Next Article in Journal
Glucagon, Metabolic Dysfunction-Associated Steatotic Liver Disease and Amino Acids in Humans and Animals without Diabetes Mellitus—An Evidence Map
Next Article in Special Issue
Utilizing C-Reactive Protein (CRP) and CRP Ratios for Early Detection of Postoperative Complications Following Rectal Cancer Surgery
Previous Article in Journal
MRI-Based Machine Learning for Prediction of Clinical Outcomes in Primary Central Nervous System Lymphoma
Previous Article in Special Issue
Pre-Operative Mechanical Bowel Preparation Does Not Affect the Impact of Anastomosis Leakage in Left-Side Colorectal Surgery—A Single Center Observational Study
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Minimally Invasive Sampling of Mediastinal Lesions

1
Department of Pulmonology, S. Maria della Misericordia University Hospital, 33100 Udine, Italy
2
Department of Medicine, Respiratory Medicine Unit, Azienda Ospedaliera Universitaria Integrata of Verona, University of Verona, 37134 Verona, Italy
3
Pulmonology Unit, Department of Medical Surgical and Health Sciences, University Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy
4
Division of Respiratory Diseases, Department of Medicine, Maggiore della Carità University Hospital, 28100 Novara, Italy
5
Department of Pulmonary Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
*
Author to whom correspondence should be addressed.
Life 2024, 14(10), 1291; https://doi.org/10.3390/life14101291
Submission received: 17 July 2024 / Revised: 3 September 2024 / Accepted: 7 October 2024 / Published: 11 October 2024

Abstract

:
This narrative review examines the existing literature on minimally invasive image-guided sampling techniques of mediastinal lesions gathered from international databases (Medline, PubMed, Scopus, and Google Scholar). Original studies, systematic reviews with meta-analyses, randomized controlled trials, and case reports published between January 2009 and November 2023 were included. Four authors independently conducted the search to minimize bias, removed duplicates, and selected and evaluated the studies. The review focuses on the recent advancements in mediastinal sampling techniques, including EBUS-TBNA, EUS-FNA and FNB, IFB, and nodal cryobiopsy. The review highlights the advantages of an integrated approach using these techniques for diagnosing and staging mediastinal diseases, which, when used competently, significantly increase diagnostic yield and accuracy.

1. Introduction

Mediastinal lesions represent a heterogeneous group of clinical entities that arise in the mediastinum, the central compartment of the thoracic cavity. These lesions encompass a broad spectrum of pathologies, including benign and malignant tumors, cysts, and inflammatory processes [1]. The mediastinum houses critical structures such as the heart, great vessels, trachea, esophagus, and lymph nodes, making diagnosing and managing mediastinal lesions diverse and particularly challenging [2,3,4,5]. This complexity is compounded by the anatomical intricacies of the region and the varied clinical presentations of mediastinal diseases, which can range from incidental findings in asymptomatic patients to severe symptoms caused by mass effect or invasion of adjacent structures [6,7,8,9].
The classification of mediastinal lesions is traditionally based on their anatomical location within the mediastinum, which is divided into the following three compartments: prevascular, visceral, and paravertebral [10]. Each compartment is associated with distinct types of lesions, influenced by the embryological origins of the tissues within these regions (see Table 1). For instance, thymomas, germ cell tumors, and lymphomas are commonly found in the prevascular compartment [11,12,13], whereas bronchogenic cysts, vascular lesions, esophageal diseases, and lymphadenopathy are more typical of the visceral one [14]. Lastly, neurogenic tumors, bone, and cartilage pathologies predominantly occupy the paravertebral compartment [15,16,17,18]. This compartmentalization aids in narrowing the differential diagnosis and guiding further diagnostic investigations.
Advancements in imaging modalities, particularly computed tomography (CT) and magnetic resonance imaging (MRI), have significantly enhanced the ability to detect and characterize mediastinal lesions [10,19,20,21]. These imaging techniques provide detailed anatomical information and can help with assessing the extent of the lesion, its relationship with surrounding structures, and potential invasion. Positron emission tomography (PET) combined with CT (PET/CT) has further improved the evaluation of mediastinal masses by providing metabolic information that can distinguish between benign and malignant lesions, as well as between the different types of malignancies [22].
Histopathological examination remains the gold standard for definitive diagnosis in most cases [1,23,24,25]. Various minimally invasive techniques have been developed to obtain tissue samples from mediastinal lesions, reducing the need for more invasive surgical procedures [26].
This article aims to provide a comprehensive review of the current techniques for minimally invasive sampling of mediastinal lesions (Table 2), encompassing their classification, diagnostic performances, and respective complications. By synthesizing recent advancements in the field, we seek to offer insights into the challenges and opportunities in diagnosing these complex conditions.
Table 1. Differential diagnosis of mediastinal lesions classified by the tissues of origin [11,12,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44].
Table 1. Differential diagnosis of mediastinal lesions classified by the tissues of origin [11,12,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44].
Lymph NodesPericardium
Reactive hyperplasia
Infection
Metastasis
Hodgkin lymphoma
Non-Hodgkin lymphoma
Sarcoidosis
Lymphangioma
Cyst
Pericardial recess
Mesothelioma
Sarcoma
Fibroma
Lymphoma
Lipoma
Teratoma
Metastasis
EsophagusHeart
Esophageal cyst
Hiatus hernia
Squamous cell carcinoma
Adenocarcinoma
Esophageal neuroendocrine tumors
Leiomyoma
Leiomyosarcoma
Lymphoma
Gastrointestinal stromal tumor
Esophageal fibrovascular polyp
Metastases
Myxoma
Fibroma
Fibroelastoma
Lipoma
Rabdomioma
Hemangiomas
Teratoma
Amartoma
Paraganglioma
Sarcoma
Metastasis
Trachea, bronchi, and lungThymus
Tracheal and bronchial cyst
Papillomas
Adenomas
Amartoma
Adenocarcinoma
Squamous cell carcinoma
Adenosquamous carcinoma
Small cell lung cancer
Large cell lung cancer
Sarcomatoid carcinoma
Lymphoma
Rare neoplasms
Thymic cyst
Thymoma
Thymic carcinoma
Thymic hyperplasia
Squamous carcinoma
Adenocarcinoma
Adenosquamous carcinoma
NUT carcinoma
Salivary gland-like carcinomas
Carcinoid
Small cell carcinoma
Large cell neuroendocrine carcinoma
PleuraGerm Cells
Metastasis
Mesothelioma
Adenomatoid tumor
Solitary fibrous tumor of the pleura
Pleural angiosarcoma
Pleural synovial sarcoma
Desmoid-type fibromatosis of pleura
Calcifying fibrous tumor of pleura
Desmoplastic round cell tumor of pleura
Lymphoma of the pleura
Seminoma
Embryonal carcinoma
Yolk sac tumor
Choriocarcinoma
Teratoma
Mixed germ cell tumor
Germ cell tumor with associated hematological malignancy
Fibroblastic and myofibroblasticAdipocitic
Desmoid-type fibromatosis
Solitary fibrous tumor
Calcifying fibrous tumor
Inflammatory myofibroblastic tumor
Myxofibrosarcoma
Lipoma
Thymolipoma/thymolipsarcoma
Liposarcoma
Lipoblastoma
Mediastinal lipomatosis
VascularPeripheral nerve sheath and nervous
Aneurysm
Anatomical variation
Hemangioma
Cavernous hemangioma
Venous hemangioma
Intramuscular hemangioma
Arteriovenous hemangioma
Lymphangioma
Cystic lymphangioma
Epithelioid hemangioendothelioma
Angiosarcoma
Meningocele
Extra-adrenal paraganglioma
Granular cell tumor
Schwannoma
Malignant peripheral nerve sheath tumor
Ganglioneuroma
Ganglioneuroblastoma
Neuroblastoma
Paraganglioma
Chemodectoma
Pheochromocytoma
Skeletal muscleBone and cartilage
Rhabdomyosarcoma
Embryonal rhabdomyosarcoma
Spindle cell rhabdomyosarcoma
Alveolar rhabdomyosarcoma
Pleomorphic rhabdomyosarcoma
Osteophyte
Osteoma
Osteosarcoma
Chondroma
Chondrosarcoma
Extramedullary hematopoiesis
Thyroid lesionsParathyroid lesions
Thyroid nodule
Goiter
Thyroiditis
Ectopic thyroid
Papillary cancer
Follicular cancer
Medullary cancer
Anaplastic cancer
Metastasis
Adenoma
Atypical parathyroid tumor
Carcinoma
Metastasis
Others
Localized infection/Abscess
Localized hemorrhage
Mediastinitis
Retroperitoneal recess
Langerhans cell histiocytosis
Erheim-Chester disease
IgG4 disease
Neuroenteric cyst
Thoracic duct cyst
Mediastinal pancreatic pseudocyst
Synovial sarcoma
Spindle cell sarcoma
Epithelioid cell sarcoma
Biphasic synovial sarcoma
Ewing sarcoma
Round cell sarcoma
Fluid extravasation from neighboring organs (e.g., enteral nutrition)
Diaphragmatic hernia
Table 2. Comparison of sampling techniques. EBUS-IFB: EBUS-guided intranodal forceps biopsy; EBUS-TBNA: endobronchial ultrasound-guided transbronchial needle aspiration; EBUS-TMC: EBUS-transbronchial mediastinal cryobiopsy; EUS-B-Cryo: transesophageal cryobiopsy; EUS-FNA/FNB: endoscopic ultrasound fine needle aspiration and biopsy; EUS-B-FNA: trans-esophageal endobronchial ultrasound fine needle aspiration; PTNB: image-guided percutaneous transthoracic needle biopsy. (−): negative; (+/−): variable; (+) affirmative.
Table 2. Comparison of sampling techniques. EBUS-IFB: EBUS-guided intranodal forceps biopsy; EBUS-TBNA: endobronchial ultrasound-guided transbronchial needle aspiration; EBUS-TMC: EBUS-transbronchial mediastinal cryobiopsy; EUS-B-Cryo: transesophageal cryobiopsy; EUS-FNA/FNB: endoscopic ultrasound fine needle aspiration and biopsy; EUS-B-FNA: trans-esophageal endobronchial ultrasound fine needle aspiration; PTNB: image-guided percutaneous transthoracic needle biopsy. (−): negative; (+/−): variable; (+) affirmative.
EBUS-TBNAEBUS-IFBEBUS-TMCEUS-FNA/FNBEUS-B-FNAEUS-B-CryoPTNB
Patient comfort++++
Sedation suggested++++++
Need to access the central airways+++
Need to access the esophagus+++
Histological specimen+/−+++/−++

2. Methodology of the Review

This narrative review evaluates the existing literature by collecting primary English language bibliographic references from international scientific databases (Medline/Pubmed, Scopus, and Google Scholar). The search strategy aimed to include the most significant documents for the human species, dealing with the minimally invasive sampling of mediastinal lesions. The interval considered by the research was from January 2009 to November 2023. Systematic reviews, meta-analyses, randomized control trials (RCTs), original research papers, and case reports were included in our review (see Supplementary Materials for the complete search strategy and CONSORT diagram). The authors included other references that were considered significant.
To minimize bias, the authors independently searched, deduplicated the research results, screened the articles, and selected the studies to be included in this review using the Systematic Review Accelerator (https://sr-accelerator.com/). Of note, the list of included references is not necessarily an all-encompassing one, but it reflects the body of evidence believed to be appropriate for the purpose of this document—highlighting the latest progress made in the field.

3. Planning and Execution of the Procedure

A procedure aimed at sampling a mediastinal lesion entails a meticulously coordinated series of steps to ensure precision and safety [45,46,47]. Initially, the patient undergoes a comprehensive pre-procedural evaluation, including imaging studies such as magnetic resonance imaging, CT, or PET-CT to delineate the lesion’s size, location, and characteristics [1,48,49]. These imaging data are crucial for planning the route of approach, either through an endoscopic or percutaneous route. Laboratory tests such as cell blood count, coagulation tests, and kidney and liver function may be required. The procedure begins with the administration of local anesthesia and, eventually, sedation to facilitate patient comfort and cooperation [50,51,52].
If the procedural route is endoscopic, a flexible instrument is used to navigate through the airways or the digestive tract to the vicinity of the target lesion. Subsequently, imaging techniques confirm the precise location of the mediastinal lesion and detect the presence of critical anatomical structures that need to be avoided with the sampling tool [53,54,55]. Once the target is acquired and stabilized, the working channel of the endoscopic instrument accommodates the sampling tool of choice, which can be chosen based on the location of the lesion with respect to the endoscopic device, the radiologic morphology of the target (e.g., solid or necrotic), the diagnostic suspicion (e.g., benign or malignant pathology), and the tissues that are necessary to pass through with the tool before reaching the target lesion itself [56,57]. The sampling tool is then advanced through the tissue wall into the lesion with real-time imaging modalities such as ultrasound or fluoroscopy to ensure accurate sampling and to avoid injury to adjacent anatomical structures [58,59].
On the other hand, if the planned procedure is percutaneous, the process begins with positioning the patient in the most appropriate position (decubitus) for access to the lesion [60]. Subsequently, a real-time ultrasound or tomographic/fluoroscopic-guided identification of the lesion and surrounding anatomic structures is performed. The skin site corresponding to the safest access to the lesion can be marked for identification. The operator then performs a sterilization of the target area and the administration of local anesthesia. Under real-time ultrasound or fluoroscopic guidance, or, alternatively, with interval tomographic evaluation, a fine needle is inserted through the chest wall into the mediastinal lesion [59,61]. Once the needle reaches the lesion, tissue samples are acquired for analysis. Finally, the retrieval of one or more biopsy cores using a dedicated tool may be performed [62,63].
Multiple tissue samples may be obtained to increase diagnostic yield and minimize the need for repeated procedures [64,65]. The samples are then processed for cytological and histopathological examination, which is pivotal for diagnosing conditions such as malignancy, granulomatous diseases, or infectious processes [66,67,68]. Post-procedure, the patient is monitored for potential complications such as bleeding, pneumothorax, fever, desaturation, and persistent impaired cognitive status [69]. Depending on the local protocol, an ultrasound, fluoroscopic, radiographic, or tomographic evaluation may be performed after a specific time interval from the end of sampling to rule out the presence of iatrogenic pneumothorax or other complications [70,71,72,73,74].

4. Endoscopic Imaging Technologies for Sampling Guidance

4.1. Convex Probe Endobronchial Ultrasound (CP-EBUS)

CP-EBUS is a medical procedure involving the insertion of an endoscope inside the lower airways (trachea and bronchi). It employs a flexible bronchoscope equipped with a convex ultrasound probe at its tip, which can generate high-resolution images of the surrounding tissues (see Figure 1). The probe emits ultrasound waves that penetrate the airway wall and create detailed cross-sectional images of the mediastinum and hilar structures [75]. A saline-filled inflated balloon may be used to cover the probe’s tip to expand the contact area between the device and the mucosa [45].
The investigated lesion’s ultrasound morphology may suggest the underlying etiology. In a retrospective analysis of 1061 images of lymph nodes in lung cancer patients, characteristics such as round shape, distinct margins, heterogeneous pattern, and the presence of necrosis emerged as independent predictors of malignant involvement [76]. Other criteria, such as a short axis larger than 1 cm, absence of central hilar structure, and high blood flow in a lymph node, are classified as high risk for malignancy. If less than three of these criteria are present, there are meager chances of the lymph node being malignant. The best single criterion to predict malignancy is heterogeneity [77].
The capacity of CP-EBUS to undertake sampling under direct ultrasound guidance is one of its main advantages. This feature increases the precision, diagnostic yield, and diagnostic accuracy of sampling techniques by guaranteeing accurate needle placement into target lesions [78].

4.2. Endoscopic Ultrasound (EUS)

EUS is a procedure that involves inserting a flexible endoscope with an ultrasound probe on its tip into the upper gastrointestinal tract [79]. EUS is a minimally invasive procedure used to evaluate the conditions affecting the gastrointestinal system and other adjacent organs and tissues [80,81].
Specific ultrasound features of target lesions, especially size and the presence of necrosis, are predictive of malignancy [82,83].
The advantages of EUS over CP-EBUS include a larger brightness mode window angle (EUS max 360 vs. EBUS max 60 degrees), a better ultrasonic image due to higher resolution, the ability to visualize small anatomical structures, better maneuverability of the endoscope in the various spatial planes, and close contact between the transducer and the target due to greater endoscopic suction with deflation of the esophageal lumen [84].

4.3. Trans-Esophageal Endobronchial Ultrasound (EUS-B)

EUS-B involves using a CP-EBUS bronchoscope inserted through the esophagus to sample a supra- or subdiaphragmatic lesion.
The technique has expanded the pulmonologist’s expertise, primarily in staging pulmonary neoplasms and diagnosing other mediastinal diseases [85,86,87,88].

4.4. Color Doppler

Doppler color flow imaging is a sophisticated imaging modality that improves the diagnostic power of traditional ultrasound. By visualizing blood flow within the region of interest, this approach can provide important insights into the vascular properties of both the target lesion and the surrounding tissues [89]. The obtained images display the direction and velocity of blood flow, allowing for the differentiation between vascular and non-vascular structures. The color Doppler feature is precious in assessing the vascularity of anatomical areas (e.g., chest wall), lymph nodes, and suspicious lesions, aiding in the differentiation between benign and malignant processes and in deciding the best route to the target and which area to sample within the target itself [90,91,92].

4.5. Strain Elastography

Elastography is an imaging technique found in modern ultrasound processors. This non-invasive method evaluates the stiffness and compressibility of tissue based on the knowledge that different tissues exhibit varying degrees of elasticity [93]. It may predict the differentiation between malignant and benign lymph nodes with sufficient sensibility, with malignant tissue typically exhibiting greater relative stiffness than normal ones [94].
By using a color scale resulting from compression deformation, elastography offers information on the stiffness of the tissues in the target area [95]. Typically, red regions indicate the softer portions of the sampled lesion, while blue parts are the stiffer ones.
Thus, by avoiding the necrotic portions that may result in inadequate tissue sampling, elastography can make it easier to locate and sample the most representative portion of a solid lesion [96]. Alternatively, it may indicate the less stiff part of a hard or calcified fibrotic lymph node [97,98,99].
Nevertheless, it is crucial to emphasize that elastography does not replace the requirement of lymph node aspiration [100,101,102,103,104,105,106,107].

5. Percutaneous Imaging Technologies for Sampling Guidance

5.1. Transcutaneous Mediastinal Ultrasound (TMUS)

TMUS is a noteworthy development in non-invasive imaging methods for mediastinal structural assessment. With the use of a curvilinear or linear probe (1–7 vs. 5–20 MHz), TMUS offers real-time imaging of the chest and mediastinal anatomy [108,109,110,111] (see Figure 2).
The benefits of TMUS over other methods described in this section are the lack of ionizing radiation, the affordability and portability of ultrasound devices, and the feasibility of doing a procedure at the patient’s bedside [112,113]. The disadvantages, especially when compared with computed tomography, are the condition of operator-dependence in image interpretation and the maximum tissue depth achievable with adequate resolution [114,115]. Contrast-enhanced ultrasound has been described in the setting of mediastinal sampling [116].

5.2. Fluoroscopy

Fluoroscopy is a real-time imaging technique using X-rays [117]. The fluoroscopic guide may be based on a basic fluoroscope or fluoroscopy derived from traditional computed tomography or cone beam computed tomography [118,119,120].
Depending on the inherent radio-opacity of the target lesion, the procedure may allow for proper placement of the sampling instrument within the lesion and real-time assessment of needle position relative to fluoroscopically identified lesion boundaries [59]. The significant advantage is that the radiologic evaluation occurs in real-time, resulting in the ability to quickly change the position of the sampling instrument [119]. The drawbacks are the radiological exposure of the patient [121] and operator [122], procedural limitations related to the radiological characteristics of the lesion [123], and the inability to identify, without the use of additional elements (e.g., contrast medium), structures adjacent to the lesion such as blood vessels [124].

5.3. Computed Tomography (CT)

CT is an advanced imaging modality that uses X-rays and computer processing to create detailed cross-sectional images of the body [125]. By obtaining intraprocedural high-resolution images, CT enables precise planning and significantly aids in preventing iatrogenic lung and vascular punctures. It guarantees high diagnostic yields (77–100%) in sampling mediastinal lesions [126,127,128].
The advantages include high spatial resolution, feasibility of three-dimensional reconstruction of the image, and the possibility of knowing the position of the sampling instrument in the three planes of space [63]. Disadvantages include the patient’s radiological exposure and the fact that guidance is not real-time, as clinical staff leaves the room during tomographic scans [129].

5.4. Magnetic Resonance Imaging (MRI)

MRI operates by using strong magnetic fields and radiofrequency pulses to align hydrogen nuclei in the tissues. This alignment creates detailed images of internal structures based on the different relaxation times of tissues when the magnetic field is altered [130]. Targeting subtle and inaccessible lesions may be possible using MRI’s multiplanar imaging capabilities, improved soft tissue contrast, and accurate portrayal of vessels [131].
The advantages include extremely high-quality resolution and a lack of ionizing radiation [132].
The main disadvantages are the high acquisition costs, longer procedural times, and the need to use dedicated sampling tools to prevent paramagnetic artifacts [133].

6. Sampling Techniques

6.1. Transbronchial Needle Aspiration (TBNA)

TBNA is a diagnostic technique where a dedicated needle is inserted through the operating channel of a bronchoscope and, by passing through the bronchial wall, allows for the acquisition of both cytological material and tissue cores [78]. The bronchoscope may be inserted through either the nasal or oral route [134]. Both endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) and conventional transbronchial needle aspiration (c-TBNA) are valuable diagnostic tools that may be used accordingly to local availability [135,136].
The accessible mediastinal lymph node stations through this route include paratracheal (2R, 2L, 4R, 4L), subcarinal (7), hilar (10R, 10L, 11R, 11L), lobar (12R, 12L), and segmental and subsegmental stations (13R, 13L, 14R, 14L) [137]. All mediastinal lesions with an edge in contact with the central airways may be sampled [46,54,138,139].
EBUS-guided TBNA performs optimally in malignant diseases involving the mediastinum [140]. It has a sensitivity of 88.0%, with 100% accuracy in establishing a diagnosis of lung cancer, exceeding the observed diagnostic results of cervical mediastinoscopy in randomized trials [141] while guaranteeing a lower rate of complications [142,143]. Confirmatory mediastinoscopy after a negative systematic endosonographic evaluation slightly reduces the rate of unforeseen N2/3 disease but with a high needed to treat number of patients (N = 23.8) [144], and it is avoidable in almost all patients [145].
Benign, hematological, and rare diseases of the mediastinum may represent a weak spot of TBNA as the quality of the specimen and the absence of an actual histological sample may reduce the diagnostic yield for these entities [146,147]. Currently, the reported diagnostic yield for sarcoidosis in actual clinical practice is 79%, with sensitivity reaching 84% in high procedural volume centers [148]. For tuberculous lymphadenitis, the diagnostic yield of EBUS-TBNA is 80% [149,150].
Since the advent of EBUS-TBNA, the optimal needle size has been under discussion and remains a topic of ongoing interest. The primary objective in considering different needle sizes is the requirement to obtain a sufficient amount of high-quality tissue without provoking adverse events. Different needle sizes are available; the most frequently used in clinical practice and studied in the literature are the 21G, 22G, and 19G. The overall EBUS-TBNA sensitivity is, respectively, 93% for the 19G needle, 87.6% for the 21G needle, and 85% for the 22G needle [151]. The overall sensitivity of EBUS-TBNA for diagnosing NSCLC is 92.9% for the 19G needle, 89.4% for the 21G needle, and 82.1% for the 22G needle [151]. The general conclusion currently accepted by the scientific community is that the 19G, 21G, and 22G needles have comparably excellent diagnostic sensitivity [151,152,153,154,155,156].
Kassirian et al. evaluated, in a systematic review and meta-analysis, a pool of 4242 patients to esteem the diagnostic yield of different needle sizes aimed at diagnosing sarcoidosis. The 19G group demonstrated a significantly higher (93.73%) sensitivity when compared to the 21G (84.61%) and 22G groups (84.07%) [157].
New 22G biopsy needles with a side-cutting window have been evaluated; unfortunately, they do not demonstrate a sensibility benefit in patients with benign mediastinal diseases such as sarcoidosis [158]. Additionally, a new crown-cut needle technology (Franseen needle) has been tested with encouraging results, especially in benign mediastinal diseases, despite equivalence in diagnostic accuracy, guaranteeing a better sample quality than conventional needles [159].
A 2012 RCT showed no additional benefit in terms of sample quality, diagnostic yield, or accuracy derived from applying needle suction while performing samples via EBUS-TBNA [160]. The results were later confirmed in subsequent studies for both the rapid on-site and final pathological evaluations [161,162]. Notwithstanding, a recent RCT demonstrated the possibility of a benefit on the diagnostic yield of the cellblocks and not the smears while applying suction [163].
Additional research shows how omitting stylet use during EBUS-TBNA does not impact diagnostic outcomes and decreases procedural complexity [164,165]. Lastly, the number of needle passes does not affect diagnostic yield for benign conditions after ten revolutions [166], while increasing needle passes improves the yield for next-generation sequencing for lung cancer [167].
EBUS-TBNA is a safe procedure with an overall complication rate approaching 1.4% [78,168]. Bleeding is the most frequently described complication but requires dedicated intervention in only 0.2% of procedures [169,170]. Isolated cases of mortality associated with EBUS-TBNA and delayed and fatal bleeding have been described [171]. Pneumothorax (0.53%) may arise as a complication, but it does not always necessitate the placement of a chest drain [169,170,172]. Mediastinal infections (0.10%) and pneumonia (0.22%) have been described [170,173,174,175,176]. Acute respiratory failure (0.3%) and the exacerbation of existing diseases are rare [169,170]. The incidence of complications increases in patients older than 70 years [169]. Needle breakage is rare but has been described [177,178,179,180].

6.2. EBUS-Guided Intranodal Forceps Biopsy (EBUS-IFB)

EBUS-IFB is a complimentary procedure, usually performed following EBUS-TBNA, and involves using biopsy forceps within the operating channel of the EBUS bronchoscope (see Video S1) [181]. Through the breach previously generated by the needle itself, the forceps are advanced inside the target lesion to take a histologic specimen from it [182]. In the past, large gauge needles containing biopsy forceps within their structural architecture were investigated; however, they have been poorly integrated into clinical practice since then. In 2012, a pilot study by Herth et al. proved that using 1.5 mm mini-forceps to obtain tissue for the diagnosis of enlarged mediastinal lymphadenopathy was a safe and feasible technique, providing a diagnosis yield of 86% [183].
The recent literature has described the use of different-sized forceps (0.96–1.9 mm) that were also applied in sampling peripheral lung lesions [184]. There was initial evidence that larger forceps provided better sample quality and size, as well as greater diagnostic yield [185].
A systematic review and meta-analysis by Agrawal et al. considering 443 patients showed an overall diagnostic yield in the diagnosis of intrathoracic adenopathy of 92% for EBUS-TBNA combined with EBUS-IFB and only 67% for EBUS-TBNA alone. A subgroup analysis of the same cohort showed an increased diagnostic yield for lymphoma (86% vs. 30%) and sarcoidosis (93% vs. 58) using EBUS-TBNA combined with EBUS-IFB [186]. To enhance the histopathological evaluation results, the integration of EBUS-IFB as a supplementary approach may be considered [187].
The overall complication rate is 1.5%, including pneumomediastinum (1%), hemorrhage (0.8%), and respiratory failure (0.6%) [181,186]. A single report on forceps malfunction has been published [188].

6.3. EBUS-Transbronchial Mediastinal Cryobiopsy (EBUS-TMC)

EBUS-TMC is a novel procedure that uses various caliber freezing probes aimed at acquiring histological samples from mediastinal lesions [189]. This technique allows larger and more intact tissue volumes to be acquired, minimizing crush artifacts [189].
EBUS-TMC can be used either as a stand-alone technique or associated with EBUS-TBNA. In the case of a stand-alone sampling technique, the breach through the airway is generated with a high-frequency knife or a laser [190,191,192]; conversely, in the case of employment complementary to EBUS-TBNA, the freezing probe is inserted into the target lesion through the needle breach [193,194,195,196]. The 1.1 mm [193,194,195,196] probe and the 1.7 mm [194,195] probe are the most widely used, and the activation time of the workstation varies from 3 to 7 seconds for each sample [89]. The extremely low temperatures generated induce the specimen to adhere to the probe, allowing for its retrieval and en-bloc removal with the bronchoscope.
This technique enhances diagnostic accuracy in various mediastinal diseases, especially in non-malignant conditions and rare clinical entities [189,197]. In a systematic review enrolling 555 patients, EBUS-TMC demonstrated a diagnostic advantage compared to EBUS-TBNA in lymphomas, non-pulmonary carcinomas, and benign diseases. For lymphoma, EBUS-TMC was diagnostic in 87% of cases compared to only 12% for EBUS-TBNA; it also allowed for the characterization of every lymphoma subtype [198]. In the same systematic review, the authors described the improvement in sample adequacy (97% for EBUS-TMC vs. 79% for EBUS-TBNA) for obtaining a complete genetic and immunohistochemical typization in the setting of lung cancer [196,198].
An RCT by Fan et al. compared a group of patients undergoing combined EBUS-TBNA and EBUS-TMC with another group undergoing EBUS-TBNA alone [192]. They enrolled 271 patients with two coprimary endpoints—procedure-related complications and diagnostic yield. EBUS-TMC demonstrated a good safety profile and a notable increase in the diagnostic yield (93% in the combined group vs. 81% in the control group) for mediastinal lesions [192]. The combined approach improved the adequacy of tissue samples for molecular and immunological analyses of lung cancer. The incidence of complications did not differ between the groups [192].
The most frequent complication is bleeding, described in up to 85% of cases [89,199], currently justifying the use of a secured airway during the procedure.

6.4. Endoscopic Ultrasound Fine Needle Aspiration and Biopsy (EUS-FNA and FNB)

EUS-FNA and EUS-FNB are pivotal techniques for sampling mediastinal lesions [200]. EUS-FNA uses a fine needle to aspirate cells for cytological examination, while EUS-FNB employs a core needle to obtain tissue samples for histological analysis [201].
Compared with EBUS-TBNA, EUS-FNA/FNB has a greater extent of feasible mediastinal sampling sites. For example, lymph node stations 8 and 9 can also be reached, making the systematic staging of the mediastinum more comprehensive during the staging of chest oncological diseases [202,203].
EUS-FNA is widely used worldwide by gastroenterology specialists and occasionally by pulmonologists or surgeons due to its high diagnostic yield [204,205,206,207,208]. However, its reliance on cytological assessment can be limiting in cases where architectural tissue information is crucial. Conversely, EUS-FNB provides core tissue samples that preserve histological architecture, facilitating comprehensive pathological assessment [209]. Comparative studies for abdominal lesions indicate that EUS-FNB generally offers a superior diagnostic yield and accuracy compared to EUS-FNA [210]. Additionally, the diagnostic accuracy of EUS-FNB is slightly higher, often exceeding 90% [211], due to its ability to provide more adequate tissue samples. Renelus et al.’s meta-analysis revealed that EUS-FNB outperformed EUS-FNA for diagnostic yield (87% vs. 81%) [212]. Similarly, another systematic review and meta-analysis by Van Riet et al. discovered that the EUS-FNB outperformed EUS-FNA accuracy in 14 RCTs involving malignant and non-malignant lesions (87% vs. 80%) [213]. Lastly, a network meta-analysis by Han et al. that included both malignant and non-malignant lesions likewise showed the superiority of EUS-FNB over EUS-FNA [214]. For diagnostic outcomes on mediastinal lesions, there are undoubtedly less data available than for sampling abdominal ones; however, the literature describes, in malignant mediastinal disease, a diagnostic accuracy equal to 87.5% or more for EUS-FNA [204,215,216,217] and a diagnostic accuracy of 97.0% for EUS-FNB [218], with high variability between the different cohorts [219].
Various needles are utilized in EUS procedures. For EUS-FNA, standard 22G and 25G needles are commonly used, with the latter often preferred for increased flexibility and reduced risk of blood contamination [220,221]. Larger 19G needles are available but seem comparable to 22G in terms of diagnostic results for the mediastinal region [219,222,223]. EUS-FNB employs specialized needles, such as Franseen, reverse-bevel, Menghini-tip, and fork-tip designs, which have been shown to improve sampling quality and diagnostic yield [224].
Applying suction to the needle versus a stylet slow-pull technique does not alter the diagnostic results or the bloodiness of samples [225]. Avoiding suction may provide better accuracy while using smaller needles, such as the 25G [226].
EUS-FNA and FNB are both safe procedures with a low cumulative complication rate (2.5%) and mortality rate (0.02%) [227,228], even for mediastinal sampling [229]. The main complications described for EUS-FNA of the mediastinal lymph nodes and cystic lesions are infections [228,230,231]; thus, caution is advised on the indication to the sample liquid or necrotic lesions of the mediastinum [232].

6.5. Trans-Esophageal Endobronchial Ultrasound Fine Needle Aspiration (EUS-B-FNA)

In this technique, the EBUS bronchoscope is introduced into the esophageal route until it reaches the stomach, enabling the visualization of mediastinal and thoracic para-esophageal structures. Subsequently, a fine needle is used to sample the identified lesion.
EBUS-TBNA and EUS-B-FNA can be considered complementary techniques that can be performed consequentially during the same procedure using a bronchoscope. In recent years, a flexible bronchoscope has been proposed in both the airway and digestive tract evaluation phases, especially as a lung cancer staging procedure [186]. The use of the two techniques makes it possible to reach mediastinal locations that cannot be hit with either one alone, such as mediastinal and retroperitoneal lymph nodes [87,233], lung and pleural masses [234,235,236,237], pericardial fluid [238], ascites [239] and lesions in the liver [240], pancreas [241] or left adrenal gland [46,242].
An RCT by Madan et al. recruited 100 patients to compare the diagnostic yield and patient comfort between an EBUS-TBNA group and an EUS-B-FNA one in sampling mediastinal lymphadenopathy [88]. The diagnostic yield and adequacy of the aspirates were comparable across the two groups. However, with the EUS-B-FNA technique, the operator evaluated the intraprocedural patient’s comfort substantially higher with significantly less cough [88]. With EUS-B-FNA, the procedure took less time than EBUS-TBNA alone (16.4 versus 18.1 min). The authors concluded that for undiagnosed mediastinal lymphadenopathy located predominantly at the subcarinal or lower left paratracheal stations, EUS-B-FNA, compared with EBUS-TBNA, provides greater patient comfort with a similar diagnostic yield [88].
EUS-B-FNA can be considered an ideal approach in patients with severely compromised lower airways or respiratory failure requiring a mediastinal sampling procedure as the bronchoscope does not obstruct the airway or risk worsening the patient’s clinical condition [243].
To this day, the evidence still suggests that combining EBUS-TBNA with EUS-FNA is associated with better diagnostic accuracy than combining EBUS-TBNA with EUS-B-FNA [244]. This can be explained by the recent introduction of EUS-B-FNA into clinical practice and the need for practitioners to refine the technique and maintain sufficient operative volumes to maintain technical skills. Additionally, significant technical differences remained between the two procedures and utilized devices, primarily the size and maneuverability of the instrument, which is undoubtedly greater for a gastroscope than a bronchoscope, as well as the ability to insufflate air within the lumen of the digestive tract to locate anatomical landmarks, which is not feasible with a bronchoscope, implying that the proceduralist must orient himself just with the endoluminal ultrasound guidance.
EUS-B-FNA alone or in combination with EBUS-TBNA can also be performed in the pediatric population, as it has been proven safe [245]. The types of adverse events are similar to those of EUS-FNA.

6.6. Transesophageal Cryobiopsy (EUS-B-Cryo)

EUS-B-Cryo is a recently introduced procedure involving a freezing probe, used through a bronchoscope under EBUS guidance through the esophageal tissue layers [246]. Candidate patients for this procedure described in the literature generally have respiratory failure that does not allow safe passage of the bronchoscope through the airway without high risk to the patient [246].
The route for the freezing probe is usually created by previous FNA sampling of the target lesion [246,247]; however, the use of a high-frequency knife has been described [248].
The evidence favoring this procedure is mainly based on case-reports, and complications still have not been well described and ascertained because the follow-up periods of patients have been very short.

6.7. Image-Guided Percutaneous Transthoracic Needle Biopsy (PTNB)

Percutaneous transthoracic needle biopsy (PTNB) involves the insertion of a needle through the chest wall to reach and acquire the target mediastinal tissue (see Figure 3).
The following two types of PTNB exist: fine-needle aspiration (FNA) and core needle biopsy (CNB). FNA uses a thin needle to acquire a cytological specimen from the lesion, whereas CNB uses a larger, hollow needle to obtain larger core tissue samples for histology [249,250]. The indication to use only one or both sampling modalities depends on the suspected nature of the lesion and the foreseeable need for a histological specimen [251]. CNB has a higher sample adequacy (89.6% vs. 75.5%) and diagnostic yield (81.3% vs. 53.1%) when compared with FNA [251].
The access route for small- to medium-caliber lesions is preferably extra pleural with a parasternal route and, in rare cases, paravertebral, trans-sternal, or suprasternal [252]. Another option is the transpulmonary technique, which entails the needle passing into the lung and visceral pleura with an increased risk of complications [253].
Of the various imaging modalities for sampling, TMUS, when feasible, provides the best sampling success over CT for both pulmonary and pleural lesions [254] with reduced procedural times and complication rates [129]; there is initial evidence with similar conclusions regarding sampling of mediastinal lesions as well [112].
The complication rate for mediastinal PTNB is 4.5–11% [119,255]. Described complications include pneumothorax (2%), bleeding (0.3%), and pleural and chest wall tumoral seeding [112,256].

7. Rapid On-Site Evaluation (ROSE)

ROSE is an emergent diagnostic tool in cytopathology that improves diagnostic procedures by analyzing intraprocedural cytological samples and imprinted bioptical ones [257,258].
ROSE involves the immediate microscopic examination of the acquired samples under a microscope or a slide scanner at the time and site of the procedure by a cytopathologist or other qualified operator [259,260]. This prompt assessment guarantees the sufficiency of the gathered specimen, thus diminishing the necessity for additional procedures, mitigating procedural and anesthesia time, and reducing the complication rate [261,262]. Additionally, ROSE makes quick preliminary diagnosis feasible, which could shorten the time from starting the diagnostic pathway to establishing dedicated therapy [263,264].
Finding ourselves at a time in history when mediastinal sampling modalities are plenty and have a non-negligible cost, ROSE can be employed to decide whether to conclude the procedure using a single low-cost sampling device (e.g., needle) versus proceeding to sample a lesion with a multimodal technique that employs several tools and increases procedural costs [265,266].

8. Conclusions

The correct and best route to sample a mediastinal lesion will likely be specific to the individual patient and the operating facility where the procedure is performed. The route by which sampling is conducted and the tools to be used must be identified prior to the procedure and possibly adjusted during it based on the imaging, clinical conditions, instrumentation available, and ROSE feedback [267,268].
The limitation of this review is the heterogeneity of the diagnostic endpoints used in the various bibliographic sources consulted.
The topic of mediastinal lesion sampling is a lively field of research, which is sure to see rapid evolution over time in the coming years. The available technology is already being further improved through the miniaturization of devices, the development of robotic endoscopy, and more sophisticated sampling techniques. The clinical relevance of mastering these procedures is to have a definite impact on the diagnostic and staging pathway of patients with malignant and benign mediastinal diseases.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/life14101291/s1, Video S1: intranodal forceps biopsy sampling. Table S1. Search strategy used for the databases. Figure S1. CONSORT flow diagram of the review process.

Author Contributions

Conceptualization, A.F. and N.C.; methodology, A.F. and N.C.; resources, all authors; data curation, all authors; writing—original draft preparation, all authors; writing—review and editing, all authors; visualization, A.F.; supervision, E.C. and V.P. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Juanpere, S.; Cañete, N.; Ortuño, P.; Martínez, S.; Sanchez, G.; Bernado, L. A Diagnostic Approach to the Mediastinal Masses. Insights Into Imaging 2013, 4, 29. [Google Scholar] [CrossRef]
  2. Li, W.W.L.; van Boven, W.J.P.; Annema, J.T.; Eberl, S.; Klomp, H.M.; de Mol, B.A.J.M. Management of Large Mediastinal Masses: Surgical and Anesthesiological Considerations. J. Thorac. Dis. 2016, 8, E175–E184. [Google Scholar] [CrossRef] [PubMed]
  3. Hsu, D.S.; Banks, K.C.; Velotta, J.B. Surgical Approaches to Mediastinal Cysts: Clinical Practice Review. Mediastinum 2022, 6, 32. [Google Scholar] [CrossRef]
  4. Kantzou, I.; Sarris, G.; Kouloulias, V.; Abatzoglou, I.; Leivaditis, V.; Grapatsas, K.; Koletsis, E.; Papatriantafyllou, A.; Dahm, M.; Mulita, A.; et al. Radiotherapy for Tumors of the Mediastinum—State of the Art. Kardiochir. Torakochirurgia Pol. 2023, 20, 255–262. [Google Scholar] [CrossRef] [PubMed]
  5. Dabaja, B.S.; Hoppe, B.S.; Plastaras, J.P.; Newhauser, W.; Rosolova, K.; Flampouri, S.; Mohan, R.; Mikhaeel, N.G.; Kirova, Y.; Specht, L.; et al. Proton Therapy for Adults with Mediastinal Lymphomas: The International Lymphoma Radiation Oncology Group Guidelines. Blood 2018, 132, 1635–1646. [Google Scholar] [CrossRef]
  6. Stigt, J.A.; Boers, J.E.; Oostdijk, A.H.; van den Berg, J.-W.K.; Groen, H.J.M. Mediastinal Incidentalomas. J. Thorac. Oncol. 2011, 6, 1345–1349. [Google Scholar] [CrossRef] [PubMed]
  7. Yoon, S.H.; Choi, S.H.; Kang, C.H.; Goo, J.M. Incidental Anterior Mediastinal Nodular Lesions on Chest CT in Asymptomatic Subjects. J. Thorac. Oncol. 2018, 13, 359–366. [Google Scholar] [CrossRef]
  8. Duwe, B.V.; Sterman, D.H.; Musani, A.I. Tumors of the Mediastinum. Chest 2005, 128, 2893–2909. [Google Scholar] [CrossRef]
  9. Napolitano, M.A.; Werba, G.; Desai, S.A.; Sparks, A.D.; Mortman, K.D. Presenting Symptomatology of Mediastinal Masses and Its Effect on Surgical Outcomes. Am. Surg. 2022, 88, 212–218. [Google Scholar] [CrossRef]
  10. Carter, B.W.; Benveniste, M.F.; Madan, R.; Godoy, M.C.; de Groot, P.M.; Truong, M.T.; Rosado-de-Christenson, M.L.; Marom, E.M. ITMIG Classification of Mediastinal Compartments and Multidisciplinary Approach to Mediastinal Masses. RadioGraphics 2017, 37, 413–436. [Google Scholar] [CrossRef]
  11. Marx, A.; Chan, J.K.C.; Chalabreysse, L.; Dacic, S.; Detterbeck, F.; French, C.A.; Hornick, J.L.; Inagaki, H.; Jain, D.; Lazar, A.J.; et al. The 2021 WHO Classification of Tumors of the Thymus and Mediastinum: What Is New in Thymic Epithelial, Germ Cell, and Mesenchymal Tumors? J. Thorac. Oncol. 2022, 17, 200–213. [Google Scholar] [CrossRef] [PubMed]
  12. WHO. Thoracic Tumours. In WHO Classification of Tumours, 5th ed.; WHO: Geneva, Switzerland, 2021; Volume 5, ISBN 978-92-832-4506-3. [Google Scholar]
  13. Huang, J.; Ahmad, U.; Antonicelli, A.; Catlin, A.C.; Fang, W.; Gomez, D.; Loehrer, P.; Lucchi, M.; Marom, E.; Nicholson, A.; et al. Development of the International Thymic Malignancy Interest Group International Database: An Unprecedented Resource for the Study of a Rare Group of Tumors. J. Thorac. Oncol. 2014, 9, 1573–1578. [Google Scholar] [CrossRef] [PubMed]
  14. Wassef, M.; Blei, F.; Adams, D.; Alomari, A.; Baselga, E.; Berenstein, A.; Burrows, P.; Frieden, I.J.; Garzon, M.C.; Lopez-Gutierrez, J.-C.; et al. Vascular Anomalies Classification: Recommendations From the International Society for the Study of Vascular Anomalies. Pediatrics 2015, 136, e203–e214. [Google Scholar] [CrossRef]
  15. Lam, A.K.-Y. Updates on World Health Organization Classification and Staging of Esophageal Tumors: Implications for Future Clinical Practice. Hum. Pathol. 2021, 108, 100–112. [Google Scholar] [CrossRef] [PubMed]
  16. Rodriguez, E.F.; Jones, R.; Miller, D.; Rodriguez, F.J. Neurogenic Tumors of the Mediastinum. Semin. Diagn. Pathol. 2020, 37, 179–186. [Google Scholar] [CrossRef] [PubMed]
  17. Suster, S.; Moran, C.A. Malignant Cartilaginous Tumors of the Mediastinum: Clinicopathological Study of Six Cases Presenting as Extraskeletal Soft Tissue Masses. Hum. Pathol. 1997, 28, 588–594. [Google Scholar] [CrossRef]
  18. Sykes, A.; Badiger, R.; Wort, J.; Copley, S. Multiple Thoracic Osteophytes Presenting as Mediastinal Mass. Thorax 2007, 62, 192. [Google Scholar] [CrossRef]
  19. Goitein, O.; Truong, M.T.; Bekker, E.; Marom, E.M. Potential Pitfalls in Imaging of the Mediastinum. Radiol. Clin. N. Am. 2021, 59, 279–290. [Google Scholar] [CrossRef]
  20. Occhipinti, M.; Heidinger, B.H.; Franquet, E.; Eisenberg, R.L.; Bankier, A.A. Imaging the Posterior Mediastinum: A Multimodality Approach. Diagn. Interv. Radiol. 2015, 21, 293–306. [Google Scholar] [CrossRef]
  21. Carter, B.W.; de Groot, P.M.; Godoy, M.C.B.; Marom, E.M.; Wu, C.C. Imaging of the Mediastinum: Vascular Lesions as a Potential Pitfall. Semin. Roentgenol. 2015, 50, 241–250. [Google Scholar] [CrossRef]
  22. Tatci, E.; Ozmen, O.; Dadali, Y.; Biner, I.U.; Gokcek, A.; Demirag, F.; Incekara, F.; Arslan, N. The Role of FDG PET/CT in Evaluation of Mediastinal Masses and Neurogenic Tumors of Chest Wall. Int. J. Clin. Exp. Med. 2015, 8, 11146–11152. [Google Scholar]
  23. Brcic, L.; Roden, A.C. Histopathological Features of Giant Mediastinal Tumors—A Literature Review. Mediastinum 2023, 7. [Google Scholar] [CrossRef] [PubMed]
  24. Fang, W.-T.; Xu, M.-Y.; Chen, G.; Chen, Y.; Chen, W.-H. Minimally Invasive Approaches for Histological Diagnosis of Anterior Mediastinal Masses. Chin. Med. J. 2007, 120, 675–679. [Google Scholar] [CrossRef] [PubMed]
  25. Marino, M.; Ascani, S. An Overview on the Differential Diagnostics of Tumors of the Anterior-Superior Mediastinum: The Pathologist’s Perspective. Mediastinum 2019, 3, 6. [Google Scholar] [CrossRef] [PubMed]
  26. Steinfort, D.P.; Evison, M.; Witt, A.; Tsaknis, G.; Kheir, F.; Manners, D.; Madan, K.; Sidhu, C.; Fantin, A.; Korevaar, D.A.; et al. Proposed Quality Indicators and Recommended Standard Reporting Items in Performance of EBUS Bronchoscopy: An Official World Association for Bronchology and Interventional Pulmonology Expert Panel Consensus Statement. Respirology 2023, 28, 722–743. [Google Scholar] [CrossRef]
  27. Iyer, H.; Anand, A.; Sryma, P.B.; Gupta, K.; Naranje, P.; Damle, N.; Mittal, S.; Madan, N.K.; Mohan, A.; Hadda, V.; et al. Mediastinal Lymphadenopathy: A Practical Approach. Expert. Rev. Respir. Med. 2021, 15, 1317–1334. [Google Scholar] [CrossRef]
  28. Krywanczyk, A.R.; Tan, C.D.; Rodriguez, E.R. A Clinico-Pathologic Approach to the Differential Diagnosis of Pericardial Tumors. Curr. Cardiol. Rep. 2021, 23, 119. [Google Scholar] [CrossRef]
  29. Nagtegaal, I.D.; Odze, R.D.; Klimstra, D.; Paradis, V.; Rugge, M.; Schirmacher, P.; Washington, K.M.; Carneiro, F.; Cree, I.A. WHO Classification of Tumours Editorial Board The 2019 WHO Classification of Tumours of the Digestive System. Histopathology 2020, 76, 182–188. [Google Scholar] [CrossRef]
  30. Tsai, S.-J.; Lin, C.-C.; Chang, C.-W.; Hung, C.-Y.; Shieh, T.-Y.; Wang, H.-Y.; Shih, S.-C.; Chen, M.-J. Benign Esophageal Lesions: Endoscopic and Pathologic Features. World J. Gastroenterol. 2015, 21, 1091–1098. [Google Scholar] [CrossRef]
  31. Maleszewski, J.J.; Basso, C.; Bois, M.C.; Glass, C.; Klarich, K.W.; Leduc, C.; Padera, R.F.; Tavora, F. The 2021 WHO Classification of Tumors of the Heart. J. Thorac. Oncol. 2022, 17, 510–518. [Google Scholar] [CrossRef]
  32. Sauter, J.L.; Dacic, S.; Galateau-Salle, F.; Attanoos, R.L.; Butnor, K.J.; Churg, A.; Husain, A.N.; Kadota, K.; Khoor, A.; Nicholson, A.G.; et al. The 2021 WHO Classification of Tumors of the Pleura: Advances Since the 2015 Classification. J. Thorac. Oncol. 2022, 17, 608–622. [Google Scholar] [CrossRef] [PubMed]
  33. Moulin, B.; Messiou, C.; Crombe, A.; Kind, M.; Hohenberger, P.; Rutkowski, P.; van Houdt, W.J.; Strauss, D.; Gronchi, A.; Bonvalot, S. Diagnosis Strategy of Adipocytic Soft-Tissue Tumors in Adults: A Consensus from European Experts. Eur. J. Surg. Oncol. 2022, 48, 518–525. [Google Scholar] [CrossRef] [PubMed]
  34. Sbaraglia, M.; Bellan, E.; Dei Tos, A.P. The 2020 WHO Classification of Soft Tissue Tumours: News and Perspectives. Pathologica 2021, 113, 70–84. [Google Scholar] [CrossRef] [PubMed]
  35. Rodriguez, F.J.; Folpe, A.L.; Giannini, C.; Perry, A. Pathology of Peripheral Nerve Sheath Tumors: Diagnostic Overview and Update on Selected Diagnostic Problems. Acta Neuropathol. 2012, 123, 295–319. [Google Scholar] [CrossRef]
  36. Belakhoua, S.M.; Rodriguez, F.J. Diagnostic Pathology of Tumors of Peripheral Nerve. Neurosurgery 2021, 88, 443–456. [Google Scholar] [CrossRef]
  37. Carqueja, I.M.; Sousa, J.; Mansilha, A. Vascular Malformations: Classification, Diagnosis and Treatment. Int. Angiol. 2018, 37, 127–142. [Google Scholar] [CrossRef]
  38. Kelley, M.J.; Mannes, E.J.; Ravin, C.E. Mediastinal Masses of Vascular Origin. A Review. J. Thorac. Cardiovasc. Surg. 1978, 76, 559–572. [Google Scholar] [CrossRef]
  39. Paral, K.; Krausz, T. Vascular Tumors of the Mediastinum. Mediastinum 2020, 4, 25. [Google Scholar] [CrossRef]
  40. Choi, J.H.; Ro, J.Y. The 2020 WHO Classification of Tumors of Bone: An Updated Review. Adv. Anat. Pathol. 2021, 28, 119–138. [Google Scholar] [CrossRef]
  41. Christofer Juhlin, C.; Mete, O.; Baloch, Z.W. The 2022 WHO Classification of Thyroid Tumors: Novel Concepts in Nomenclature and Grading. Endocr. Relat. Cancer 2023, 30, e220293. [Google Scholar] [CrossRef]
  42. Erickson, L.A.; Mete, O.; Juhlin, C.C.; Perren, A.; Gill, A.J. Overview of the 2022 WHO Classification of Parathyroid Tumors. Endocr. Pathol. 2022, 33, 64–89. [Google Scholar] [CrossRef] [PubMed]
  43. Patnaik, S.; Malempati, A.R.; Uppin, M.; Susarla, R. Rare Mediastinal Masses—Imaging Review. J. Cancer Res. Ther. 2021, 17, 13–21. [Google Scholar] [CrossRef]
  44. Aljudi, A.; Weinzierl, E.; Elkhalifa, M.; Park, S. The Hematological Differential Diagnosis of Mediastinal Masses. Clin. Lab. Med. 2021, 41, 389–404. [Google Scholar] [CrossRef] [PubMed]
  45. Fantin, A.; Castaldo, N.; Tirone, C.; Sartori, G.; Crisafulli, E.; Patrucco, F.; Vetrugno, L.; Patruno, V. Endobronchial Ultrasound: A Pictorial Essay. Acta Biomed. 2023, 94, e2023113. [Google Scholar] [CrossRef]
  46. Dietrich, C.F.; Annema, J.T.; Clementsen, P.; Cui, X.W.; Borst, M.M.; Jenssen, C. Ultrasound Techniques in the Evaluation of the Mediastinum, Part I: Endoscopic Ultrasound (EUS), Endobronchial Ultrasound (EBUS) and Transcutaneous Mediastinal Ultrasound (TMUS), Introduction into Ultrasound Techniques. J. Thorac. Dis. 2015, 7, E311–E325. [Google Scholar] [CrossRef] [PubMed]
  47. Okasha, H.H.; El-Meligui, A.; Pawlak, K.M.; Żorniak, M.; Atalla, H.; Abou-Elmagd, A.; Abou-Elenen, S.; El-Husseiny, R.; Alzamzamy, A. Practical Approach to Linear EUS Examination of the Mediastinum. Endosc. Ultrasound 2021, 10, 406. [Google Scholar] [CrossRef]
  48. Ahuja, J.; Strange, C.D.; Agrawal, R.; Erasmus, L.T.; Truong, M.T. Approach to Imaging of Mediastinal Masses. Diagnostics 2023, 13, 3171. [Google Scholar] [CrossRef]
  49. Carter, B.W.; Betancourt, S.L.; Benveniste, M.F. MR Imaging of Mediastinal Masses. Top. Magn. Reson. Imaging 2017, 26, 153–165. [Google Scholar] [CrossRef]
  50. José, R.J.; Shaefi, S.; Navani, N. Sedation for Flexible Bronchoscopy: Current and Emerging Evidence. Eur. Respir. Rev. 2013, 22, 106–116. [Google Scholar] [CrossRef]
  51. Chadha, M.; Kulshrestha, M.; Biyani, A. Anaesthesia for Bronchoscopy. Indian. J. Anaesth. 2015, 59, 565–573. [Google Scholar] [CrossRef]
  52. Lin, O.S. Sedation for Routine Gastrointestinal Endoscopic Procedures: A Review on Efficacy, Safety, Efficiency, Cost and Satisfaction. Intest. Res. 2017, 15, 456–466. [Google Scholar] [CrossRef] [PubMed]
  53. Nakajima, T.; Anayama, T.; Shingyoji, M.; Kimura, H.; Yoshino, I.; Yasufuku, K. Vascular Image Patterns of Lymph Nodes for the Prediction of Metastatic Disease During EBUS-TBNA for Mediastinal Staging of Lung Cancer. J. Thorac. Oncol. 2012, 7, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
  54. Harris, K.; Modi, K.; Kumar, A.; Dhillon, S.S. Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration of Pulmonary Artery Tumors: A Systematic Review (with Video). Endosc. Ultrasound 2015, 4, 191. [Google Scholar] [CrossRef]
  55. Fantin, A.; Castaldo, N.; Seides, B.; Majori, M. Pulmonary Embolism as a Finding During Endobronchial Ultrasound: An Occasional Occurrence or a New Element to Be Staged? Cureus 2021, 13, e20137. [Google Scholar] [CrossRef]
  56. Kandel, P.; Wallace, M.B. Recent Advancement in EUS-Guided Fine Needle Sampling. J. Gastroenterol. 2019, 54, 377. [Google Scholar] [CrossRef]
  57. Yang, J.; De Cardenas, J.; Nobari, M.; Miller, R.; Cheng, G. Narrative Review of Tools for Endoscopic Ultrasound-Guided Biopsy of Mediastinal Nodes. Mediastinum 2020, 4, 34. [Google Scholar] [CrossRef] [PubMed]
  58. Herth, F.J.F.; Eberhardt, R.; Vilmann, P.; Krasnik, M.; Ernst, A. Real-Time Endobronchial Ultrasound Guided Transbronchial Needle Aspiration for Sampling Mediastinal Lymph Nodes. Thorax 2006, 61, 795–798. [Google Scholar] [CrossRef]
  59. Iguchi, T.; Hiraki, T.; Matsui, Y.; Fujiwara, H.; Sakurai, J.; Masaoka, Y.; Uka, M.; Tanaka, T.; Gobara, H.; Kanazawa, S. CT Fluoroscopy-Guided Core Needle Biopsy of Anterior Mediastinal Masses. Diagn. Interv. Imaging 2018, 99, 91–97. [Google Scholar] [CrossRef] [PubMed]
  60. Drumm, O.; Joyce, E.A.; de Blacam, C.; Gleeson, T.; Kavanagh, J.; McCarthy, E.; McDermott, R.; Beddy, P. CT-Guided Lung Biopsy: Effect of Biopsy-Side Down Position on Pneumothorax and Chest Tube Placement. Radiology 2019, 292, 190–196. [Google Scholar] [CrossRef]
  61. Navin, P.J.; Eickstaedt, N.L.; Atwell, T.D.; Young, J.R.; Eiken, P.W.; Welch, B.T.; Schmitz, J.J.; Schmit, G.D.; Johnson, M.P.; Moynagh, M.R. Safety and Efficacy of Percutaneous Image-Guided Mediastinal Mass Core-Needle Biopsy. Mayo Clin. Proc. Innov. Qual. Outcomes 2021, 5, 1100–1108. [Google Scholar] [CrossRef]
  62. Morrissey, B.; Adams, H.; Gibbs, A.R.; Crane, M.D. Percutaneous Needle Biopsy of the Mediastinum: Review of 94 Procedures. Thorax 1993, 48, 632–637. [Google Scholar] [CrossRef] [PubMed]
  63. Kulkarni, S.; Kulkarni, A.; Roy, D.; Thakur, M.H. Percutaneous Computed Tomography-Guided Core Biopsy for the Diagnosis of Mediastinal Masses. Ann. Thorac. Med. 2008, 3, 13–17. [Google Scholar] [CrossRef] [PubMed]
  64. Wang, Z.; Jiang, C. Endoscopic Ultrasound in the Diagnosis of Mediastinal Diseases. Open Med. 2015, 10, 560–565. [Google Scholar] [CrossRef]
  65. Vazquez-Sequeiros, E.; Levy, M.J.; Van Domselaar, M.; González-Panizo, F.; Foruny-Olcina, J.R.; Boixeda-Miquel, D.; Juzgado-Lucas, D.; Albillos, A. Diagnostic Yield and Safety of Endoscopic Ultrasound Guided Fine Needle Aspiration of Central Mediastinal Lung Masses. Diagn. Ther. Endosc. 2013, 2013, 150492. [Google Scholar] [CrossRef]
  66. Bulman, W.; Saqi, A.; Powell, C.A. Acquisition and Processing of Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration Specimens in the Era of Targeted Lung Cancer Chemotherapy. Am. J. Respir. Crit. Care Med. 2012, 185, 606–611. [Google Scholar] [CrossRef]
  67. Sehgal, I.S.; Gupta, N.; Dhooria, S.; Aggarwal, A.N.; Madan, K.; Jain, D.; Gupta, P.; Madan, N.K.; Rajwanshi, A.; Agarwal, R. Processing and Reporting of Cytology Specimens from Mediastinal Lymph Nodes Collected Using Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration: A State-of-the-Art Review. J. Cytol. 2020, 37, 72. [Google Scholar] [CrossRef]
  68. Biermann, K.; Escario, M.D.L.; Hébert-Magee, S.; Rindi, G.; Doglioni, C. How to Prepare, Handle, Read, and Improve EUS-FNA and Fine-Needle Biopsy for Solid Pancreatic Lesions: The Pathologist’s Role. Endosc. Ultrasound 2017, 6, S95. [Google Scholar] [CrossRef] [PubMed]
  69. Strohleit, D.; Galetin, T.; Kosse, N.; Lopez-Pastorini, A.; Stoelben, E. Guidelines on Analgosedation, Monitoring, and Recovery Time for Flexible Bronchoscopy: A Systematic Review. BMC Pulm. Med. 2021, 21, 198. [Google Scholar] [CrossRef]
  70. Galata, C.; Cascant Ortolano, L.; Shafiei, S.; Hetjens, S.; Müller, L.; Stauber, R.H.; Stamenovic, D.; Roessner, E.D.; Karampinis, I. Are Routine Chest X-Rays Necessary Following Thoracic Surgery? A Systematic Literature Review and Meta-Analysis. Cancers (Basel) 2022, 14, 4361. [Google Scholar] [CrossRef]
  71. Elabdein, A.Z.; Hassan, R.A.; Elhaish, M.K.; Elkhayat, H. Chest Ultrasound to Detect Postoperative Pulmonary Complications after Thoracic Surgery: A Comparative Study. Cardiothorac. Surg. 2024, 32, 6. [Google Scholar] [CrossRef]
  72. Malík, M.; Dzian, A.; Števík, M.; Vetešková, Š.; Al Hakim, A.; Hliboký, M.; Magyar, J.; Kolárik, M.; Bundzel, M.; Babič, F. Lung Ultrasound Reduces Chest X-Rays in Postoperative Care after Thoracic Surgery: Is There a Role for Artificial Intelligence?—Systematic Review. Diagnostics 2023, 13, 2995. [Google Scholar] [CrossRef] [PubMed]
  73. Lesser, T.G. Significance of Chest Ultrasound in the Early Postoperative Period Following Thoracic Surgery. J. Thorac. Dis. 2019, 11, S352. [Google Scholar] [CrossRef] [PubMed]
  74. Chiappetta, M.; Meacci, E.; Cesario, A.; Smargiassi, A.; Inchingolo, R.; Petracca Ciavarella, L.; Lopatriello, S.; Contegiacomo, A.; Congedo, M.T.; Margaritora, S. Postoperative Chest Ultrasound Findings and Effectiveness after Thoracic Surgery: A Pilot Study. Ultrasound Med. Biol. 2018, 44, 1960–1967. [Google Scholar] [CrossRef] [PubMed]
  75. Yasufuku, K.; Chiyo, M.; Sekine, Y.; Chhajed, P.N.; Shibuya, K.; Iizasa, T.; Fujisawa, T. Real-Time Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration of Mediastinal and Hilar Lymph Nodes. Chest 2004, 126, 122–128. [Google Scholar] [CrossRef]
  76. Fujiwara, T.; Yasufuku, K.; Nakajima, T.; Chiyo, M.; Yoshida, S.; Suzuki, M.; Shibuya, K.; Hiroshima, K.; Nakatani, Y.; Yoshino, I. The Utility of Sonographic Features during Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration for Lymph Node Staging in Patients with Lung Cancer: A Standard Endobronchial Ultrasound Image Classification System. Chest 2010, 138, 641–647. [Google Scholar] [CrossRef]
  77. Schmid-Bindert, G.; Jiang, H.; Kähler, G.; Saur, J.; Henzler, T.; Wang, H.; Ren, S.; Zhou, C.; Pilz, L.R. Predicting Malignancy in Mediastinal Lymph Nodes by Endobronchial Ultrasound: A New Ultrasound Scoring System. Respirology 2012, 17, 1190–1198. [Google Scholar] [CrossRef]
  78. Wahidi, M.M.; Herth, F.; Yasufuku, K.; Shepherd, R.W.; Yarmus, L.; Chawla, M.; Lamb, C.; Casey, K.R.; Patel, S.; Silvestri, G.A.; et al. Technical Aspects of Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration: CHEST Guideline and Expert Panel Report. Chest 2016, 149, 816–835. [Google Scholar] [CrossRef] [PubMed]
  79. Sooklal, S.; Chahal, P. Endoscopic Ultrasound. Surg. Clin. N. Am. 2020, 100, 1133–1150. [Google Scholar] [CrossRef]
  80. Dietrich, C.F.; Braden, B.; Jenssen, C. Interventional Endoscopic Ultrasound. Curr. Opin. Gastroenterol. 2021, 37, 449–461. [Google Scholar] [CrossRef]
  81. Leoncini, F.; Magnini, D.; Livi, V.; Flore, M.C.; Porro, L.M.; Paioli, D.; Trisolini, R. Endosonography in Mediastinal Staging of Lung Cancer: A Concise Literature Review. Video-Assist. Thorac. Surg. 2022, 7, 4. [Google Scholar] [CrossRef]
  82. Roberts, S.; Mahon, B.; Evans, R. Coagulation Necrosis in Malignant Mediastinal Nodes on Endoscopic Ultrasound: A New Endosonographic Sign. Clin. Radiol. 2005, 60, 587–591. [Google Scholar] [CrossRef] [PubMed]
  83. Wang Memoli, J.S.; El-Bayoumi, E.; Pastis, N.J.; Tanner, N.T.; Gomez, M.; Huggins, J.T.; Onicescu, G.; Garrett-Mayer, E.; Armeson, K.; Taylor, K.K.; et al. Using Endobronchial Ultrasound Features to Predict Lymph Node Metastasis in Patients with Lung Cancer. Chest 2011, 140, 1550–1556. [Google Scholar] [CrossRef] [PubMed]
  84. Vilmann, P.; Clementsen, P.F. Combined EUS and EBUS Are Complementary Methods in Lung Cancer Staging: Do Not Forget the Esophagus. Endosc. Int. Open 2015, 3, E300. [Google Scholar] [CrossRef] [PubMed]
  85. Crombag, L.M.M.; Mooij-Kalverda, K.; Szlubowski, A.; Gnass, M.; Tournoy, K.G.; Sun, J.; Oki, M.; Ninaber, M.K.; Steinfort, D.P.; Jennings, B.R.; et al. EBUS versus EUS-B for Diagnosing Sarcoidosis: The International Sarcoidosis Assessment (ISA) Randomized Clinical Trial. Respirology 2022, 27, 152–160. [Google Scholar] [CrossRef]
  86. Torii, A.; Oki, M.; Yamada, A.; Kogure, Y.; Kitagawa, C.; Saka, H. EUS-B-FNA Enhances the Diagnostic Yield of EBUS Bronchoscope for Intrathoracic Lesions. Lung 2022, 200, 643–648. [Google Scholar] [CrossRef] [PubMed]
  87. Issa, M.A.; Clementsen, P.F.; Laursen, C.B.; Christiansen, I.S.; Crombag, L.; Vilmann, P.; Bodtger, U. Added Value of EUS-B-FNA to Bronchoscopy and EBUS-TBNA in Diagnosing and Staging of Lung Cancer. Eur. Clin. Respir. J. 2024, 11, 2362995. [Google Scholar] [CrossRef]
  88. Madan, K.; Mittal, S.; Madan, N.K.; Tiwari, P.; Jain, D.; Arava, S.; Hadda, V.; Mohan, A.; Garg, P.; Guleria, R. EBUS-TBNA versus EUS-B-FNA for the Evaluation of Undiagnosed Mediastinal Lymphadenopathy: The TEAM Randomized Controlled Trial. Clin. Respir. J. 2020, 14, 1076–1082. [Google Scholar] [CrossRef]
  89. Ramarmuty, H.Y.; Oki, M. Endobronchial Ultrasound-Guided Transbronchial Mediastinal Cryobiopsy: A Narrative Review. Mediastinum 2024, 8, 2. [Google Scholar] [CrossRef]
  90. Guler, N.; Tertemiz, K.C.; Gurel, D. A Valuable Endobronchial Ultrasound Scoring System Predicting Malignant Lymph Nodes. Turk. Gogus Kalp Damar Cerrahisi Derg. 2023, 31, 358–366. [Google Scholar] [CrossRef]
  91. Morishita, M.; Uchimura, K.; Furuse, H.; Imabayashi, T.; Tsuchida, T.; Matsumoto, Y. Predicting Malignant Lymph Nodes Using a Novel Scoring System Based on Multi-Endobronchial Ultrasound Features. Cancers 2022, 14, 5355. [Google Scholar] [CrossRef]
  92. Nosotti, M.; Palleschi, A.; Tosi, D.; Mendogni, P.; Righi, I.; Carrinola, R.; Rosso, L. Color-Doppler Sonography Patterns in Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration of Mediastinal Lymph-Nodes. J. Thorac. Dis. 2017, 9, S376–S380. [Google Scholar] [CrossRef] [PubMed]
  93. Verhoeven, R.L.J.; de Korte, C.L.; van der Heijden, E.H.F.M. Optimal Endobronchial Ultrasound Strain Elastography Assessment Strategy: An Explorative Study. Respiration 2019, 97, 337–347. [Google Scholar] [CrossRef] [PubMed]
  94. Verhoeven, R.L.J.; Trisolini, R.; Leoncini, F.; Candoli, P.; Bezzi, M.; Messi, A.; Krasnik, M.; de Korte, C.L.; Annema, J.T.; van der Heijden, E.H.F.M. Predictive Value of Endobronchial Ultrasound Strain Elastography in Mediastinal Lymph Node Staging: The E-Predict Multicenter Study Results. Respiration 2020, 99, 484–492. [Google Scholar] [CrossRef]
  95. Livi, V.; Cancellieri, A.; Pirina, P.; Fois, A.; van der Heijden, E.H.F.M.; Trisolini, R. Endobronchial Ultrasound Elastography Helps Identify Fibrotic Lymph Nodes in Sarcoidosis. Am. J. Respir. Crit. Care Med. 2019, 199, e24–e25. [Google Scholar] [CrossRef] [PubMed]
  96. Sigrist, R.M.S.; Liau, J.; Kaffas, A.E.; Chammas, M.C.; Willmann, J.K. Ultrasound Elastography: Review of Techniques and Clinical Applications. Theranostics 2017, 7, 1303–1329. [Google Scholar] [CrossRef]
  97. Rahimi, E.; Younes, M.; Zhang, S.; Thosani, N. Endoscopic Ultrasound Elastography to Diagnose Sarcoidosis. Endosc. Ultrasound 2016, 5, 212–214. [Google Scholar] [CrossRef]
  98. Madan, M.; Mittal, S.; Tiwari, P.; Hadda, V.; Mohan, A.; Guleria, R.; Pandey, R.M.; Madan, K. The Diagnostic Utility of Ultrasound Elastography to Differentiate Tuberculosis and Sarcoidosis during Endobronchial Ultrasound–Guided Transbronchial Needle Aspiration (EBUS-TBNA). Lung India 2022, 39, 532–536. [Google Scholar] [CrossRef]
  99. Trisolini, R.; Verhoeven, R.L.J.; Cancellieri, A.; De Silvestri, A.; Natali, F.; Van der Heijden, E.H.F.M. Role of Endobronchial Ultrasound Strain Elastography in the Identification of Fibrotic Lymph Nodes in Sarcoidosis: A Pilot Study. Respirology 2020, 25, 1203–1206. [Google Scholar] [CrossRef] [PubMed]
  100. Madan, K.; Madan, M.; Iyer, H.; Mittal, S.; Madan, N.K.; Rathi, V.; Tiwari, P.; Hadda, V.; Mohan, A.; Pandey, R.M.; et al. Utility of Elastography for Differentiating Malignant and Benign Lymph Nodes During EBUS-TBNA: A Systematic Review and Meta-Analysis. J. Bronchol. Interv. Pulmonol. 2022, 29, 18–33. [Google Scholar] [CrossRef]
  101. Huang, J.; Lu, Y.; Wang, X.; Zhu, X.; Li, P.; Chen, J.; Chen, P.; Ding, M. Diagnostic Value of Endobronchial Ultrasound Elastography Combined with Rapid Onsite Cytological Evaluation in Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration. BMC Pulm. Med. 2021, 21, 423. [Google Scholar] [CrossRef]
  102. Gompelmann, D.; Kontogianni, K.; Sarmand, N.; Kaukel, P.; Krisam, J.; Eberhardt, R.; Herth, F.J.F. Endobronchial Ultrasound Elastography for Differentiating Benign and Malignant Lymph Nodes. Respiration 2020, 99, 779–783. [Google Scholar] [CrossRef] [PubMed]
  103. Lin, C.-K.; Yu, K.-L.; Chang, L.-Y.; Fan, H.-J.; Wen, Y.-F.; Ho, C.-C. Differentiating Malignant and Benign Lymph Nodes Using Endobronchial Ultrasound Elastography. J. Formos. Med. Assoc. 2019, 118, 436–443. [Google Scholar] [CrossRef] [PubMed]
  104. Ding, M.; Wu, Y.; Jing, H.; Wei, S.; Wu, T.; Li, X.-Q.; Li, P.; Zhu, X. Endobronchial Ultrasound Elastography for Differentiating between Benign and Malignant Lymph Nodes. Minerva Med. 2020, 111, 369–370. [Google Scholar] [CrossRef] [PubMed]
  105. Wang, Z.; Bai, J.; Jiao, G.; Li, P. Quantitative Evaluation of Endobronchial Ultrasound Elastography in the Diagnosis of Benign and Malignant Mediastinal and Hilar Lymph Nodes. Respir. Med. 2024, 224, 107566. [Google Scholar] [CrossRef] [PubMed]
  106. Wang, Z.; Li, P.; Bai, J.; Liu, Y.; Jiao, G. Quantitative Analysis of Endobronchial Elastography Combined with Serum Tumour Markers of Lung Cancer in the Diagnosis of Benign and Malignant Mediastinal and Hilar Lymph Nodes. Pathol. Oncol. Res. 2023, 29, 1611377. [Google Scholar] [CrossRef]
  107. Wang, Y.; Zhao, Z.; Zhu, M.; Zhu, Q.; Yang, Z.; Chen, L. Diagnostic Value of Endobronchial Ultrasound Elastography in Differentiating between Benign and Malignant Hilar and Mediastinal Lymph Nodes: A Retrospective Study. Quant. Imaging Med. Surg. 2023, 13, 4648–4662. [Google Scholar] [CrossRef]
  108. Yang, P.C. Ultrasound-Guided Transthoracic Biopsy of the Chest. Radiol. Clin. N. Am. 2000, 38, 323–343. [Google Scholar] [CrossRef]
  109. Mammarappallil, J.G.; Hiatt, K.D.; Ge, Q.; Clark, H.P. Computed Tomography Fluoroscopy versus Conventional Computed Tomography Guidance for Biopsy of Intrathoracic Lesions: A Retrospective Review of 1143 Consecutive Procedures. J. Thorac. Imaging 2014, 29, 340–343. [Google Scholar] [CrossRef]
  110. Floridi, C.; Reginelli, A.; Capasso, R.; Fumarola, E.; Pesapane, F.; Barile, A.; Zappia, M.; Caranci, F.; Brunese, L. Percutaneous Needle Biopsy of Mediastinal Masses under C-Arm Conebeam CT Guidance: Diagnostic Performance and Safety. Med. Oncol. 2017, 34, 67. [Google Scholar] [CrossRef]
  111. Fu, Y.-F.; Li, G.-C.; Cao, W.; Wang, T.; Shi, Y.-B. Computed Tomography Fluoroscopy-Guided Versus Conventional Computed Tomography-Guided Lung Biopsy: A Systematic Review and Meta-Analysis. J. Comput. Assist. Tomogr. 2020, 44, 571–577. [Google Scholar] [CrossRef]
  112. Jarmakani, M.; Duguay, S.; Rust, K.; Conner, K.; Wagner, J.M. Ultrasound Versus Computed Tomographic Guidance for Percutaneous Biopsy of Chest Lesions. J. Ultrasound Med. 2016, 35, 1865–1872. [Google Scholar] [CrossRef] [PubMed]
  113. Li, X.; Kong, L. Ultrasound versus Computed Tomography-Guided Transthoracic Biopsy for Pleural and Peripheral Lung Lesions: A Systematic Review and Meta-Analysis. Acta Radiol. 2023, 64, 2999–3008. [Google Scholar] [CrossRef] [PubMed]
  114. Rambhia, S.H.; D’Agostino, C.A.; Noor, A.; Villani, R.; Naidich, J.J.; Pellerito, J.S. Thoracic Ultrasound: Technique, Applications, and Interpretation. Curr. Probl. Diagn. Radiol. 2017, 46, 305–316. [Google Scholar] [CrossRef]
  115. Smargiassi, A.; Inchingolo, R.; Soldati, G.; Copetti, R.; Marchetti, G.; Zanforlin, A.; Giannuzzi, R.; Testa, A.; Nardini, S.; Valente, S. The Role of Chest Ultrasonography in the Management of Respiratory Diseases: Document II. Multidiscip. Respir. Med. 2013, 8, 55. [Google Scholar] [CrossRef] [PubMed]
  116. Yi, D.; Feng, M.; Wen Ping, W.; Zheng Biao, J.; Fan, P.L. Contrast-Enhanced US-Guided Percutaneous Biopsy of Anterior Mediastinal Lesions. Diagn. Interv. Radiol. 2017, 23, 43–48. [Google Scholar] [CrossRef]
  117. Paulson, E.K.; Sheafor, D.H.; Enterline, D.S.; McAdams, H.P.; Yoshizumi, T.T. CT Fluoroscopy-Guided Interventional Procedures: Techniques and Radiation Dose to Radiologists. Radiology 2001, 220, 161–167. [Google Scholar] [CrossRef]
  118. Sidhu, J.S.; Salte, G.; Christiansen, I.S.; Naur, T.M.H.; Høegholm, A.; Clementsen, P.F.; Bodtger, U. Fluoroscopy Guided Percutaneous Biopsy in Combination with Bronchoscopy and Endobronchial Ultrasound in the Diagnosis of Suspicious Lung Lesions—The Triple Approach. Eur. Clin. Respir. J. 2020, 7, 1723303. [Google Scholar] [CrossRef]
  119. Burgard, C.; Stahl, R.; de Figueiredo, G.N.; Dinkel, J.; Liebig, T.; Cioni, D.; Neri, E.; Trumm, C.G. Percutaneous CT Fluoroscopy-Guided Core Needle Biopsy of Mediastinal Masses: Technical Outcome and Complications of 155 Procedures during a 10-Year Period. Diagnostics 2021, 11, 781. [Google Scholar] [CrossRef]
  120. Kim, H.; Park, C.M.; Lee, S.M.; Goo, J.M. C-Arm Cone-Beam CT Virtual Navigation-Guided Percutaneous Mediastinal Mass Biopsy: Diagnostic Accuracy and Complications. Eur. Radiol. 2015, 25, 3508–3517. [Google Scholar] [CrossRef]
  121. Mahesh, M. Fluoroscopy: Patient Radiation Exposure Issues. Radiographics 2001, 21, 1033–1045. [Google Scholar] [CrossRef]
  122. Stahl, C.M.; Meisinger, Q.C.; Andre, M.P.; Kinney, T.B.; Newton, I.G. Radiation Risk to the Fluoroscopy Operator and Staff. AJR Am. J. Roentgenol. 2016, 207, 737–744. [Google Scholar] [CrossRef] [PubMed]
  123. Hur, J.; Lee, H.-J.; Nam, J.E.; Kim, Y.J.; Kim, T.H.; Choe, K.O.; Choi, B.W. Diagnostic Accuracy of CT Fluoroscopy-Guided Needle Aspiration Biopsy of Ground-Glass Opacity Pulmonary Lesions. AJR Am. J. Roentgenol. 2009, 192, 629–634. [Google Scholar] [CrossRef] [PubMed]
  124. Slattery, M.M.; Goh, G.S.; Power, S.; Given, M.F.; McGrath, F.P.; Lee, M.J. Comparison of Ultrasound-Guided and Fluoroscopy-Assisted Antegrade Common Femoral Artery Puncture Techniques. Cardiovasc. Interv. Radiol. 2015, 38, 579–582. [Google Scholar] [CrossRef] [PubMed]
  125. Little, B.P. Approach to Chest Computed Tomography. Clin. Chest Med. 2015, 36, 127–145, vii. [Google Scholar] [CrossRef]
  126. Petranovic, M.; Gilman, M.D.; Muniappan, A.; Hasserjian, R.P.; Digumarthy, S.R.; Muse, V.V.; Sharma, A.; Shepard, J.-A.O.; Wu, C.C. Diagnostic Yield of CT-Guided Percutaneous Transthoracic Needle Biopsy for Diagnosis of Anterior Mediastinal Masses. AJR Am. J. Roentgenol. 2015, 205, 774–779. [Google Scholar] [CrossRef]
  127. Skretting, I.K.; Ruud, E.A.; Ashraf, H. Diagnostic Yield, Complications, Pathology and Anatomical Features in CT-Guided Percutaneous Needle Biopsy of Mediastinal Tumours. PLoS ONE 2022, 17, e0277200. [Google Scholar] [CrossRef]
  128. Rabbani, M.; Sarrami, A.H. Computed Tomography-Guided Percutaneous Core Needle Biopsy for Diagnosis of Mediastinal Mass Lesions: Experience with 110 Cases in Two University Hospitals in Isfahan, Iran. Adv. Biomed. Res. 2016, 5, 152. [Google Scholar] [CrossRef] [PubMed]
  129. Khosla, R.; McLean, A.W.; Smith, J.A. Ultrasound-Guided versus Computed Tomography-Scan Guided Biopsy of Pleural-Based Lung Lesions. Lung India 2016, 33, 487–492. [Google Scholar] [CrossRef]
  130. Nakazono, T.; Yamaguchi, K.; Egashira, R.; Mizuguchi, M.; Irie, H. Anterior Mediastinal Lesions: CT and MRI Features and Differential Diagnosis. Jpn. J. Radiol. 2021, 39, 101–117. [Google Scholar] [CrossRef]
  131. Evison, M.; Robinson, S.D.; Sharman, A.; Datta, S.; Rammohan, K.; Duerden, R.; Montero-Fernandez, M.A.; Gilligan, D. Making an Accurate Diagnosis of Anterior Mediastinal Lesions: A Proposal for a New Diagnostic Algorithm from the BTOG Thymic Malignancies Special Interest Group. Clin. Radiol. 2024, 79, 404–412. [Google Scholar] [CrossRef]
  132. Archer, J.M.; Ahuja, J.; Strange, C.D.; Shroff, G.S.; Gladish, G.W.; Sabloff, B.S.; Truong, M.T. Multimodality Imaging of Mediastinal Masses and Mimics. Mediastinum 2023, 7, 27. [Google Scholar] [CrossRef] [PubMed]
  133. Garnon, J.; Ramamurthy, N.; Caudrelier J, J.; Erceg, G.; Breton, E.; Tsoumakidou, G.; Rao, P.; Gangi, A. MRI-Guided Percutaneous Biopsy of Mediastinal Masses Using a Large Bore Magnet: Technical Feasibility. Cardiovasc. Interv. Radiol. 2016, 39, 761–767. [Google Scholar] [CrossRef] [PubMed]
  134. Mishra, M.; Chowdhury, N.; Krishnadas Padmanabhan, A.; Banerjee, S.; Kumar Saini, L.; Sharma, P.; Agrawal, S.; Sindhwani, G. Comparison of Patient’s Procedural Tolerance of EBUS-TBNA Performed Through Nasal Versus Oral Route: The NO-EBUS Randomized Clinical Trial. J. Bronchol. Interv. Pulmonol. 2024, 31, 215–223. [Google Scholar] [CrossRef]
  135. Gnass, M.; Szlubowski, A.; Soja, J.; Kocoń, P.; Rudnicka, L.; Ćmiel, A.; Sładek, K.; Kużdżał, J. Comparison of Conventional and Ultrasound-Guided Needle Biopsy Techniques in the Diagnosis of Sarcoidosis: A Randomized Trial. Pol. Arch. Med. Wewn. 2015, 125, 321–328. [Google Scholar] [CrossRef]
  136. Bonifazi, M.; Tramacere, I.; Zuccatosta, L.; Mei, F.; Sediari, M.; Paonessa, M.C.; Gasparini, S. Conventional versus Ultrasound-Guided Transbronchial Needle Aspiration for the Diagnosis of Hilar/Mediastinal Lymph Adenopathies: A Randomized Controlled Trial. Respiration 2017, 94, 216–223. [Google Scholar] [CrossRef]
  137. Steinfort, D.P.; Kothari, G.; Wallace, N.; Hardcastle, N.; Rangamuwa, K.; Dieleman, E.M.T.; Lee, P.; Li, P.; Simpson, J.A.; Yo, S.; et al. Systematic Endoscopic Staging of Mediastinum to Guide Radiotherapy Planning in Patients with Locally Advanced Non-Small-Cell Lung Cancer (SEISMIC): An International, Multicentre, Single-Arm, Clinical Trial. Lancet Respir. Med. 2024, 12, 467–475. [Google Scholar] [CrossRef]
  138. Kumar, A.; Mohan, A.; Dhillon, S.S.; Harris, K. Substernal Thyroid Biopsy Using Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration. J. Vis. Exp. 2014, 51867. [Google Scholar] [CrossRef]
  139. Madan, K.; Mittal, S.; Hadda, V.; Jain, D.; Mohan, A.; Guleria, R. Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration of Thyroid: Report of Two Cases and Systematic Review of Literature. Lung India 2016, 33, 682–687. [Google Scholar] [CrossRef]
  140. Navani, N.; Nankivell, M.; Lawrence, D.R.; Lock, S.; Makker, H.; Baldwin, D.R.; Stephens, R.J.; Parmar, M.K.; Spiro, S.G.; Morris, S.; et al. Lung Cancer Diagnosis and Staging with Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration Compared with Conventional Approaches: An Open-Label, Pragmatic, Randomised Controlled Trial. Lancet Respir. Med. 2015, 3, 282–289. [Google Scholar] [CrossRef]
  141. Um, S.-W.; Kim, H.K.; Jung, S.-H.; Han, J.; Lee, K.J.; Park, H.Y.; Choi, Y.S.; Shim, Y.M.; Ahn, M.-J.; Park, K.; et al. Endobronchial Ultrasound versus Mediastinoscopy for Mediastinal Nodal Staging of Non-Small-Cell Lung Cancer. J. Thorac. Oncol. 2015, 10, 331–337. [Google Scholar] [CrossRef]
  142. Figueiredo, V.R.; Cardoso, P.F.G.; Jacomelli, M.; Santos, L.M.; Minata, M.; Terra, R.M. EBUS-TBNA versus Surgical Mediastinoscopy for Mediastinal Lymph Node Staging in Potentially Operable Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. J. Bras. Pneumol. 2020, 46, e20190221. [Google Scholar] [CrossRef] [PubMed]
  143. Ge, X.; Guan, W.; Han, F.; Guo, X.; Jin, Z. Comparison of Endobronchial Ultrasound-Guided Fine Needle Aspiration and Video-Assisted Mediastinoscopy for Mediastinal Staging of Lung Cancer. Lung 2015, 193, 757–766. [Google Scholar] [CrossRef] [PubMed]
  144. Sanz-Santos, J.; Almagro, P.; Malik, K.; Martinez-Camblor, P.; Caro, C.; Rami-Porta, R. Confirmatory Mediastinoscopy after Negative Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration for Mediastinal Staging of Lung Cancer: Systematic Review and Meta-Analysis. Ann. Am. Thorac. Soc. 2022, 19, 1581–1590. [Google Scholar] [CrossRef] [PubMed]
  145. Bousema, J.E.; Dijkgraaf, M.G.W.; van der Heijden, E.H.F.M.; Verhagen, A.F.T.M.; Annema, J.T.; van den Broek, F.J.C.; MEDIASTrial Study Group. Endosonography with or without Confirmatory Mediastinoscopy for Resectable Lung Cancer: A Randomized Clinical Trial. J. Clin. Oncol. 2023, 41, 3805–3815. [Google Scholar] [CrossRef]
  146. Labarca, G.; Sierra-Ruiz, M.; Kheir, F.; Folch, E.; Majid, A.; Mehta, H.J.; Jantz, M.A.; Fernandez-Bussy, S. Diagnostic Accuracy of Endobronchial Ultrasound Transbronchial Needle Aspiration in Lymphoma. A Systematic Review and Meta-Analysis. Ann. Am. Thorac. Soc. 2019, 16, 1432–1439. [Google Scholar] [CrossRef]
  147. Fantin, A.; Castaldo, N.; Vailati, P.; Morana, G.; Orso, D.; Vetrugno, L.; Patruno, V. Pleural Effusion Aetiology, Presentation, Treatment and Outcome in Haematological Malignancies, IgG4-Related Disease, Chronic Myeloproliferative Diseases, and Haemoglobinopathias: A Review. Acta Biomed. 2021, 92, e2021268. [Google Scholar] [CrossRef]
  148. Trisolini, R.; Lazzari Agli, L.; Tinelli, C.; De Silvestri, A.; Scotti, V.; Patelli, M. Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration for Diagnosis of Sarcoidosis in Clinically Unselected Study Populations. Respirology 2015, 20, 226–234. [Google Scholar] [CrossRef] [PubMed]
  149. Li, W.; Zhang, T.; Chen, Y.; Liu, C.; Peng, W. Diagnostic Value of Convex Probe Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration in Mediastinal Tuberculous Lymphadenitis: A Systematic Review and Meta-Analysis. Med. Sci. Monit. 2015, 21, 2064–2072. [Google Scholar] [CrossRef]
  150. Ye, W.; Zhang, R.; Xu, X.; Liu, Y.; Ying, K. Diagnostic Efficacy and Safety of Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration in Intrathoracic Tuberculosis: A Meta-Analysis. J. Ultrasound Med. 2015, 34, 1645–1650. [Google Scholar] [CrossRef]
  151. Yu Lee-Mateus, A.; Garcia-Saucedo, J.C.; Abia-Trujillo, D.; Labarca, G.; Patel, N.M.; Pascual, J.M.; Fernandez-Bussy, S. Comparing Diagnostic Sensitivity of Different Needle Sizes for Lymph Nodes Suspected of Lung Cancer in Endobronchial Ultrasound Transbronchial Needle Aspiration: Systematic Review and Meta-Analysis. Clin. Respir. J. 2021, 15, 1328–1336. [Google Scholar] [CrossRef]
  152. Giri, S.; Pathak, R.; Yarlagadda, V.; Karmacharya, P.; Aryal, M.R.; Martin, M.G. Meta-Analysis of 21- versus 22-G Aspiration Needle during Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration. J. Bronchol. Interv. Pulmonol. 2015, 22, 107–113. [Google Scholar] [CrossRef] [PubMed]
  153. Dooms, C.; Vander Borght, S.; Yserbyt, J.; Testelmans, D.; Wauters, E.; Nackaerts, K.; Vansteenkiste, J.; Verbeken, E.; Weynand, B. A Randomized Clinical Trial of Flex 19G Needles versus 22G Needles for Endobronchial Ultrasonography in Suspected Lung Cancer. Respiration 2018, 96, 275–282. [Google Scholar] [CrossRef] [PubMed]
  154. Wolters, C.; Darwiche, K.; Franzen, D.; Hager, T.; Bode-Lesnievska, B.; Kneuertz, P.J.; He, K.; Koenig, M.; Freitag, L.; Wei, L.; et al. A Prospective, Randomized Trial for the Comparison of 19-G and 22-G Endobronchial Ultrasound-Guided Transbronchial Aspiration Needles; Introducing a Novel End Point of Sample Weight Corrected for Blood Content. Clin. Lung Cancer 2019, 20, e265–e273. [Google Scholar] [CrossRef] [PubMed]
  155. Manley, C.J.; Kumar, R.; Gong, Y.; Huang, M.; Wei, S.S.; Nagarathinam, R.; Haber, A.; Egleston, B.; Flieder, D.; Ehya, H. Prospective Randomized Trial to Compare the Safety, Diagnostic Yield and Utility of 22-Gauge and 19-Gauge Endobronchial Ultrasound Transbronchial Needle Aspirates and Processing Technique by Cytology and Histopathology. J. Am. Soc. Cytopathol. 2022, 11, 114–121. [Google Scholar] [CrossRef]
  156. Dhooria, S.; Sehgal, I.S.; Prasad, K.T.; Muthu, V.; Dogra, P.; Saini, M.; Gupta, N.; Bal, A.; Aggarwal, A.N.; Agarwal, R. Diagnostic Yield and Safety of the 19-Gauge versus 22-Gauge Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration Needle in Subjects with Sarcoidosis (GUESS). Respiration 2024, 103, 336–343. [Google Scholar] [CrossRef]
  157. Kassirian, S.; Hinton, S.N.; Iansavitchene, A.; Amjadi, K.; Chee, A.; Dhaliwal, I.; Mitchell, M.A. Effect of Needle Size on Diagnosis of Sarcoidosis with Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration: Systematic Review and Meta-Analysis. Ann. Am. Thorac. Soc. 2022, 19, 279–290. [Google Scholar] [CrossRef]
  158. Dhooria, S.; Sehgal, I.S.; Prasad, K.T.; Muthu, V.; Gupta, N.; Bal, A.; Ram, B.; Aggarwal, A.N.; Agarwal, R. Diagnostic Yield and Safety of the ProCore versus the Standard EBUS-TBNA Needle in Subjects with Suspected Sarcoidosis. Expert. Rev. Med. Devices 2021, 18, 211–216. [Google Scholar] [CrossRef]
  159. Wälscher, J.; Büscher, E.; Bonella, F.; Karpf-Wissel, R.; Costabel, U.; Theegarten, D.; Rawitzer, J.; Wienker, J.; Darwiche, K. Comparison of a 22G Crown-Cut Needle with a Conventional 22G Needle with EBUS Guidance in Diagnosis of Sarcoidosis. Lung 2022, 200, 633–641. [Google Scholar] [CrossRef]
  160. Casal, R.F.; Staerkel, G.A.; Ost, D.; Almeida, F.A.; Uzbeck, M.H.; Eapen, G.A.; Jimenez, C.A.; Nogueras-Gonzalez, G.M.; Sarkiss, M.; Morice, R.C. Randomized Clinical Trial of Endobronchial Ultrasound Needle Biopsy with and without Aspiration. Chest 2012, 142, 568–573. [Google Scholar] [CrossRef]
  161. Mohan, A.; Iyer, H.; Madan, K.; Hadda, V.; Mittal, S.; Tiwari, P.; Jain, D.; Pandey, R.M.; Garg, A.; Guleria, R. A Randomized Comparison of Sample Adequacy and Diagnostic Yield of Various Suction Pressures in EBUS-TBNA. Adv. Respir. Med. 2021, 89, 268–276. [Google Scholar] [CrossRef]
  162. Kassirian, S.; Mitchell, M.A.; McCormack, D.G.; Zeman-Pocrnich, C.; Dhaliwal, I. Rapid On-Site Evaluation (ROSE) in Capillary Pull Versus Suction Biopsy Technique with Endobronchial Ultrasound-Transbronchial Needle Aspiration (EBUS-TBNA). J. Bronchol. Interv. Pulmonol. 2022, 29, 48–53. [Google Scholar] [CrossRef] [PubMed]
  163. Chami, H.A.; Abu Khouzam, R.; Makki, M.; Kahwaji, S.; Hochaimi, N.; Tamim, H.; Shabb, N.S. Randomized Cross-over Trial of Endobronchial Ultrasound Transbronchial Needle Aspiration with or without Suction in Suspected Malignant Lymphadenopathy. J. Bronchol. Interv. Pulmonol. 2022, 29, 131–139. [Google Scholar] [CrossRef] [PubMed]
  164. Scholten, E.L.; Semaan, R.; Illei, P.; Mallow, C.; Arias, S.; Feller-Kopman, D.; Oakjones-Burgess, K.; Frimpong, B.; Amador, R.O.; Lee, H.; et al. Stylet Use Does Not Improve Diagnostic Outcomes in Endobronchial Ultrasonographic Transbronchial Needle Aspiration. Chest 2017, 151, 636–642. [Google Scholar] [CrossRef]
  165. Lin, X.; Ye, M.; Li, Y.; Ren, J.; Lou, Q.; Li, Y.; Jin, X.; Wang, K.-P.; Chen, C. Randomized Controlled Trial to Evaluate the Utility of Suction and Inner-Stylet of EBUS-TBNA for Mediastinal and Hilar Lymphadenopathy. BMC Pulm. Med. 2018, 18, 192. [Google Scholar] [CrossRef] [PubMed]
  166. Dhooria, S.; Sehgal, I.S.; Gupta, N.; Bal, A.; Prasad, K.T.; Aggarwal, A.N.; Ram, B.; Agarwal, R. A Randomized Trial Evaluating the Effect of 10 versus 20 Revolutions Inside the Lymph Node on the Diagnostic Yield of EBUS-TBNA in Subjects with Sarcoidosis. Respiration 2018, 96, 464–471. [Google Scholar] [CrossRef]
  167. Zhao, J.J.; Chan, H.P.; Soon, Y.Y.; Huang, Y.; Soo, R.A.; Kee, A.C.L. A Systematic Review and Meta-Analysis of the Adequacy of Endobronchial Ultrasound Transbronchial Needle Aspiration for next-Generation Sequencing in Patients with Non-Small Cell Lung Cancer. Lung Cancer 2022, 166, 17–26. [Google Scholar] [CrossRef]
  168. Vaidya, P.J.; Munavvar, M.; Leuppi, J.D.; Mehta, A.C.; Chhajed, P.N. Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration: Safe as It Sounds. Respirology 2017, 22, 1093–1101. [Google Scholar] [CrossRef]
  169. Eapen, G.A.; Shah, A.M.; Lei, X.; Jimenez, C.A.; Morice, R.C.; Yarmus, L.; Filner, J.; Ray, C.; Michaud, G.; Greenhill, S.R.; et al. Complications, Consequences, and Practice Patterns of Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration: Results of the AQuIRE Registry. Chest 2013, 143, 1044–1053. [Google Scholar] [CrossRef]
  170. Asano, F.; Aoe, M.; Ohsaki, Y.; Okada, Y.; Sasada, S.; Sato, S.; Suzuki, E.; Semba, H.; Fukuoka, K.; Fujino, S.; et al. Complications Associated with Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration: A Nationwide Survey by the Japan Society for Respiratory Endoscopy. Respir. Res. 2013, 14, 50. [Google Scholar] [CrossRef]
  171. Miller, D.R.; Mydin, H.H.; Marshall, A.D.L.; Devereux, G.S.; Currie, G.P. Fatal Haemorrhage Following Endobronchial Ultrasound-Transbronchial Needle Aspiration: An Unfortunate First. QJM 2013, 106, 295–296. [Google Scholar] [CrossRef]
  172. Gnass, M.; Szlubowski, A.; Gil, T.; Kocoń, P.; Ziętkiewicz, M.; Twardowska, M.; Kużdżał, J. Tension Pneumothorax as a Severe Complication of Endobronchial Ultrasound-Guided Transbronchial Fine Needle Aspiration of Mediastinal Lymph Nodes. Kardiochir. Torakochirurgia Pol. 2015, 12, 359–362. [Google Scholar] [CrossRef] [PubMed]
  173. Fukunaga, K.; Kawashima, S.; Seto, R.; Nakagawa, H.; Yamaguchi, M.; Nakano, Y. Mediastinitis and Pericarditis after Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration. Respirol. Case Rep. 2015, 3, 16–18. [Google Scholar] [CrossRef] [PubMed]
  174. Voldby, N.; Folkersen, B.H.; Rasmussen, T.R. Mediastinitis: A Serious Complication of Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration. J. Bronchol. Interv. Pulmonol. 2017, 24, 75–79. [Google Scholar] [CrossRef] [PubMed]
  175. Lee, H.Y.; Kim, J.; Jo, Y.S.; Park, Y.S. Bacterial Pericarditis as a Fatal Complication after Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration. Eur. J. Cardiothorac. Surg. 2015, 48, 630–632. [Google Scholar] [CrossRef] [PubMed]
  176. McGovern Murphy, F.; Grondin-Beaudoin, B.; Poulin, Y.; Boileau, R.; Dumoulin, E. Mediastinal Abscess Following Endobronchial Ultrasound Transbronchial Needle Aspiration in a Patient with Sarcoidosis. J. Bronchol. Interv. Pulmonol. 2015, 22, 370–372. [Google Scholar] [CrossRef]
  177. Vial, M.R.; O’Connell, J.O.; Grosu, H.B.; Ost, D.E.; Eapen, G.A.; Jimenez, C.A. Needle Fracture during Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration. Am. J. Respir. Crit. Care Med. 2016, 193, 213–214. [Google Scholar] [CrossRef]
  178. Bante, N.; Singh, A.; Gupta, A.; Mittal, A.; Suri, J.C. Accidental Breakage of Needle Tip during Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration: A Case Report and Review of Literature. Lung India 2021, 38, 80–83. [Google Scholar] [CrossRef]
  179. Rajchgot, J.; Amjadi, K. Needle Fracture During Endobronchial Ultrasound Transbronchial Needle Aspiration: Case Report and Review of the Literature. J. Bronchol. Interv. Pulmonol. 2021, 28, e65–e67. [Google Scholar] [CrossRef]
  180. Tang, F.; Zhu, F.; Wang, B.; Dong, Z.; Yu, Y.; Li, Y.; Lyu, L.; Ma, D. Successful Retrieval of a Broken Aspiration Needle Penetrated into the Right Pulmonary Artery: A Case Report with Experience Sharing. Respiration 2024, 103, 105–110. [Google Scholar] [CrossRef]
  181. Cheng, G.; Mahajan, A.; Oh, S.; Benzaquen, S.; Chen, A. Endobronchial Ultrasound-Guided Intranodal Forceps Biopsy (EBUS-IFB)—Technical Review. J. Thorac. Dis. 2019, 11, 4049–4058. [Google Scholar] [CrossRef]
  182. Konno-Yamamoto, A.; Matsumoto, Y.; Imabayashi, T.; Tanaka, M.; Uchimura, K.; Nakagomi, T.; Yanase, K.; So, C.; Ohe, Y.; Tsuchida, T. Feasibility of Modified Endobronchial Ultrasound-Guided Intranodal Forceps Biopsy: A Retrospective Analysis. Respiration 2023, 102, 143–153. [Google Scholar] [CrossRef] [PubMed]
  183. Herth, F.J.F.; Schuler, H.; Gompelmann, D.; Kahn, N.; Gasparini, S.; Ernst, A.; Schuhmann, M.; Eberhardt, R. Endobronchial Ultrasound-Guided Lymph Node Biopsy with Transbronchial Needle Forceps: A Pilot Study. Eur. Respir. J. 2012, 39, 373–377. [Google Scholar] [CrossRef]
  184. Fantin, A.; Manera, M.; Patruno, V.; Sartori, G.; Castaldo, N.; Crisafulli, E. Endoscopic Technologies for Peripheral Pulmonary Lesions: From Diagnosis to Therapy. Life 2023, 13, 254. [Google Scholar] [CrossRef]
  185. Nakai, T.; Matsumoto, Y.; Ueda, T.; Kuwae, Y.; Tanaka, S.; Miyamoto, A.; Matsumoto, Y.; Sawa, K.; Sato, K.; Yamada, K.; et al. Comparison of the Specimen Quality of Endobronchial Ultrasound-Guided Intranodal Forceps Biopsy Using Standard-Sized Forceps versus Mini Forceps for Lung Cancer: A Prospective Study. Respirology 2024, 29, 396–404. [Google Scholar] [CrossRef]
  186. Agrawal, A.; Ghori, U.; Chaddha, U.; Murgu, S. Combined EBUS-IFB and EBUS-TBNA vs EBUS-TBNA Alone for Intrathoracic Adenopathy: A Meta-Analysis. Ann. Thorac. Surg. 2022, 114, 340–348. [Google Scholar] [CrossRef]
  187. Rüber, F.; Wiederkehr, G.; Steinack, C.; Höller, S.; Bode, P.K.; Kölbener, F.; Franzen, D.P. Endobronchial Ultrasound-Guided Transbronchial Forceps Biopsy: A Retrospective Bicentric Study Using the Olympus 1.5 Mm Mini-Forceps. J. Clin. Med. 2022, 11, 4700. [Google Scholar] [CrossRef]
  188. Krenke, R.; Korczynski, P.; Gorska, K.; Chazan, R. A Pitfall during Endobronchial Ultrasound-Guided Transbronchial Forceps Biopsy of the Mediastinal Lymph Nodes. Ann. Thorac. Surg. 2014, 97, e79–e80. [Google Scholar] [CrossRef] [PubMed]
  189. Poletti, V.; Petrarulo, S.; Piciucchi, S.; Dubini, A.; De Grauw, A.J.; Sultani, F.; Martinello, S.; Gonunguntla, H.K.; Ravaglia, C. EBUS-Guided Cryobiopsy in the Diagnosis of Thoracic Disorders. Pulmonology 2024, 30, 459–465. [Google Scholar] [CrossRef] [PubMed]
  190. Gonuguntla, H.K.; Shah, M.; Gupta, N.; Agrawal, S.; Poletti, V.; Nacheli, G.C. Endobronchial Ultrasound-Guided Transbronchial Cryo-Nodal Biopsy: A Novel Approach for Mediastinal Lymph Node Sampling. Respirol. Case Rep. 2021, 9, e00808. [Google Scholar] [CrossRef]
  191. Zhang, J.; Guo, J.-R.; Huang, Z.-S.; Fu, W.-L.; Wu, X.-L.; Wu, N.; Kuebler, W.M.; Herth, F.J.F.; Fan, Y. Transbronchial Mediastinal Cryobiopsy in the Diagnosis of Mediastinal Lesions: A Randomised Trial. Eur. Respir. J. 2021, 58, 2100055. [Google Scholar] [CrossRef]
  192. Fan, Y.; Zhang, A.-M.; Wu, X.-L.; Huang, Z.-S.; Kontogianni, K.; Sun, K.; Fu, W.-L.; Wu, N.; Kuebler, W.M.; Herth, F.J.F. Transbronchial Needle Aspiration Combined with Cryobiopsy in the Diagnosis of Mediastinal Diseases: A Multicentre, Open-Label, Randomised Trial. Lancet Respir. Med. 2023, 11, 256–264. [Google Scholar] [CrossRef] [PubMed]
  193. Ariza-Prota, M.; Pérez-Pallarés, J.; Fernández-Fernández, A.; García-Alfonso, L.; Cascón, J.A.; Torres-Rivas, H.; Fernández-Fernández, L.; Sánchez, I.; Gil, M.; García-Clemente, M.; et al. Endobronchial Ultrasound-Guided Transbronchial Mediastinal Cryobiopsy in the Diagnosis of Mediastinal Lesions: Safety, Feasibility and Diagnostic Yield—Experience in 50 Cases. ERJ Open Res. 2023, 9, 00448–02022. [Google Scholar] [CrossRef] [PubMed]
  194. Maturu, V.N.; Prasad, V.P.; Vaddepally, C.R.; Dommata, R.R.; Sethi, S. Endobronchial Ultrasound-Guided Mediastinal Lymph Nodal Cryobiopsy in Patients with Nondiagnostic/Inadequate Rapid On-Site Evaluation: A New Step in the Diagnostic Algorithm. J. Bronchol. Interv. Pulmonol. 2024, 31, 2–12. [Google Scholar] [CrossRef]
  195. Gershman, E.; Amram Ikan, A.; Pertzov, B.; Rosengarten, D.; Kramer, M.R. Mediastinal “Deep Freeze”-Transcarinal Lymph Node Cryobiopsy. Thorac. Cancer 2022, 13, 1592–1596. [Google Scholar] [CrossRef] [PubMed]
  196. Genova, C.; Tagliabue, E.; Mora, M.; Aloè, T.; Dono, M.; Salvi, S.; Zullo, L.; Barisione, E. Potential Application of Cryobiopsy for Histo-Molecular Characterization of Mediastinal Lymph Nodes in Patients with Thoracic Malignancies: A Case Presentation Series and Implications for Future Developments. BMC Pulm. Med. 2022, 22, 5. [Google Scholar] [CrossRef]
  197. Zhang, Z.; Li, S.; Bao, Y. Endobronchial Ultrasound-Guided Transbronchial Mediastinal Cryobiopsy versus Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration for Mediastinal Disorders: A Meta-Analysis. Respiration 2024, 103, 359–367. [Google Scholar] [CrossRef]
  198. Botana-Rial, M.; Lojo-Rodríguez, I.; Leiro-Fernández, V.; Ramos-Hernández, C.; González-Montaos, A.; Pazos-Area, L.; Núñez-Delgado, M.; Fernández-Villar, A. Is the Diagnostic Yield of Mediastinal Lymph Node Cryobiopsy (cryoEBUS) Better for Diagnosing Mediastinal Node Involvement Compared to Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration (EBUS-TBNA)? A Systematic Review. Respir. Med. 2023, 218, 107389. [Google Scholar] [CrossRef]
  199. Chandragiri, P.S.; Tayal, A.; Mittal, S.; Madan, N.K.; Tiwari, P.; Hadda, V.; Mohan, A.; Madan, K. Utility and Safety of Endobronchial Ultrasound-Guided Transbronchial Mediastinal Cryobiopsy (EBUS-TMC): A Systematic Review and Meta-Analysis. Lung India 2024, 41, 288–298. [Google Scholar] [CrossRef]
  200. Barawi, M.; Gress, F. EUS-Guided Fine-Needle Aspiration in the Mediastinum. Gastrointest. Endosc. 2000, 52, S12–S17. [Google Scholar] [CrossRef]
  201. Ang, T.L.; Kwek, A.B.E.; Wang, L.M. Diagnostic Endoscopic Ultrasound: Technique, Current Status and Future Directions. Gut Liver 2018, 12, 483–496. [Google Scholar] [CrossRef]
  202. Korevaar, D.A.; Crombag, L.M.; Cohen, J.F.; Spijker, R.; Bossuyt, P.M.; Annema, J.T. Added Value of Combined Endobronchial and Oesophageal Endosonography for Mediastinal Nodal Staging in Lung Cancer: A Systematic Review and Meta-Analysis. Lancet Respir. Med. 2016, 4, 960–968. [Google Scholar] [CrossRef]
  203. Leong, T.L.; Loveland, P.M.; Gorelik, A.; Irving, L.; Steinfort, D.P. Preoperative Staging by EBUS in cN0/N1 Lung Cancer: Systematic Review and Meta-Analysis. J. Bronchol. Interv. Pulmonol. 2019, 26, 155–165. [Google Scholar] [CrossRef]
  204. Caddy, G.; Conron, M.; Wright, G.; Desmond, P.; Hart, D.; Chen, R.Y. The Accuracy of EUS-FNA in Assessing Mediastinal Lymphadenopathy and Staging Patients with NSCLC. Eur. Respir. J. 2005, 25, 410–415. [Google Scholar] [CrossRef]
  205. Oh, Y.S.; Aoun, N.; Meyers, B.F.; Eloubeidi, M.A.; Edmundowicz, S.A.; Early, D.S.; Azar, R.R. Understanding and Utilization of Endoscopic Ultrasound-Guided Fine Needle Aspiration by Thoracic Surgeons in the Staging of Lung Cancer: 1014. Off. J. Am. Coll. Gastroenterol. ACG 2005, 100, S370. [Google Scholar] [CrossRef]
  206. Peifer, K.; Edmundowicz, S.A.; Early, D.S.; Meyers, B.; Azar, R. Endoscopic Ultrasonography with Fine Needle Aspiration (EUS-FNA) for Esophageal Cancer Staging and Its Impact on Therapy: A Survey of Gastroenterologists and Thoracic Surgeons. Gastrointest. Endosc. 2006, 63, AB280. [Google Scholar] [CrossRef]
  207. Khalid, S.; Hegde, P. Interventional Pulmonology and Esophagus: Combined Endobronchial Ultrasound and Endoscopic Ultrasound for Mediastinal Staging. Semin. Respir. Crit. Care Med. 2022, 43, 583–592. [Google Scholar] [CrossRef]
  208. Zhou, J.; Cai, T.; Wu, D.; Chen, X.; Wang, F. The Role of Endoscopic Ultrasound-Guided Fine-Needle Aspiration/Biopsy in the Diagnosis of Mediastinal Lesions. Front. Surg. 2023, 9, 1065070. [Google Scholar] [CrossRef]
  209. Li, Z.; Liu, W.; Xu, X.; Li, P. A Meta-Analysis Comparing Endoscopic Ultrasound-Guided Fine-Needle Aspiration with Endoscopic Ultrasound-Guided Fine-Needle Biopsy. J. Clin. Gastroenterol. 2022, 56, 668–678. [Google Scholar] [CrossRef]
  210. Hassan, G.M.; Laporte, L.; Paquin, S.C.; Menard, C.; Sahai, A.V.; Mâsse, B.; Trottier, H. Endoscopic Ultrasound Guided Fine Needle Aspiration versus Endoscopic Ultrasound Guided Fine Needle Biopsy for Pancreatic Cancer Diagnosis: A Systematic Review and Meta-Analysis. Diagnostics 2022, 12, 2951. [Google Scholar] [CrossRef]
  211. Junare, P.R.; Jain, S.; Rathi, P.; Contractor, Q.; Chandnani, S.; Kini, S.; Thanage, R. Endoscopic Ultrasound-Guided-Fine-Needle Aspiration/Fine-Needle Biopsy in Diagnosis of Mediastinal Lymphadenopathy—A Boon. Lung India 2020, 37, 37–44. [Google Scholar] [CrossRef]
  212. Renelus, B.D.; Jamorabo, D.S.; Boston, I.; Briggs, W.M.; Poneros, J.M. Endoscopic Ultrasound-Guided Fine Needle Biopsy Needles Provide Higher Diagnostic Yield Compared to Endoscopic Ultrasound-Guided Fine Needle Aspiration Needles When Sampling Solid Pancreatic Lesions: A Meta-Analysis. Clin. Endosc. 2021, 54, 261–268. [Google Scholar] [CrossRef] [PubMed]
  213. van Riet, P.A.; Erler, N.S.; Bruno, M.J.; Cahen, D.L. Comparison of Fine-Needle Aspiration and Fine-Needle Biopsy Devices for Endoscopic Ultrasound-Guided Sampling of Solid Lesions: A Systemic Review and Meta-Analysis. Endoscopy 2021, 53, 411–423. [Google Scholar] [CrossRef] [PubMed]
  214. Han, S.; Bhullar, F.; Alaber, O.; Kamal, A.; Hopson, P.; Kanthasamy, K.; Coughlin, S.; Archibugi, L.; Thiruvengadam, N.; Moreau, C.; et al. Comparative Diagnostic Accuracy of EUS Needles in Solid Pancreatic Masses: A Network Meta-Analysis. Endosc. Int. Open 2021, 9, E853–E862. [Google Scholar] [CrossRef] [PubMed]
  215. Catalano, M.F.; Nayar, R.; Gress, F.; Scheiman, J.; Wassef, W.; Rosenblatt, M.L.; Kochman, M. EUS-Guided Fine Needle Aspiration in Mediastinal Lymphadenopathy of Unknown Etiology. Gastrointest. Endosc. 2002, 55, 863–869. [Google Scholar] [CrossRef]
  216. Eloubeidi, M.A.; Cerfolio, R.J.; Chen, V.K.; Desmond, R.; Syed, S.; Ojha, B. Endoscopic Ultrasound-Guided Fine Needle Aspiration of Mediastinal Lymph Node in Patients with Suspected Lung Cancer After Positron Emission Tomography and Computed Tomography Scans. Ann. Thorac. Surg. 2005, 79, 263–268. [Google Scholar] [CrossRef]
  217. Assisi, D.; Gallina, F.T.; Forcella, D.; Tajè, R.; Melis, E.; Visca, P.; Pierconti, F.; Venti, E.; Facciolo, F. Transesophageal Endoscopic Ultrasound Fine Needle Biopsy for the Diagnosis of Mediastinal Masses: A Retrospective Real-World Analysis. J. Clin. Med. 2022, 11, 5469. [Google Scholar] [CrossRef]
  218. Carrara, S.; Rahal, D.; Khalaf, K.; Rizkala, T.; Koleth, G.; Bonifacio, C.; Andreozzi, M.; Mangiavillano, B.; Auriemma, F.; Bossi, P.; et al. Diagnostic Accuracy and Safety of EUS-Guided End-Cutting Fine-Needle Biopsy Needles for Tissue Sampling of Abdominal and Mediastinal Lymphadenopathies: A Prospective Multicenter Series. Gastrointest. Endosc. 2023, 98, 191–198. [Google Scholar] [CrossRef] [PubMed]
  219. Park, T.Y.; Moon, J.S. Outcome of Endoscopic Ultrasound-Guided Sampling of Mediastinal Lymphadenopathy. Gastroenterol. Res. Pract. 2022, 2022, 4486241. [Google Scholar] [CrossRef]
  220. Siddiqui, U.D.; Rossi, F.; Rosenthal, L.S.; Padda, M.S.; Murali-Dharan, V.; Aslanian, H.R. EUS-Guided FNA of Solid Pancreatic Masses: A Prospective, Randomized Trial Comparing 22-Gauge and 25-Gauge Needles. Gastrointest. Endosc. 2009, 70, 1093–1097. [Google Scholar] [CrossRef]
  221. Tian, G.; Bao, H.; Li, J.; Jiang, T. Systematic Review and Meta-Analysis of Diagnostic Accuracy of Endoscopic Ultrasound (EUS)-Guided Fine-Needle Aspiration (FNA) Using 22-Gauge and 25-Gauge Needles for Pancreatic Masses. Med. Sci. Monit. 2018, 24, 8333–8341. [Google Scholar] [CrossRef]
  222. Cao, F.; Zhang, S.; Dai, Z.; Fu, Q.; Guo, F.; He, Q.; Zhou, D.; Zhang, H.; Wang, X. Diagnosis of Mediastinal Cysts: The Role and Safety of EUS–FNA with 19-Gauge Needle: A Retrospective Cohort Study. J. Thorac. Dis. 2022, 14, 3544. [Google Scholar] [CrossRef]
  223. Songür, N.; Songür, Y.; Bırcan, S.; Kapucuoğlu, N. Comparison of 19- and 22-Gauge Needles in EUS-Guided Fine Needle Aspiration in Patients with Mediastinal Masses and Lymph Nodes. Turk. J. Gastroenterol. 2011, 22, 472–478. [Google Scholar] [CrossRef]
  224. Yang, M.J.; Kim, J.; Park, S.W.; Cho, J.H.; Kim, E.J.; Lee, Y.N.; Lee, D.W.; Park, C.H.; Lee, S.S. Comparison between Three Types of Needles for Endoscopic Ultrasound-Guided Tissue Acquisition of Pancreatic Solid Masses: A Multicenter Observational Study. Sci. Rep. 2023, 13, 3677. [Google Scholar] [CrossRef]
  225. Cheng, S.; Brunaldi, V.O.; Minata, M.K.; Chacon, D.A.; da Silveira, E.B.; de Moura, D.T.; Dos Santos, M.E.; Matuguma, S.E.; Chaves, D.M.; França, R.F.; et al. Suction versus Slow-Pull for Endoscopic Ultrasound-Guided Fine-Needle Aspiration of Pancreatic Tumors: A Prospective Randomized Trial. HPB 2020, 22, 779–786. [Google Scholar] [CrossRef]
  226. Nakai, Y.; Hamada, T.; Hakuta, R.; Sato, T.; Ishigaki, K.; Saito, K.; Saito, T.; Takahara, N.; Mizuno, S.; Kogure, H.; et al. A Meta-Analysis of Slow Pull versus Suction for Endoscopic Ultrasound-Guided Tissue Acquisition. Gut Liver 2021, 15, 625–633. [Google Scholar] [CrossRef]
  227. Nguyen, T.Q.; Kalade, A.; Prasad, S.; Desmond, P.; Wright, G.; Hart, D.; Conron, M.; Chen, R.Y. Endoscopic Ultrasound Guided Fine Needle Aspiration (EUS-FNA) of Mediastinal Lesions. ANZ J. Surg. 2011, 81, 75–78. [Google Scholar] [CrossRef]
  228. Mizuide, M.; Ryozawa, S.; Fujita, A.; Ogawa, T.; Katsuda, H.; Suzuki, M.; Noguchi, T.; Tanisaka, Y. Complications of Endoscopic Ultrasound-Guided Fine Needle Aspiration: A Narrative Review. Diagnostics 2020, 10, 964. [Google Scholar] [CrossRef]
  229. Dhooria, S.; Aggarwal, A.N.; Gupta, D.; Behera, D.; Agarwal, R. Utility and Safety of Endoscopic Ultrasound with Bronchoscope-Guided Fine-Needle Aspiration in Mediastinal Lymph Node Sampling: Systematic Review and Meta-Analysis. Respir. Care 2015, 60, 1040–1050. [Google Scholar] [CrossRef]
  230. Bohle, W.; Zoller, W.G. Mediastinitis after EUS-FNA in a Patient with Sarcoidosis—Case Report with Endosonographic Features and Review of the Literature. Z. Gastroenterol. 2014, 52, 1171–1174. [Google Scholar] [CrossRef]
  231. Valli, P.V.; Gubler, C.; Bauerfeind, P. Severe Infectious Complications after Endoscopic Ultrasound-Guided Fine Needle Aspiration of Suspected Mediastinal Duplication Cysts: A Case Series. Inflamm. Intest. Dis. 2017, 1, 165–171. [Google Scholar] [CrossRef]
  232. Adler, D.G.; Jacobson, B.C.; Davila, R.E.; Hirota, W.K.; Leighton, J.A.; Qureshi, W.A.; Rajan, E.; Zuckerman, M.J.; Fanelli, R.D.; Baron, T.H.; et al. ASGE Guideline: Complications of EUS. Gastrointest. Endosc. 2005, 61, 8–12. [Google Scholar] [CrossRef]
  233. Hong, G.; Oki, M. Transesophageal Endoscopic Ultrasound with Bronchoscope-Guided Fine-Needle Aspiration for Diagnostic and Staging Purposes: A Narrative Review. J. Thorac. Dis. 2023, 15, 5088. [Google Scholar] [CrossRef]
  234. Donghi, S.M.; Prisciandaro, E.; Sedda, G.; Guarize, J.; Spaggiari, L. When Less Is More: EBUS-TBNA for the Diagnosis of Pleural Lesions. Innovations 2019, 14, 473–475. [Google Scholar] [CrossRef]
  235. Kassirer, M.; Wiesen, J.; Atlan, K.; Avriel, A. Sampling Pleural Nodules with an EBUS Scope: A Novel Application. Respir. Med. Case Rep. 2018, 25, 36–38. [Google Scholar] [CrossRef]
  236. Ghigna, M.R.; Crutu, A.; Florea, V.; Soummer-Feulliet, S.; Baldeyrou, P. The Role of Endobronchial Ultrasound-Guided Fine Needle Aspiration in the Diagnosis of Pleural Mesothelioma. Cytopathology 2016, 27, 284–288. [Google Scholar] [CrossRef]
  237. Kang, B.; Kim, M.A.; Lee, B.Y.; Yoon, H.; Oh, D.K.; Hwang, H.S.; Choi, C. Malignant Pleural Mesothelioma Diagnosed by Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration. Tuberc. Respir. Dis. 2013, 74, 74–78. [Google Scholar] [CrossRef]
  238. Christiansen, I.S.; Clementsen, P.F.; Petersen, J.K.; Fjaellegaard, K.; Høegholm, A.; Bodtger, U. Aspiration of Pericardial Effusion Performed with EUS-B-FNA in Suspected Lung Cancer. Respiration 2020, 99, 686–689. [Google Scholar] [CrossRef]
  239. Nessar, R.; Toennesen, L.L.; Bodtger, U.; Christiansen, I.S.; Clementsen, P.F. Endoscopic Ultrasound-Guided Ascites Aspiration in the Hands of the Chest Physician Using the EBUS Endoscope in the Oesophagus. Respir. Med. Case Rep. 2020, 29, 100998. [Google Scholar] [CrossRef]
  240. Christiansen, I.S.; Bodtger, U.; Naur, T.M.H.; Ahmad, K.; Singh Sidhu, J.; Nessar, R.; Salih, G.N.; Høegholm, A.; Annema, J.T.; Clementsen, P.F. EUS-B-FNA for Diagnosing Liver and Celiac Metastases in Lung Cancer Patients. Respiration 2019, 98, 428–433. [Google Scholar] [CrossRef]
  241. Issa, M.A.; Sidhu, J.S.; Tehrani, S.G.; Clementsen, P.F.; Bodtger, U. Endoscopic Ultrasound-Guided Pancreas Biopsy in the Hands of a Chest Physician. Respir. Med. Case Rep. 2023, 43, 101833. [Google Scholar] [CrossRef]
  242. Moretti, A.; Kovacevic, B.; Vilmann, P.; Annema, J.T.; Korevaar, D.A. Performance of EUS-FNA and EUS-B-FNA for the Diagnosis of Left Adrenal Glands Metastases in Patients with Lung Cancer: A Systematic Review and Meta-Analysis. Lung Cancer 2023, 186, 107391. [Google Scholar] [CrossRef]
  243. Prasad, K.T.; Sehgal, I.S.; Gupta, N.; Singh, N.; Agarwal, R.; Dhooria, S. Endoscopic Ultrasound (with an Echobronchoscope)-Guided Fine-Needle Aspiration for Diagnosis of a Mediastinal Lesion in a Mechanically Ventilated Patient: A Case Report and Systematic Review of the Literature. Indian. J. Crit. Care Med. 2016, 20, 608–612. [Google Scholar] [CrossRef]
  244. Shen, Y.; Qin, S.; Jiang, H. Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration Combined with Either Endoscopic Ultrasound-Guided Fine-Needle Aspiration or Endoscopic Ultrasound Using the EBUS Scope-Guided Fine-Needle Aspiration for Diagnosing and Staging Mediastinal Diseases: A Systematic Review and Meta-Analysis. Clinics 2020, 75, e1759. [Google Scholar] [CrossRef]
  245. Madan, K.; Iyer, H.; Madan, N.K.; Mittal, S.; Tiwari, P.; Hadda, V.; Mohan, A.; Pandey, R.M.; Kabra, S.K.; Guleria, R. Efficacy and Safety of EBUS-TBNA and EUS-B-FNA in Children: A Systematic Review and Meta-Analysis. Pediatr. Pulmonol. 2021, 56, 23–33. [Google Scholar] [CrossRef]
  246. Ariza-Prota, M.A.; de Santis, M.; López-González, F. Successful Diagnostic Mediastinal Cryobiopsy by Transesophageal Endoscopy without Using the Needle Knife. Arch. Bronconeumol. 2023, 59, 601–602. [Google Scholar] [CrossRef]
  247. Salcedo Lobera, E.; Ariza Prota, M.; Pérez Pallarés, J.; López González, F.; Páez Codeso, F. Transesophageal Endoscopic Ultrasound-Guided Mediastinal Cryobiopsy in the Diagnosis of Mediastinal Lesions: Our Experience in 31 Cases. Arch. Bronconeumol. 2024, 60, 587–589. [Google Scholar] [CrossRef]
  248. Huang, Z.-S.; Zhou, D.; Zhang, J.; Fu, W.-L.; Wang, J.; Wu, X.-L.; Herth, F.J.F.; Fan, Y. Mediastinal Nodular Lymphocyte Predominant Hodgkin Lymphoma Achieved by Endoscopic Transesophageal Cryobiopsy. Respiration 2022, 101, 190–194. [Google Scholar] [CrossRef]
  249. Diacon, A.H.; Theron, J.; Schubert, P.; Brundyn, K.; Louw, M.; Wright, C.A.; Bolliger, C.T. Ultrasound-Assisted Transthoracic Biopsy: Fine-Needle Aspiration or Cutting-Needle Biopsy? Eur. Respir. J. 2007, 29, 357–362. [Google Scholar] [CrossRef]
  250. Poulou, L.S.; Tsagouli, P.; Ziakas, P.D.; Politi, D.; Trigidou, R.; Thanos, L. Computed Tomography-Guided Needle Aspiration and Biopsy of Pulmonary Lesions: A Single-Center Experience in 1000 Patients. Acta Radiol. 2013, 54, 640–645. [Google Scholar] [CrossRef]
  251. de Farias, A.P.; Deheinzelin, D.; Younes, R.N.; Chojniak, R. Computed Tomography-Guided Biopsy of Mediastinal Lesions: Fine versus Cutting Needles. Rev. Hosp. Clin. Fac. Med. Sao Paulo 2003, 58, 69–74. [Google Scholar] [CrossRef]
  252. Gupta, S.; Seaberg, K.; Wallace, M.J.; Madoff, D.C.; Morello, F.A.; Ahrar, K.; Murthy, R.; Hicks, M.E. Imaging-Guided Percutaneous Biopsy of Mediastinal Lesions: Different Approaches and Anatomic Considerations. Radiographics 2005, 25, 763–786; discussion 786–788. [Google Scholar] [CrossRef] [PubMed]
  253. Yang, B.R.; Kim, M.-S.; Park, C.M.; Yoon, S.H.; Chae, K.J.; Lee, J. Patterns of Percutaneous Transthoracic Needle Biopsy (PTNB) of the Lung and Risk of PTNB-Related Severe Pneumothorax: A Nationwide Population-Based Study. PLoS ONE 2020, 15, e0235599. [Google Scholar] [CrossRef] [PubMed]
  254. Yamamoto, N.; Watanabe, T.; Yamada, K.; Nakai, T.; Suzumura, T.; Sakagami, K.; Yoshimoto, N.; Sato, K.; Tanaka, H.; Mitsuoka, S.; et al. Efficacy and Safety of Ultrasound (US) Guided Percutaneous Needle Biopsy for Peripheral Lung or Pleural Lesion: Comparison with Computed Tomography (CT) Guided Needle Biopsy. J. Thorac. Dis. 2019, 11, 936. [Google Scholar] [CrossRef] [PubMed]
  255. Ahn, Y.; Lee, S.M.; Choe, J.; Kim, N.; Oh, S.Y.; Do, K.-H.; Seo, J.B. CT-Guided Percutaneous Transthoracic Needle Biopsy for Anterior Mediastinal Lymphoma: The Role of PET/CT. Acta Radiol. 2024, 65, 432–440. [Google Scholar] [CrossRef] [PubMed]
  256. Ahn, Y.; Lee, S.M.; Choi, S.; Choe, J.; Oh, S.Y.; Do, K.-H.; Seo, J.B. CT-Guided Pretreatment Biopsy Diagnosis in Patients with Thymic Epithelial Tumours: Diagnostic Accuracy and Risk of Seeding. Clin. Radiol. 2024, 79, 263–271. [Google Scholar] [CrossRef]
  257. Bruno, P.; Ricci, A.; Esposito, M.C.; Scozzi, D.; Tabbì, L.; Sposato, B.; Falasca, C.; Giarnieri, E.; Giovagnoli, M.R.; Mariotta, S. Efficacy and Cost Effectiveness of Rapid on Site Examination (ROSE) in Management of Patients with Mediastinal Lymphadenopathies. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 1517–1522. [Google Scholar]
  258. Muto, Y.; Uchimura, K.; Imabayashi, T.; Matsumoto, Y.; Furuse, H.; Tsuchida, T. Clinical Utility of Rapid On-Site Evaluation of Touch Imprint Cytology during Cryobiopsy for Peripheral Pulmonary Lesions. Cancers 2022, 14, 4493. [Google Scholar] [CrossRef]
  259. Jain, D.; Allen, T.C.; Aisner, D.L.; Beasley, M.B.; Cagle, P.T.; Capelozzi, V.L.; Hariri, L.P.; Lantuejoul, S.; Miller, R.; Mino-Kenudson, M.; et al. Rapid On-Site Evaluation of Endobronchial Ultrasound-Guided Transbronchial Needle Aspirations for the Diagnosis of Lung Cancer: A Perspective from Members of the Pulmonary Pathology Society. Arch. Pathol. Lab. Med. 2018, 142, 253–262. [Google Scholar] [CrossRef]
  260. Mathew, R.; Meena, N.; Roy, W.E.; Chen, C.; Macchiraella, M.; Bartter, T. Rapid On-Site Cytologic Evaluation: A Feasibility Study Using Ancillary Interventional Pulmonary Personnel. Respiration 2021, 100, 222–227. [Google Scholar] [CrossRef]
  261. Sehgal, I.S.; Dhooria, S.; Aggarwal, A.N.; Agarwal, R. Impact of Rapid On-Site Cytological Evaluation (ROSE) on the Diagnostic Yield of Transbronchial Needle Aspiration During Mediastinal Lymph Node Sampling: Systematic Review and Meta-Analysis. Chest 2018, 153, 929–938. [Google Scholar] [CrossRef]
  262. Trisolini, R.; Cancellieri, A.; Tinelli, C.; Paioli, D.; Scudeller, L.; Casadei, G.P.; Forti Parri, S.; Livi, V.; Bondi, A.; Boaron, M.; et al. Rapid On-Site Evaluation of Transbronchial Aspirates in the Diagnosis of Hilar and Mediastinal Adenopathy: A Randomized Trial. Chest 2011, 139, 395–401. [Google Scholar] [CrossRef] [PubMed]
  263. Zuccatosta, L.; Rossi, G.; Gasparini, S.; Ferretti, M.; Mei, F.; Sediari, M.; Barbisan, F.; Goteri, G.; Corbo, G.M.; Di Marco Berardino, A. Validation of a Cytological Classification System for the Rapid On-Site Evaluation (Rose) of Pulmonary and Mediastinal Needle Aspirates. Diagnostics 2022, 12, 2777. [Google Scholar] [CrossRef] [PubMed]
  264. Madan, K.; Dhungana, A.; Mohan, A.; Hadda, V.; Jain, D.; Arava, S.; Pandey, R.M.; Khilnani, G.C.; Guleria, R. Conventional Transbronchial Needle Aspiration Versus Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration, with or without Rapid On-Site Evaluation, for the Diagnosis of Sarcoidosis: A Randomized Controlled Trial. J. Bronchol. Interv. Pulmonol. 2017, 24, 48–58. [Google Scholar] [CrossRef] [PubMed]
  265. Chalhoub, M.; Joseph, B.; Acharya, S. A Review of Endobronchial-Ultrasound-Guided Transbronchial Intranodal Forceps Biopsy and Cryobiopsy. Diagnostics 2024, 14, 965. [Google Scholar] [CrossRef]
  266. Mondoni, M.; Wahidi, M.M.; Sotgiu, G. Combination of Cryobiopsy with EBUS-TBNA-Might Rapid on-Site Evaluation Successfully Drive Patient Selection? Pulmonology 2024, 30, 416–418. [Google Scholar] [CrossRef]
  267. Herth, F.J.F.; Rabe, K.F.; Gasparini, S.; Annema, J.T. Transbronchial and Transoesophageal (Ultrasound-Guided) Needle Aspirations for the Analysis of Mediastinal Lesions. Eur. Respir. J. 2006, 28, 1264–1275. [Google Scholar] [CrossRef]
  268. Mondoni, M.; D’Adda, A.; Terraneo, S.; Carlucci, P.; Radovanovic, D.; DI Marco, F.; Santus, P. Choose the Best Route: Ultrasound-Guided Transbronchial and Transesophageal Needle Aspiration with Echobronchoscope in the Diagnosis of Mediastinal and Pulmonary Lesions. Minerva Med. 2015, 106, 13–19. [Google Scholar]
Figure 1. EBUS-TBNA of a subcarinal lymph node diagnostic for granuloma in a sarcoidosis case. (a) Echocolordoppler assessment via endobronchial ultrasound of the subcarinal lymph node demonstrates a large-caliber vessel’s presence (white arrowhead). (b) Sampling by EBUS-TBNA of the subcarinal lymph node. (c) Chest CT scan of the case under evaluation demonstrating mediastinal adenopathies at both lung hila and in the subcarinal station (white arrowheads). (d) Rapid on-site evaluation of the specimen demonstrating the presence of granulomas. The images are owned by the Department of Pulmonology, S. Maria della Misericordia University Hospital, Udine, Italy. Informed consent was obtained from the patients for the publication of the images in an anonymized format.
Figure 1. EBUS-TBNA of a subcarinal lymph node diagnostic for granuloma in a sarcoidosis case. (a) Echocolordoppler assessment via endobronchial ultrasound of the subcarinal lymph node demonstrates a large-caliber vessel’s presence (white arrowhead). (b) Sampling by EBUS-TBNA of the subcarinal lymph node. (c) Chest CT scan of the case under evaluation demonstrating mediastinal adenopathies at both lung hila and in the subcarinal station (white arrowheads). (d) Rapid on-site evaluation of the specimen demonstrating the presence of granulomas. The images are owned by the Department of Pulmonology, S. Maria della Misericordia University Hospital, Udine, Italy. Informed consent was obtained from the patients for the publication of the images in an anonymized format.
Life 14 01291 g001
Figure 2. Primal mediastinal Hodgkin lymphoma. (a) Scout image demonstrating a right pleural effusion associated with mediastinal enlargement. (b) A contrast-enhanced tomographic image shows a large prevascular mediastinal mass with airway compression, heart dislodgement, and right pleural effusion. (c) Ultrasound appearance of the mass and the pleural effusion from a right parasternal view. The images are owned by the Department of Pulmonology, S. Maria della Misericordia University Hospital, Udine, Italy. Informed consent was obtained from the patients for the publication of the images in an anonymized format.
Figure 2. Primal mediastinal Hodgkin lymphoma. (a) Scout image demonstrating a right pleural effusion associated with mediastinal enlargement. (b) A contrast-enhanced tomographic image shows a large prevascular mediastinal mass with airway compression, heart dislodgement, and right pleural effusion. (c) Ultrasound appearance of the mass and the pleural effusion from a right parasternal view. The images are owned by the Department of Pulmonology, S. Maria della Misericordia University Hospital, Udine, Italy. Informed consent was obtained from the patients for the publication of the images in an anonymized format.
Life 14 01291 g002
Figure 3. Percutaneous sampling with ultrasound guidance. (a) A contrast-enhanced tomographic image shows a large mass with mediastinal infiltration. (b) Tomographic image showing the mass, emphysematous changes in contralateral lung parenchyma and airway deviation. (c) Scout image demonstrates the extent of the mass. (d) Ergonomics of percutaneous sampling with the patient in supine decubitus, one operator’s hand holding the biopsy needle and the other hand holding the ultrasound probe covered with a sterile sheath. (e) Ultrasound appearance of the needle inside the lesion (white arrowheads). (f) Rapid on-site evaluation of the specimen demonstrates a sample with a high proportion of necrotic tissue. The images are owned by the Department of Pulmonology, S. Maria della Misericordia University Hospital, Udine, Italy. Informed consent was obtained from the patients for the publication of the images in an anonymized format.
Figure 3. Percutaneous sampling with ultrasound guidance. (a) A contrast-enhanced tomographic image shows a large mass with mediastinal infiltration. (b) Tomographic image showing the mass, emphysematous changes in contralateral lung parenchyma and airway deviation. (c) Scout image demonstrates the extent of the mass. (d) Ergonomics of percutaneous sampling with the patient in supine decubitus, one operator’s hand holding the biopsy needle and the other hand holding the ultrasound probe covered with a sterile sheath. (e) Ultrasound appearance of the needle inside the lesion (white arrowheads). (f) Rapid on-site evaluation of the specimen demonstrates a sample with a high proportion of necrotic tissue. The images are owned by the Department of Pulmonology, S. Maria della Misericordia University Hospital, Udine, Italy. Informed consent was obtained from the patients for the publication of the images in an anonymized format.
Life 14 01291 g003aLife 14 01291 g003b
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Fantin, A.; Castaldo, N.; Crisafulli, E.; Sartori, G.; Villa, A.; Felici, E.; Kette, S.; Patrucco, F.; van der Heijden, E.H.F.M.; Vailati, P.; et al. Minimally Invasive Sampling of Mediastinal Lesions. Life 2024, 14, 1291. https://doi.org/10.3390/life14101291

AMA Style

Fantin A, Castaldo N, Crisafulli E, Sartori G, Villa A, Felici E, Kette S, Patrucco F, van der Heijden EHFM, Vailati P, et al. Minimally Invasive Sampling of Mediastinal Lesions. Life. 2024; 14(10):1291. https://doi.org/10.3390/life14101291

Chicago/Turabian Style

Fantin, Alberto, Nadia Castaldo, Ernesto Crisafulli, Giulia Sartori, Alice Villa, Elide Felici, Stefano Kette, Filippo Patrucco, Erik H. F. M. van der Heijden, Paolo Vailati, and et al. 2024. "Minimally Invasive Sampling of Mediastinal Lesions" Life 14, no. 10: 1291. https://doi.org/10.3390/life14101291

APA Style

Fantin, A., Castaldo, N., Crisafulli, E., Sartori, G., Villa, A., Felici, E., Kette, S., Patrucco, F., van der Heijden, E. H. F. M., Vailati, P., Morana, G., & Patruno, V. (2024). Minimally Invasive Sampling of Mediastinal Lesions. Life, 14(10), 1291. https://doi.org/10.3390/life14101291

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop