.; Wood, A.J.; Wallace, E.M.; et al. Targeting HIF2α-ARNT hetero-dimerisation as a novel therapeutic strategy for pulmonary arterial hypertension. Eur. Respir. J. 2020, 57, 1902061. [Google Scholar] [CrossRef]
- Dai, Z.; Zhu, M.M.; Peng, Y.; Machireddy, N.; Evans, C.E.; Machado, R.; Zhang, X.; Zhao, Y.-Y. Therapeutic Targeting of Vascular Remodeling and Right Heart Failure in Pulmonary Arterial Hypertension with a HIF-2α Inhibitor. Am. J. Respir. Crit. Care Med. 2018, 198, 1423–1434. [Google Scholar] [CrossRef]
- Chen, T.; Zhou, Q.; Tang, H.; Bozkanat, M.; Yuan, J.X.; Raj, J.U.; Zhou, G. miR-17/20 Controls Prolyl Hydroxylase 2 (PHD2)/Hypoxia-Inducible Factor 1 (HIF1) to Regulate Pulmonary Artery Smooth Muscle Cell Proliferation. J. Am. Hear. Assoc. 2016, 5, e004510. [Google Scholar] [CrossRef]
- Docherty, C.K.; Nilsen, M.; MacLean, M.R. Influence of 2-Methoxyestradiol and Sex on Hypoxia-Induced Pulmonary Hypertension and Hypoxia-Inducible Factor-1-α. J. Am. Hear Assoc. 2019, 8, e011628. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhou, Y.; Peng, G.; Liu, N.; Tian, H.; Pan, D.; Liu, L.; Yang, X.; Li, C.; Li, W.; et al. Topotecan prevents hypoxia-induced pulmonary arterial hypertension and inhibits hypoxia-inducible factor-1α and TRPC channels. Int. J. Biochem. Cell Biol. 2018, 104, 161–170. [Google Scholar] [CrossRef]
- Cheng, C.-C.; Chi, P.-L.; Shen, M.-C.; Shu, C.-W.; Wann, S.-R.; Liu, C.-P.; Tseng, C.-J.; Huang, W.-C. Caffeic Acid Phenethyl Ester Rescues Pulmonary Arterial Hypertension through the Inhibition of AKT/ERK-Dependent PDGF/HIF-1α In Vitro and In Vivo. Int. J. Mol. Sci. 2019, 20, 1468. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Teng, X.; Zhang, L.; Chen, J.; Liu, Z.; Chen, X.; Zhao, S.; Yang, S.; Feng, J.; Yan, X. CD146-HIF-1α hypoxic reprogramming drives vascular remodeling and pulmonary arterial hypertension. Nat. Commun. 2019, 10, 3551. [Google Scholar] [CrossRef] [PubMed]
- Spiekerkoetter, E.; Tian, X.; Cai, J.; Hopper, R.K.; Sudheendra, D.; Li, C.G.; El-Bizri, N.; Sawada, H.; Haghighat, R.; Chan, R.; et al. FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. J. Clin. Investig. 2013, 123, 3600–3613. [Google Scholar] [CrossRef] [PubMed]
- Spiekerkoetter, E.; Sung, Y.K.; Sudheendra, D.; Scott, V.; Del Rosario, P.; Bill, M.; Haddad, F.; Long-Boyle, J.; Hedlin, H.; Zamanian, R.T. Randomised placebo-controlled safety and tolerability trial of FK506 (tacrolimus) for pulmonary arterial hypertension. Eur. Respir. J. 2017, 50, 1602449. [Google Scholar] [CrossRef]
- Hurst, L.A.; Dunmore, B.J.; Long, L.; Crosby, A.; Al-Lamki, R.; Deighton, J.; Southwood, M.; Yang, X.; Nikolic, M.Z.; Herrera, B.; et al. TNFα drives pulmonary arterial hypertension by suppressing the BMP type-II receptor and altering NOTCH signalling. Nat. Commun. 2017, 8, 14079. [Google Scholar] [CrossRef]
- Zhang, L.-L.; Lu, J.; Li, M.-T.; Wang, Q.; Zeng, X.-F. Preventive and remedial application of etanercept attenuate monocrotaline-induced pulmonary arterial hypertension. Int. J. Rheum. Dis. 2014, 19, 192–198. [Google Scholar] [CrossRef]
- Aliotta, J.M.; Pereira, M.; Wen, S.; Dooner, M.S.; Del Tatto, M.; Papa, E.; Goldberg, L.R.; Baird, G.L.; Ventetuolo, C.E.; Quesenberry, P.J.; et al. Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice. Cardiovasc. Res. 2016, 110, 319–330. [Google Scholar] [CrossRef]
- Shen, Y.; Goncharov, D.A.; Pena, A.; Baust, J.; Barragan, A.C.; Ray, A.; Rode, A.; Bachman, T.N.; Chang, B.; Jiang, L.; et al. Cross-talk between TSC2 and the extracellular matrix controls pulmonary vascular proliferation and pulmonary hypertension. Sci. Signal. 2022, 15, eabn2743. [Google Scholar] [CrossRef]
- Meloche, J.; Renard, S.; Provencher, S.; Bonnet, S. Anti-inflammatory and immunosuppressive agents in PAH. Hand Book Exp. Pharmacol. 2013, 218, 437–476. [Google Scholar] [CrossRef]
- Zamanian, R.T.; Badesch, D.; Chung, L.; Domsic, R.T.; Medsger, T.; Pinckney, A.; Keyes-Elstein, L.; D’Aveta, C.; Spychala, M.; White, R.J.; et al. Safety and Efficacy of B-Cell Depletion with Rituximab for the Treatment of Systemic Sclerosis–associated Pulmonary Arterial Hypertension: A Multicenter, Double-Blind, Randomized, Placebo-controlled Trial. Am. J. Respir. Crit. Care Med. 2021, 204, 209–221. [Google Scholar] [CrossRef]
- Trankle, C.R.; Canada, J.M.; Kadariya, D.; Markley, R.; De Chazal, H.M.; Pinson, J.; Fox, A.; Van Tassell, B.W.; Abbate, A.; Grinnan, D. IL-1 Blockade Reduces Inflammation in Pulmonary Arterial Hypertension and Right Ventricular Failure: A Single-Arm, Open-Label, Phase IB/II Pilot Study. Am. J. Respir. Crit. Care Med. 2019, 199, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Velez-Roa, S.; Ciarka, A.; Najem, B.; Vachiery, J.-L.; Naeije, R.; van de Borne, P. Increased Sympathetic Nerve Activity in Pulmonary Artery Hypertension. Circulation 2004, 110, 1308–1312. [Google Scholar] [CrossRef] [PubMed]
- Bós, D.D.S.G.; Van Der Bruggen, C.E.E.; Kurakula, K.; Sun, X.-Q.; Casali, K.R.; Casali, A.G.; Rol, N.; Szulcek, R.; Dos Remedios, C.; Guignabert, C.; et al. Contribution of Impaired Parasympathetic Activity to Right Ventricular Dysfunction and Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension. Circulation 2018, 137, 910–924. [Google Scholar] [CrossRef]
- Karpov, A.A.; Vachrushev, N.S.; Shilenko, L.A.; Smirnov, S.S.; Bunenkov, N.S.; Butskih, M.G.; Chervaev, A.-K.A.; Vaulina, D.D.; Ivkin, D.Y.; Moiseeva, O.M.; et al. Sympathetic Denervation and Pharmacological Stimulation of Parasympathetic Nervous System Prevent Pulmonary Vascular Bed Remodeling in Rat Model of Chronic Thromboembolic Pulmonary Hypertension. J. Cardiovasc. Dev. Dis. 2023, 10, 40. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.Q.; Schreihofer, A.M. Altered sympathetic reflexes and vascular reactivity in rats after exposure to chronic intermittent hypoxia. J. Physiol. 2011, 589, 1463–1476. [Google Scholar] [CrossRef]
- Perros, F.; de Man, F.S.; Bogaard, H.J.; Antigny, F.; Simonneau, G.; Bonnet, S.; Provencher, S.; Galiè, N.; Humbert, M. Use of β-Blockers in Pulmonary Hypertension. Circ. Hear Fail. 2017, 10, e003703. [Google Scholar] [CrossRef]
- Patel, M.K.; Chan, P.; Betteridge, L.J.; Schachter, M.; Sever, P.S. Inhibition of Human Vascular Smooth Muscle Cell Proliferation by the Novel Multiple-Action Antihypertensive Agent Carvedilol. J. Cardiovasc. Pharmacol. 1995, 25, 652–657. [Google Scholar] [CrossRef]
- Farha, S.; Saygin, D.; Park, M.M.; Cheong, H.I.; Asosingh, K.; Comhair, S.A.; Stephens, O.R.; Roach, E.C.; Sharp, J.; Highland, K.B.; et al. Pulmonary arterial hypertension treatment with carvedilol for heart failure: A randomized controlled trial. J. Clin. Investig. 2017, 2, e95240. [Google Scholar] [CrossRef]
- Bogaard, H.J.; Natarajan, R.; Mizuno, S.; Abbate, A.; Chang, P.J.; Chau, V.Q.; Hoke, N.N.; Kraskauskas, D.; Kasper, M.; Salloum, F.N.; et al. Adrenergic Receptor Blockade Reverses Right Heart Remodeling and Dysfunction in Pulmonary Hypertensive Rats. Am. J. Respir. Crit. Care Med. 2010, 182, 652–660. [Google Scholar] [CrossRef]
- Perros, F.; Ranchoux, B.; Izikki, M.; Bentebbal, S.; Happé, C.; Antigny, F.; Jourdon, P.; Dorfmüller, P.; Lecerf, F.; Fadel, E.; et al. Nebivolol for Improving Endothelial Dysfunction, Pulmonary Vascular Remodeling, and Right Heart Function in Pulmonary Hypertension. J. Am. Coll. Cardiol. 2015, 65, 668–680. [Google Scholar] [CrossRef]
- Ishikawa, M.; Sato, N.; Asai, K.; Takano, T.; Mizuno, K. Effects of a Pure. ALPHA/BETA.-Adrenergic Receptor Blocker on Monocrotaline-Induced Pulmonary Arterial Hypertension with Right Ventricular Hypertrophy in Rats. Circ. J. 2009, 73, 2337–2341. [Google Scholar] [CrossRef] [PubMed]
- de Man, F.S.; Handoko, M.L.; van Ballegoij, J.J.; Schalij, I.; Bogaards, S.J.; Postmus, P.E.; van der Velden, J.; Westerhof, N.; Paulus, W.J.; Vonk-Noordegraaf, A. Bisoprolol Delays Progression Towards Right Heart Failure in Experimental Pulmonary Hypertension. Circ. Hear Fail. 2012, 5, 97–105. [Google Scholar] [CrossRef] [PubMed]
- van Campen, J.S.; de Boer, K.; van de Veerdonk, M.C.; van der Bruggen, C.E.; Allaart, C.P.; Raijmakers, P.G.; Heymans, M.W.; Marcus, J.T.; Harms, H.J.; Handoko, M.L.; et al. Bisoprolol in idiopathic pulmonary arterial hypertension: An explorative study. Eur. Respir. J. 2016, 48, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Moretti, C.; Marra, W.G.; D’Ascenzo, F.; Omedè, P.; Cannillo, M.; Libertucci, D.; Fusaro, E.; Meynet, I.; Giordana, F.; Salera, D.; et al. Beta blocker for patients with pulmonary arterial hypertension: A single center experience. Int. J. Cardiol. 2015, 184, 528–532. [Google Scholar] [CrossRef]
- Provencher, S.; Herve, P.; Jais, X.; Lebrec, D.; Humbert, M.; Simonneau, G.; Sitbon, O. Deleterious Effects of β-Blockers on Exercise Capacity and Hemodynamics in Patients with Portopulmonary Hypertension. Gastroenterology 2006, 130, 120–126. [Google Scholar] [CrossRef]
- So, P.P.-S.; Davies, R.A.; Chandy, G.; Stewart, D.; Beanlands, R.S.; Haddad, H.; Pugliese, C.; Mielniczuk, L.M. Usefulness of Beta-Blocker Therapy and Outcomes in Patients with Pulmonary Arterial Hypertension. Am. J. Cardiol. 2012, 109, 1504–1509. [Google Scholar] [CrossRef]
- Martyniuk, T.V.; Konosova, I.D.; Chazova, I.E. Use of nebivolol in patients with idiopathic pulmonary hypertension: Results of the pilot study. Ter. Arkhiv 2012, 84, 49–53. [Google Scholar]
- Xu, W.; Wang, D.-Y.; Chen, Z.-Y.; Gao, Q.; Zou, Y.-L.; Sun, D.-H.; Zhang, S.; Zhao, X.-B.; Gong, Y.-T.; Zhang, Y.; et al. Noninvasive Stereotactic Radiotherapy for PADN in an Acute Canine Model of Pulmonary Arterial Hypertension. JACC Basic Transl. Sci. 2024, 9, 244–256. [Google Scholar] [CrossRef]
- Chen, S.-L.; Zhang, F.-F.; Xu, J.; Xie, D.-J.; Zhou, L.; Nguyen, T.; Stone, G.W. Pulmonary artery denervation to treat pulmonary arterial hypertension: The single-center, prospective, first-in-man PADN-1 study (first-in-man pulmonary artery denervation for treatment of pulmonary artery hypertension). J. Am. Coll. Cardiol. 2013, 62, 1092–1100. [Google Scholar] [CrossRef]
- Rothman, A.M.K.; Vachiery, J.-L.; Howard, L.S.; Mikhail, G.W.; Lang, I.M.; Jonas, M.; Kiely, D.G.; Shav, D.; Shabtay, O.; Avriel, A.; et al. Intravascular Ultrasound Pulmonary Artery Denervation to Treat Pulmonary Arterial Hypertension (TROPHY1): Multicenter, Early Feasibility Study. JACC Cardiovasc. Interv. 2020, 13, 989–999. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, X.-M.; Zhang, J.; Li, B.; Li, J.; Xie, D.-J.; Hu, Z.-Y. Pulmonary artery denervation improves pulmonary arterial hypertension induced right ventricular dysfunction by modulating the local renin-angiotensin-aldosterone system. BMC Cardiovasc. Disord. 2016, 16, 192. [Google Scholar] [CrossRef] [PubMed]
- Na, S.; Kim, O.S.; Ryoo, S.; Kweon, T.D.; Choi, Y.S.; Shim, H.S.; Oh, Y.J. Cervical Ganglion Block Attenuates the Progression of Pulmonary Hypertension via Nitric Oxide and Arginase Pathways. Hypertension 2014, 63, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhang, J.; Jiang, X.-M.; Xie, D.-J.; Wang, J.-S.; Li, L.; Li, B.; Wang, Z.-M.; Rothman, A.M.; Lawrie, A.; et al. Pulmonary Artery Denervation Attenuates Pulmonary Arterial Remodeling in Dogs with Pulmonary Arterial Hypertension Induced by Dehydrogenized Monocrotaline. JACC: Cardiovasc. Interv. 2015, 8, 2013–2023. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-L.; Zhang, Y.-J.; Zhou, L.; Xie, D.-J.; Zhang, F.-F.; Jia, H.-B.; Wong, S.S.; Kwan, T.W. Percutaneous pulmonary artery denervation completely abolishes experimental pulmonary arterial hypertension in vivo. Eurointervention J. EuroPCR Collab. Work. Group Interv. Cardiol. Eur. Soc. Cardiol. 2013, 9, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Rothman, A.M.; Arnold, N.D.; Chang, W.; Watson, O.; Swift, A.J.; Condliffe, R.; Elliot, C.A.; Kiely, D.G.; Suvarna, S.K.; Gunn, J.; et al. Pulmonary Artery Denervation Reduces Pulmonary Artery Pressure and Induces Histological Changes in an Acute Porcine Model of Pulmonary Hypertension. Circ. Cardiovasc. Interv. 2015, 8, e002569. [Google Scholar] [CrossRef]
- Bos, D.d.S.G.; Happé, C.; Schalij, I.; Pijacka, W.; Paton, J.F.; Guignabert, C.; Tu, L.; Thuillet, R.; Bogaard, H.-J.; van Rossum, A.C.; et al. Renal Denervation Reduces Pulmonary Vascular Remodeling and Right Ventricular Diastolic Stiffness in Experimental Pulmonary Hypertension. JACC Basic Transl. Sci. 2017, 2, 22–35. [Google Scholar] [CrossRef]
- Qingyan, Z.; Xuejun, J.; Yanhong, T.; Zixuan, D.; Xiaozhan, W.; Xule, W.; Zongwen, G.; Wei, H.; Shengbo, Y.; Congxin, H. Beneficial Effects of Renal Denervation on Pulmonary Vascular Remodeling in Experimental Pulmonary Artery Hypertension. Rev. Espanola Cardiol. 2015, 68, 562–570. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Y.-W.; Pan, H.-Z.; Zhang, X.-L.; Li, J.; Xiang, L.; Meng, J.; Wang, P.-H.; Yang, J.; Jing, Z.-C.; et al. Transthoracic Pulmonary Artery Denervation for Pulmonary Arterial Hypertension. Arter. Thromb. Vasc. Biol. 2019, 39, 704–718. [Google Scholar] [CrossRef]
- Chen, S.-L.; Zhang, H.; Xie, D.-J.; Zhang, J.; Zhou, L.; Rothman, A.M.; Stone, G.W. Hemodynamic, functional, and clinical responses to pulmonary artery denervation in patients with pulmonary arterial hypertension of different causes. Circ. Cardiovasc. Interv. 2015, 8, e002837. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, Y.; Zhang, C.; Yang, Z.; Kan, J.; Gu, H.; Fan, F.; Gu, H.; Wang, Q.; Xie, D.; et al. Pulmonary Artery Denervation for Pulmonary Arterial Hypertension. JACC Cardiovasc. Interv. 2022, 15, 2412–2423. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Chen, M.; Xie, D.-J.; Kan, J.; Yu, W.; Li, X.-B.; Xu, T.; Gu, Y.; Dong, J.; et al. Pulmonary Artery Denervation Significantly Increases 6-Min Walk Distance for Patients with Combined Pre- and Post-Capillary Pulmonary Hypertension Associated With Left Heart Failure. JACC Cardiovasc. Interv. 2018, 12, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Romanov, A.; Cherniavskiy, A.; Novikova, N.; Edemskiy, A.; Ponomarev, D.; Shabanov, V.; Losik, D.; Elesin, D.; Stenin, I.; Mikheenko, I.; et al. Pulmonary Artery Denervation for Patients with Residual Pulmonary Hypertension After Pulmonary Endarterectomy. J. Am. Coll. Cardiol. 2020, 76, 916–926. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Saku, K.; Kamada, K.; Abe, K.; Tanaka-Ishikawa, M.; Tohyama, T.; Nishikawa, T.; Kishi, T.; Sunagawa, K.; Tsutsui, H. Electrical Vagal Nerve Stimulation Ameliorates Pulmonary Vascular Remodeling and Improves Survival in Rats with Severe Pulmonary Arterial Hypertension. JACC Basic Transl. Sci. 2018, 3, 657–671. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Saku, K.; Bogaard, H.J.; Abe, K.; Sunagawa, K.; Tsutsui, H. Vagal nerve stimulation preserves right ventricular function in a rat model of right ventricular pressure overload. Pulm. Circ. 2022, 12, e12154. [Google Scholar] [CrossRef]
- Pan, P.; Zhang, X.; Qian, H.; Shi, W.; Wang, J.; Bo, Y.; Li, W. Effects of electro-acupuncture on endothelium-derived endothelin-1 and endothelial nitric oxide synthase of rats with hypoxia-induced pulmonary hypertension. Exp. Biol. Med. 2010, 235, 642–648. [Google Scholar] [CrossRef]
- Zhang, L.; Tian, Y.; Zhao, P.; Jin, F.; Miao, Y.; Liu, Y.; Li, J. Electroacupuncture attenuates pulmonary vascular remodeling in a rat model of chronic obstructive pulmonary disease via the VEGF/PI3K/Akt pathway. Acupunct. Med. 2022, 40, 389–400. [Google Scholar] [CrossRef]
- Xin, J.-J.; Gao, J.-H.; Liu, Q.; Zhao, Y.-X.; Zhou, C.; Yu, X.-C. Involvement of ET-1/eNOS in the ameliorating effect of electroacupuncture on cardiac dysfunction in rats with spontaneously hypertensive. Search Life Sci. Lit. 2022, 42, 647–653. [Google Scholar] [CrossRef]
- Shi, Y.-R.; Yi, W.; Qiao, Y.; Zhuo, S.-Y.; Zhang, Q.; Yang, X.-J.; Liang, T.; Ling, X. Effects of acupuncture on pulmonary function and airway smooth muscle spasm in asthma rats. Zhongguo Zhen Jiu 2023, 43, 937–943. [Google Scholar] [CrossRef]
- Qiao, Y.; Liang, Y.; Zhuo, S.; Yang, X.; Liang, T.; Ling, X.; Zhang, Q.; Shi, Y.; Yi, W. Effect and mechanism of acupuncture on airway smooth muscle relaxation during acute asthma attack in rats. Zhongguo Zhen Jiu 2024, 44, 295–302. [Google Scholar] [CrossRef]
- Lin, M.; Wang, X.; Ye, B.; Zhang, J.; Lin, S.; Xu, Y.; Zhou, J.; Liu, S.; Zhou, S.; Guan, X.; et al. External counterpulsation stimulation combined with acupuncture for vascular endothelial function in patients with hypertension: A randomized pilot trial. Clin. Exp. Hypertens. 2023, 45, 2181355. [Google Scholar] [CrossRef]
- Jiang, X. Effects of magnetic needle acupuncture on blood pressure and plasma ET-1 level in the patient of hypertension. J. Tradit. Chin. Med. = Chung I Tsa Chih Ying Wen Pan 2003, 23, 290–291. [Google Scholar] [PubMed]
- Maeda, M.; Kachi, H.; Ichihashi, N.; Oyama, Z.; Kitajima, Y. The effect of electrical acupuncture-stimulation therapy using thermography and plasma endothelin (ET-1) levels in patients with progressive systemic sclerosis (PSS). J. Dermatol. Sci. 1998, 17, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-J.; Li, S.-M.; Ding, Y.; He, B.; Keegan, J.; Dong, H.; Ruan, J.-W.; Zeng, Y.-S. Electro-acupuncture upregulates CGRP expression after rat spinal cord transection. Neurochem. Int. 2012, 61, 1397–1403. [Google Scholar] [CrossRef] [PubMed]
- Maekura, T.; Miki, K.; Miki, M.; Kitada, S.; Maekura, R. Clinical Effects of Acupuncture On The Pathophysiological Mechanism Of Chronic Obstructive Pulmonary Disease During Exercise. Int. J. Chronic Obstr. Pulm. Dis. 2019, 14, 2787–2798. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Ouyang, B.S.; Sun, G.; Fan, C.; Wu, Y.J.; Ji, L.L. Comparative research on effect of warm needling therapy on pulmonary function and life quality of patients with COPD in the stable phase. Zhongguo Zhen Jiu = Chin. Acupunct. Moxibustion 2011, 31, 893–897. [Google Scholar]
- Ge, Y.; Yao, H.; Tong, J.; He, Y.; Li, G.; Kong, X. Effects of acupuncture on peripheral skeletal muscle exercise ability in patients with chronic obstructive pulmonary disease at stable phase. Zhongguo Zhen Jiu = Chin. Acupunct. Moxibustion 2017, 37, 366–371. [Google Scholar] [CrossRef]
- Feng, J.; Wang, X.; Li, X.; Zhao, D.; Xu, J. Acupuncture for chronic obstructive pulmonary disease (COPD). Medicine 2016, 95, e4879. [Google Scholar] [CrossRef]
- Tong, J.; Guo, Y.M.; He, Y.; Li, G.Y.; Chen, F.; Yao, H. Regulatory effects of acupuncture on exercise tolerance in patients with chronic obstructive pulmonary disease at stable phase: A randomized controlled trial. Zhongguo Zhen Jiu = Chin. Acupunct. Moxibustion 2014, 34, 846–850. [Google Scholar]
- Suzuki, M.; Muro, S.; Ando, Y.; Omori, T.; Shiota, T.; Endo, K.; Sato, S.; Aihara, K.; Matsumoto, M.; Suzuki, S.; et al. A Randomized, Placebo-Controlled Trial of Acupuncture in Patients with Chronic Obstructive Pulmonary Disease (COPD): The COPD-acupuncture trial (CAT). Archives of internal medicine. Arch. Intern. Med. 2012, 172, 878–886. [Google Scholar] [CrossRef]
- Suzuki, M.; Namura, K.; Ohno, Y.; Tanaka, H.; Egawa, M.; Yokoyama, Y.; Akao, S.; Fujiwara, H.; Yano, T. The Effect of Acupuncture in the Treatment of Chronic Obstructive Pulmonary Disease. J. Altern. Complement. Med. 2008, 14, 1097–1105. [Google Scholar] [CrossRef]
- Zhou, C.; Zhou, C.; Wu, M.-Z.; Wu, M.-Z.; Liu, Q.; Liu, Q.; Xin, J.-J.; Xin, J.-J.; Wu, S.; Wu, S.; et al. Synergistic and Attenuating Effect of Electroacupuncture on Aconitine in Improving Heart Failure and Its Calcium Regulation Mechanism. Evid.-Based Complement. Altern. Med. 2022, 2022, 4940745. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Xia, Y.; Wang, C.; Lu, W.; Zuo, H.; Wu, D.; Li, Y.; Guo, R.; Lu, J.; Zhang, L. Electroacupuncture at Neiguan (PC6) attenuates cardiac dysfunction caused by cecal ligation and puncture via the vagus nerve. Biomed. Pharmacother. 2023, 162, 114600. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Cui, B.; Shao, Y.; Ni, B.; Zhang, W.; Luo, Y.; Zhang, S. Electroacupuncture improves cardiac function and remodeling by inhibition of sympathoexcitation in chronic heart failure rats. Am. J. Physiol. Circ. Physiol. 2014, 306, H1464–H1471. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kim, T.-H.; Leem, J. Acupuncture for heart failure: A systematic review of clinical studies. Int. J. Cardiol. 2016, 222, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Chao, D.M.; Shen, L.L.; Tjen-A-Looi, S.C.; Pitsillides, K.F.; Li, P.; Longhurst, J.C.; Guo, Z.-L.; Ma, L.; Cui, B.; Shao, Y.; et al. Naloxone reverses inhibitory effect of electroacupuncture on sympathetic cardiovascular reflex responses. Am. J. Physiol. Circ. Physiol. 1999, 276, H2127–H2134. [Google Scholar] [CrossRef]
- Li, P.; Pitsillides, K.F.; Rendig, S.V.; Pan, H.-L.; Longhurst, J.C. Reversal of Reflex-induced myocardial ischemia by median nerve stimulation: A feline model of electroacupuncture. Circulation 1998, 97, 1186–1194. [Google Scholar] [CrossRef]
- Li, P.; Tjen-A-Looi, S.C.; Longhurst, J.C. Excitatory projections from arcuate nucleus to ventrolateral periaqueductal gray in electroacupuncture inhibition of cardiovascular reflexes. Am. J. Physiol. Circ. Physiol. 2006, 290, H2535–H2542. [Google Scholar] [CrossRef]
- Li, P.; Tjen-A-Looi, S.; Longhurst, J.C. Rostral ventrolateral medullary opioid receptor subtypes in the inhibitory effect of electroacupuncture on reflex autonomic response in cats. Auton. Neurosci. 2001, 89, 38–47. [Google Scholar] [CrossRef]
- Tjen-A-Looi, S.C.; Fu, L.-W.; Wei, Z.; Syuu, Z.; Longhurst, J.C. Role of unmyelinated fibers in electroacupuncture cardiovascular responses. Auton. Neurosci. 2005, 118, 43–50. [Google Scholar] [CrossRef]
- Tjen-A-Looi, S.C.; Li, P.; Longhurst, J.C. Prolonged inhibition of rostral ventral lateral medullary premotor sympathetic neurons by electroacupuncture in cats. Auton. Neurosci. 2003, 106, 119–131. [Google Scholar] [CrossRef]
- Zhou, W.; Fu, L.-W.; Guo, Z.-L.; Longhurst, J.C. Role of glutamate in the rostral ventrolateral medulla in acupuncture-related modulation of visceral reflex sympathoexcitation. Am. J. Physiol. Circ. Physiol. 2007, 292, H1868–H1875. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.-L.; Longhurst, J.C. Activation of reciprocal pathways between arcuate nucleus and ventrolateral periaqueductal gray during electroacupuncture: Involvement of VGLUT3. Brain Res. 2010, 1360, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Tjen-A-Looi, S.C.; Li, P.; Longhurst, J.C. Processing cardiovascular information in the vlPAG during electroacupuncture in rats: Roles of endocannabinoids and GABA. J. Appl. Physiol. 2009, 106, 1793–1799. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.-W.; Longhurst, J.C. Electroacupuncture modulates vlPAG release of GABA through presynaptic cannabinoid CB1 receptors. J. Appl. Physiol. 2009, 106, 1800–1809. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Tjen-A-Looi, S.C.; Guo, Z.-L.; Fu, L.-W.; Longhurst, J.C.; Li, M.; Chitravanshi, V.C.; Kawabe, K.; Sapru, H.N.; Arakawa, H.; et al. Long-loop pathways in cardiovascular electroacupuncture responses. J. Appl. Physiol. 2009, 106, 620–630. [Google Scholar] [CrossRef]
- Oliveira, A.C.; Karas, M.M.; Alves, M.; He, J.; de Kloet, A.D.; Krause, E.G.; Richards, E.M.; Bryant, A.J.; Raizada, M.K. ACE2 overexpression in corticotropin-releasing-hormone cells offers protection against pulmonary hypertension. Front. Neurosci. 2023, 17, 1223733. [Google Scholar] [CrossRef]
- Goncharuk, V.D.; Van Heerikhuize, J.; Swaab, D.F.; Buijs, R.M. Paraventricular nucleus of the human hypothalamus in primary hypertension: Activation of corticotropin-releasing hormone neurons. J. Comp. Neurol. 2002, 443, 321–331. [Google Scholar] [CrossRef]
- Dampney, R.A.; Michelini, L.C.; Li, D.-P.; Pan, H.-L. Regulation of sympathetic vasomotor activity by the hypothalamic paraventricular nucleus in normotensive and hypertensive states. Am. J. Physiol. Circ. Physiol. 2018, 315, H1200–H1214. [Google Scholar] [CrossRef]
- Li, D.-P.; Zhou, J.-J.; Zhang, J.; Pan, H.-L. CaMKII Regulates Synaptic NMDA Receptor Activity of Hypothalamic Presympathetic Neurons and Sympathetic Outflow in Hypertension. J. Neurosci. 2017, 37, 10690–10699. [Google Scholar] [CrossRef]
- Ruyle, B.C.; Martinez, D.; Heesch, C.M.; Kline, D.D.; Hasser, E.M. The PVN enhances cardiorespiratory responses to acute hypoxia via input to the nTS. Am. J. Physiol. Integr. Comp. Physiol. 2019, 317, R818–R833. [Google Scholar] [CrossRef]
- King, T.L.; Heesch, C.M.; Clark, C.G.; Kline, D.D.; Hasser, E.M. Hypoxia activates nucleus tractus solitarii neurons projecting to the paraventricular nucleus of the hypothalamus. Am. J. Physiol. Integr. Comp. Physiol. 2012, 302, R1219–R1232. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.M.; Takakura, A.C.; Moreira, T.S. Acute hypoxia activates hypothalamic paraventricular nucleus-projecting catecholaminergic neurons in the C1 region. Exp. Neurol. 2016, 285, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.A.; Nguyen, D.H.; Mifflin, S.W. Corticotropin-releasing hormone projections from the paraventricular nucleus of the hypothalamus to the nucleus of the solitary tract increase blood pressure. J. Neurophysiol. 2019, 121, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.A.; Nguyen, D.H.; Mifflin, S.W. CRHR2 (Corticotropin-Releasing Hormone Receptor 2) in the Nucleus of the Solitary Tract Contributes to Intermittent Hypoxia-Induced Hypertension. Hypertension 2018, 72, 994–1001. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Ye, Z.; Zhang, M.; Xu, W.; Wang, R.; Wu, S.; Gao, H. Electroacupuncture intervention on stress-induced cardiac autonomic imbalance in rats involves corticotropin-releasing hormone system activity. NeuroReport 2023, 34, 401–410. [Google Scholar] [CrossRef]
- Ye, Z.; Zhu, L.; Li, X.-J.; Gao, H.-Y.; Wang, J.; Wu, S.-B.; Wu, Z.-J.; Gao, H.-R. PC6 electroacupuncture reduces stress-induced autonomic and neuroendocrine responses in rats. Heliyon 2023, 9, e15291. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, J.; Wang, Y.; Tian, Z. Secretagogin Mediates the Regulatory Effect of Electroacupuncture on Hypothalamic-Pituitary-Adrenal Axis Dysfunction in Surgical Trauma. Neural Plast. 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Zhou, Q.Z.; Peng, X.H.; Wu, Q.F.; Yu, S.G.; Wei, J.L.; Xu, H.Y.; Wang, W.; Yin, H.Y. Effect of electroacupuncture on the expression of corticotropin releasing hormone (CRH) and CRHR 1 mRNA in paraventricular nucleus of hypothalamus in stress-induced anxiety rats. Zhen Ci Yan Jiu = Acupunct. Res. 2008, 33, 372–376. [Google Scholar]
- Huang, J.; Tamisier, R.; Ji, E.; Tong, J.; Weiss, W.J. Chronic intermittent hypoxia modulates nNOS mRNA and protein expression in the rat hypothalamus. Respir. Physiol. Neurobiol. 2007, 158, 30–38. [Google Scholar] [CrossRef]
- Ogoshi, T.; Tsutsui, M.; Kido, T.; Sakanashi, M.; Naito, K.; Oda, K.; Ishimoto, H.; Yamada, S.; Wang, K.-Y.; Toyohira, Y.; et al. Protective Role of Myelocytic Nitric Oxide Synthases against Hypoxic Pulmonary Hypertension in Mice. Am. J. Respir. Crit. Care Med. 2018, 198, 232–244. [Google Scholar] [CrossRef]
- Kim, J.-I.; Kim, Y.-S.; Kang, S.-K.; Kim, C.; Park, C.; Lee, M.S.; Huh, Y. Electroacupuncture decreases nitric oxide synthesis in the hypothalamus of spontaneously hypertensive rats. Neurosci. Lett. 2008, 446, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.-D.; Kim, M.-H.; Lee, C.-Y.; Namgung, U. Anti-Inflammatory Effects of Acupuncture Stimulation via the Vagus Nerve. PLoS ONE 2016, 11, e0151882. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, Z.; Su, Y.; Qi, L.; Yang, W.; Fu, M.; Jing, X.; Wang, Y.; Ma, Q. A neuroanatomical basis for electroacupuncture to drive the vagal–adrenal axis. Nature 2021, 598, 641–645. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, Z.-F.; Su, Y.-S.; Ray, R.S.; Jing, X.-H.; Wang, Y.-Q.; Ma, Q. Somatotopic Organization and Intensity Dependence in Driving Distinct NPY-Expressing Sympathetic Pathways by Electroacupuncture. Neuron 2020, 108, 436–450.e7. [Google Scholar] [CrossRef]
- Torres-Rosas, R.; Yehia, G.; Peña, G.; Mishra, P.; Thompson-Bonilla, M.d.R.; Moreno-Eutimio, M.A.; Arriaga-Pizano, L.A.; Isibasi, A.; Ulloa, L. Dopamine mediates vagal modulation of the immune system by electroacupuncture. Nat. Med. 2014, 20, 291–295. [Google Scholar] [CrossRef]
- Zhao, Y.X.; He, W.; Jing, X.H.; Liu, J.L.; Rong, P.J.; Ben, H.; Liu, K.; Zhu, B. Transcutaneous Auricular Vagus Nerve Stimulation Protects Endotoxemic Rat from Lipopolysaccharide-Induced Inflammation. Evid.-Based Complement. Altern. Med. 2012, 2012, 627023. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Ying, X.; Zheng, Y.; Tan, Q.; Yu, X.; Gong, J.; Li, M.; Deng, X.; Yang, G.; et al. Electroacupuncture pre-treatment alleviates sepsis-induced cardiac inflammation and dysfunction by inhibiting the calpain-2/STAT3 pathway. Front. Physiol. 2022, 13, 961909. [Google Scholar] [CrossRef]
- Chen, T.; Xiong, Y.; Long, M.; Zheng, D.; Ke, H.; Xie, J.; Yin, N.; Chen, Z. Electro-acupuncture Pretreatment at Zusanli (ST36) Acupoint Attenuates Lipopolysaccharide-Induced Inflammation in Rats by Inhibiting Ca2+ Influx Associated with Cannabinoid CB2 Receptors. Inflammation 2018, 42, 211–220. [Google Scholar] [CrossRef]
- Ju, S.; Liu, M.; Wang, B.; Yu, D.; Zhang, H.; Zhang, M.; Li, J. Transcutaneous electrical acupoint stimulation improves pulmonary function by regulating oxidative stress during one-lung ventilation in patients with lung cancer undergoing thoracoscopic surgery: A randomized controlled trial. BMC Complement. Med. Ther. 2023, 23, 463. [Google Scholar] [CrossRef]
- Ma, W.; Li, Z.; Lu, Z.; Tan, W.; Zhang, Z.; Li, Y.; Yang, Z.; Zhou, J.; Tang, H.; Cui, H. Protective Effects of Acupuncture in Cardiopulmonary Bypass-Induced Lung Injury in Rats. Inflammation 2017, 40, 1275–1284. [Google Scholar] [CrossRef]
- Gong, L.-R.; Kan, Y.-X.; Lian, Y.; Dong, S.-A.; Zhao, D.-H.; Shi, J.; Yu, J.-B. Electroacupuncture Attenuates Limb Ischemia-Reperfusion-Induced Lung Injury Via p38 Mitogen-Activated Protein Kinase-Nuclear Factor Erythroid-2-Related Factor-2/Heme Oxygenase Pathway. J. Surg. Res. 2020, 246, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Yan, R.; Ding, L.; Ning, J.; Chen, M.; Guo, Y.; Liu, J.; Chen, Z.; Zhou, R. Electroacupuncture Attenuates Ventilator-Induced Lung Injury by Modulating the Nrf2/HO-1 Pathway. J. Surg. Res. 2024, 295, 811–819. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Xie, J.J.; Xiang, S.Y.; Li, Y.; Cong, W.J.; Lin, X.G.; Liu, Z.B. Electroacupuncture Improves Pulmonary Function of Rats with Chronic Obstructive Pulmonary Disease by Down-regulating Inflammatory Reaction and Expression of Macrophage Migration Inhibitory Factor/CD 74-CD 44/p 38 MAPK Signaling in Lung Tissues. Zhen Ci Yan Jiu = Acupunct. Res. 2018, 43, 759–766. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, Z.; Zhou, J.; Lu, S.; Wang, C.; Xia, Y.; Ren, H.; Tong, Z.; Ke, L.; Li, W. Electroacupuncture Ameliorates Acute Pancreatitis: A Role for the Vagus Nerve–Mediated Cholinergic Anti-Inflammatory Pathway. Front. Mol. Biosci. 2021, 8, 647647. [Google Scholar] [CrossRef] [PubMed]
- Abe, C.; Inoue, T.; Inglis, A.M.; Viar, E.K.; Huang, L.; Ye, H.; Rosin, D.L.; Stornetta, R.L.; Okusa, M.D.; Guyenet, P.G. C1 neurons mediate a stress-induced anti-inflammatory reflex in mice. Nat. Neurosci. 2017, 20, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Dong, M.; Teng, F.; Cui, J.; Zhu, X.; Wang, W.; Wuniqiemu, T.; Qin, J.; Yi, L.; Wang, S.; et al. TMT-based quantitative proteomics reveals suppression of SLC3A2 and ATP1A3 expression contributes to the inhibitory role of acupuncture on airway inflammation in an OVA-induced mouse asthma model. Biomed. Pharmacother. 2020, 134, 111001. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Yang, J.; Zhan, M.; Hu, X.; Liu, Y.; Yu, L.; Yan, X.; Liang, S.; Zhang, R.; et al. P2Y12 receptor as a new target for electroacupuncture relieving comorbidity of visceral pain and depression of inflammatory bowel disease. Chin. Med. 2021, 16, 139. [Google Scholar] [CrossRef]
- Jung, Y.S.; Lee, S.-W.; Park, J.H.; Seo, H.B.; Choi, B.T.; Shin, H.K. Electroacupuncture preconditioning reduces ROS generation with NOX4 down-regulation and ameliorates blood-brain barrier disruption after ischemic stroke. J. Biomed. Sci. 2016, 23, 32. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Zhu, J.; Geng, W.-Y.; Zhao, S.-J.; Jiang, C.-W.; Cai, S.-R.; Cheng, M.; Zhou, C.-Y.; Liu, Z.-B. Electroacupuncture at Feishu (BL13) and Zusanli (ST36) down-regulates the expression of orexins and their receptors in rats with chronic obstructive pulmonary disease. J. Integr. Med. 2014, 12, 417–424. [Google Scholar] [CrossRef]
- Vickers, A.J.; Vertosick, E.A.; Lewith, G.; MacPherson, H.; Foster, N.E.; Sherman, K.J.; Irnich, D.; Witt, C.M.; Linde, K. Acupuncture for Chronic Pain: Update of an Individual Patient Data Meta-Analysis. J. Pain 2017, 19, 455–474. [Google Scholar] [CrossRef]
- Yuan, C.-X.; Wang, X.; Yu, Z.; Lian, X.-Y.; Xu, B. Electroacupuncture improves peripheral neuropathy by up-regulating Sirt1/PGC-1α/TFAM pathway in type 2 diabetes rats with peripheral neuropathy. Zhen Ci Yan Jiu 2024, 49, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Hoerder, S.; Habermann, I.V.; Hahn, K.; Meyer-Hamme, G.; Ortiz, M.; Grabowska, W.; Roll, S.; Willich, S.N.; Schroeder, S.; Brinkhaus, B.; et al. Acupuncture in diabetic peripheral neuropathy-neurological outcomes of the randomized acupuncture in diabetic peripheral neuropathy trial. World J. Diabetes 2023, 14, 1813–1823. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.-N.; Lin, L.-L.; Li, Y.-J.; Li, H.-P.; Cao, Y.; Tan, C.-X.; Hao, X.-W.; Ma, S.-M.; Wang, L.; Liu, C.-Z. Potential Mechanisms and Clinical Effectiveness of Acupuncture in Depression. Curr. Neuropharmacol. 2022, 20, 738–750. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Li, J.; Yan, L.; Zhang, X.; Huang, J.; Zhou, P. Electroacupuncture alleviates the symptom of depression in mice by regulating the cGAS-STING-NLRP3 signaling. Aging 2024, 16, 6731–6744. [Google Scholar] [CrossRef]
Group 1: Pulmonary Arterial Hypertension (PAH)
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, J.; Malik, S.; Tjen-A-Looi, S.C. Pulmonary Hypertension: Pharmacological and Non-Pharmacological Therapies. Life 2024, 14, 1265. https://doi.org/10.3390/life14101265
Tsai J, Malik S, Tjen-A-Looi SC. Pulmonary Hypertension: Pharmacological and Non-Pharmacological Therapies. Life. 2024; 14(10):1265. https://doi.org/10.3390/life14101265
Chicago/Turabian StyleTsai, Jason, Shaista Malik, and Stephanie C. Tjen-A-Looi. 2024. "Pulmonary Hypertension: Pharmacological and Non-Pharmacological Therapies" Life 14, no. 10: 1265. https://doi.org/10.3390/life14101265
APA StyleTsai, J., Malik, S., & Tjen-A-Looi, S. C. (2024). Pulmonary Hypertension: Pharmacological and Non-Pharmacological Therapies. Life, 14(10), 1265. https://doi.org/10.3390/life14101265