Serum Malondialdehyde-Modified Low-Density Lipoprotein Level May Be a Biomarker Associated with Aortic Stiffness Among Patients Undergoing Peritoneal Dialysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometric Analyses
2.3. Analyses of Biochemistry
2.4. Measurement of cfPWV
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, M.; Fan, J.X.; Fang, J.G.; Wang, H.Y.; Sheng, J.; Xu, L.; Ma, S.J. Risk factors of cardiac complications in patients with end-stage renal disease undergoing maintenance peritoneal dialysis. Ann. Palliat. Med. 2022, 11, 2196–2201. [Google Scholar] [CrossRef] [PubMed]
- Krediet, R.T.; Balafa, O. Cardiovascular risk in the peritoneal dialysis patient. Nat. Rev. Nephrol. 2010, 6, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Banshodani, M.; Kawanishi, H.; Moriishi, M.; Shintaku, S.; Tsuchiya, S. Association between dialysis modality and cardiovascular diseases: A comparison between peritoneal dialysis and hemodialysis. Blood Purif. 2020, 49, 302–309. [Google Scholar] [CrossRef]
- Lu, Y.; Kiechl, S.J.; Wang, J.; Xu, Q.; Kiechl, S.; Pechlaner, R. Global pulse wave velocity study group. Global distributions of age- and sex-related arterial stiffness: Systematic review and meta-analysis of 167 studies with 509,743 participants. EBioMedicine 2023, 92, 104619. [Google Scholar] [CrossRef]
- Jannasz, I.; Sondej, T.; Targowski, T.; Mańczak, M.; Obiała, K.; Dobrowolski, A.P.; Olszewski, R. Relationship between the central and regional pulse wave velocity in the assessment of arterial stiffness depending on gender in the geriatric population. Sensors 2023, 23, 5823. [Google Scholar] [CrossRef]
- Park, J.B.; Sharman, J.E.; Li, Y.; Munakata, M.; Shirai, K.; Chen, C.H.; Jae, S.Y.; Tomiyama, H.; Kosuge, H.; Bruno, R.M.; et al. Expert consensus on the clinical use of pulse wave velocity in Asia. Pulse 2022, 10, 1–18. [Google Scholar] [CrossRef]
- Lluesa, J.H.; López-Romero, L.C.; Monzó, J.J.B.; Marugán, M.R.; Boyano, I.V.; Rodríguez-Espinosa, D.; Gómez-Bori, A.; Orient, A.S.; Such, R.D.; Perez, P.S.; et al. Lipidic profiles of patients starting peritoneal dialysis suggest an increased cardiovascular risk beyond classical dyslipidemia biomarkers. Sci. Rep. 2022, 12, 16394. [Google Scholar] [CrossRef] [PubMed]
- Prichard, S.S. Impact of dyslipidemia in end-stage renal disease. J. Am. Soc. Nephrol. 2003, 14 (Suppl. S4), S315–S320. [Google Scholar] [CrossRef]
- Stepanova, N.; Burdeyna, O. Association between dyslipidemia and peritoneal dialysis technique survival. Open Access Maced. J. Med. Sci. 2019, 7, 2467–2473. [Google Scholar] [CrossRef]
- Baba, M.; Maris, M.; Jianu, D.; Luca, C.T.; Stoian, D.; Mozos, I. The impact of the blood lipids levels on arterial stiffness. J. Cardiovasc. Dev. Dis. 2023, 10, 127. [Google Scholar] [CrossRef]
- Stepanova, N.; Driianska, V.; Savchenko, S. Dyslipidemia and intraperitoneal inflammation axis in peritoneal dialysis patients: A cross-sectional pilot study. Kidney Dis. 2020, 6, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Zhan, X.; Wen, Y.; Peng, F.; Wang, X.; Wang, N.; Wu, X.; Wu, J. Hyperlipidemia and mortality in patients on peritoneal dialysis. BMC Nephrol. 2022, 23, 342. [Google Scholar] [CrossRef]
- Brinkley, T.E.; Nicklas, B.J.; Kanaya, A.M.; Satterfield, S.; Lakatta, E.G.; Simonsick, E.M.; Sutton-Tyrrell, K.; Kritchevsky, S.B. Plasma oxidized low-density lipoprotein levels and arterial stiffness in older adults: The health, aging, and body composition study. Hypertension 2009, 53, 846–852. [Google Scholar] [CrossRef]
- Holvoet, P.; Vanhaecke, J.; Janssens, S.; Van de Werf, F.; Collen, D. Oxidized LDL and malondialdehyde-modified LDL in patients with acute coronary syndromes and stable coronary artery disease. Circulation 1998, 98, 1487–1494. [Google Scholar] [CrossRef] [PubMed]
- Amaki, T.; Suzuki, T.; Nakamura, F.; Hayashi, D.; Imai, Y.; Morita, H.; Fukino, K.; Nojiri, T.; Kitano, S.; Hibi, N.; et al. Circulating malondialdehyde modified LDL is a biochemical risk marker for coronary artery disease. Heart 2004, 90, 1211–1213. [Google Scholar] [CrossRef]
- Lin, Y.L.; Wang, C.H.; Tsai, J.P.; Chen, C.T.; Chen, Y.H.; Hung, S.C.; Hsu, B.G. A comparison of SARC-f, calf circumference, and their combination for sarcopenia screening among patients undergoing peritoneal dialysis. Nutrients 2022, 14, 923. [Google Scholar] [CrossRef]
- Huang, P.Y.; Huang, C.S.; Lin, Y.L.; Chen, Y.H.; Hung, S.C.; Tsai, J.P.; Hsu, B.G. Positive association of serum galectin-3 with the development of aortic stiffness of peritoneal dialysis Patients. J. Clin. Med. 2023, 12, 3519. [Google Scholar] [CrossRef]
- Esposito, C.; Machado, P.; Cohen, I.S.; Mehrotra, P.; Savage, M.; Fischman, D.; Davis, M.; Ruggiero, N.; Walinsky, P.; McDonald, M.E.; et al. Comparing central aortic pressures obtained using a sphygmocor device to pressures obtained using a pressure catheter. Am. J. Hypertens. 2022, 35, 397–406. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Blacher, J.; Guerin, A.P.; Pannier, B.; Marchais, S.J.; Safar, M.E.; London, G.M. Impact of aortic stiffness on survival in end-stage renal disease. Circulation 1999, 99, 2434–2439. [Google Scholar] [CrossRef]
- Hung, T.; Jhan, J.Y.; Lin, J.H.; Yang, K.T.; Hsu, B.G.; Chang, J.C. Serum malondialdehyde-oxidized low-density lipoprotein level is associated with arterial stiffness by cardio-ankle vascular index in coronary artery bypass graft patients. J. Clin. Med. 2023, 12, 4191. [Google Scholar] [CrossRef]
- Starzak, M.; Stanek, A.; Jakubiak, G.K.; Cholewka, A.; Cieślar, G. Arterial Stiffness assessment by pulse wave velocity in patients with metabolic syndrome and its components: Is it a useful tool in clinical practice? Int. J. Environ. Res. Public Health 2022, 19, 10368. [Google Scholar] [CrossRef]
- Barrah, S.; Kheder, R.E.; Jebali, H.; Krid, M.; Smaoui, W.; Beji, S.; Hmida, F.B.; Fatma, L.B.; Zouaghi, M.K. Comparison of changes in pulse wave velocity in patients on peritoneal dialysis and hemodialysis. Saudi J. Kidney Dis. Transpl. 2021, 32, 336–340. [Google Scholar] [CrossRef]
- Wang, A.Y.; Brimble, K.S.; Brunier, G.; Holt, S.G.; Jha, V.; Johnson, D.W.; Kang, S.W.; Kooman, J.P.; Lambie, M.; McIntyre, C.; et al. ISPD cardiovascular and metabolic guidelines in adult peritoneal dialysis patients part II—Management of various cardiovascular complications. Perit. Dial. Int. 2015, 35, 388–396. [Google Scholar] [CrossRef]
- Albakr, R.B.; Bargman, J.M. A comparison of hemodialysis and peritoneal dialysis in patients with cardiovascular disease. Cardiol. Clin. 2021, 39, 447–453. [Google Scholar] [CrossRef]
- Kim, H.L.; Ahn, D.W.; Kim, S.H.; Lee, D.S.; Yoon, S.H.; Zo, J.H.; Kim, M.A.; Jeong, J.B. Association between body fat parameters and arterial stiffness. Sci. Rep. 2021, 11, 20536. [Google Scholar] [CrossRef]
- Tang, C.C.; Tsai, J.P.; Chen, Y.H.; Hung, S.C.; Lin, Y.L.; Hsu, B.G. Associations of glucometabolic indices with aortic stiffness in patients undergoing peritoneal dialysis with and without diabetes mellitus. Int. J. Mol. Sci. 2023, 24, 17094. [Google Scholar] [CrossRef]
- Hu, P.J.; Chen, Y.W.; Chen, T.T.; Sung, L.C.; Wu, M.Y.; Wu, M.S. Impact of dialysis modality on major adverse cardiovascular events and all-cause mortality: A national population-based study. Nephrol. Dial. Transplant. 2021, 36, 901–908. [Google Scholar] [CrossRef]
- Han, S.S.; Ahn, J.M.; Chin, H.J.; Chae, D.W.; Oh, K.H.; Joo, K.W.; Kim, Y.S.; Ahn, C.; Han, J.S.; Kim, S.; et al. Impact of C-reactive protein and pulse pressure evaluated at the start of peritoneal dialysis on cardiovascular events in the course of treatment with peritoneal dialysis. Perit. Dial. Int. 2010, 30, 300–310. [Google Scholar] [CrossRef]
- Wang, A.Y.; Woo, J.; Lam, C.W.; Wang, M.; Sea, M.M.; Lui, S.F.; Li, P.K.; Sanderson, J. Is a single time point C-reactive protein predictive of outcome in peritoneal dialysis patients? J. Am. Soc. Nephrol. 2003, 14, 1871–1879. [Google Scholar] [CrossRef]
- Aminuddin, A.; Lazim, M.R.M.L.M.; Hamid, A.A.; Hui, C.K.; Mohd Yunus, M.H.; Kumar, J.; Ugusman, A. The association between inflammation and pulse wave velocity in dyslipidemia: An evidence-based review. Mediators Inflamm. 2020, 2020, 4732987. [Google Scholar] [CrossRef]
- Moncada, S.; Higgs, A. The L-arginine-nitric oxide pathway. N. Engl. J. Med. 1993, 329, 2002–2012. [Google Scholar]
- Montero, I.; Orbe, J.; Varo, N.; Beloqui, O.; Monreal, J.I.; Rodríguez, J.A.; Díez, J.; Libby, P.; Páramo, J.A. C-reactive protein induces matrix metalloproteinase-1 and -10 in human endothelial cells: Implications for clinical and subclinical atherosclerosis. J. Am. Coll. Cardiol. 2006, 47, 1369–1378. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, W.; Jiang, C.M.; Feng, Y.; Xia, Y.Y.; Zhang, Q.Y.; Zhang, M. Activation of the mTORC1 pathway by inflammation contributes to vascular calcification in patients with end-stage renal disease. J. Nephrol. 2019, 32, 101–110. [Google Scholar] [CrossRef]
- Karangelis, D.E.; Kanakis, I.; Asimakopoulou, A.P.; Karousou, E.; Passi, A.; Theocharis, A.D.; Triposkiadis, F.; Tsilimingas, N.B.; Karamanos, N.K. Glycosaminoglycans as key molecules in atherosclerosis: The role of versican and hyaluronan. Curr. Med. Chem. 2010, 17, 4018–4026. [Google Scholar] [CrossRef]
- Toole, B.P.; Wight, T.N.; Tammi, M.I. Hyaluronan-cell interactions in cancer and vascular disease. J. Biol. Chem. 2002, 277, 4593–4596. [Google Scholar] [CrossRef]
- Sanguankeo, A.; Upala, S. Metabolic Syndrome increases mortality risk in dialysis patients: A systematic review and meta-analysis. Int. J. Endocrinol. Metab. 2018, 16, e61201. [Google Scholar]
- Wang, X.; Ye, P.; Cao, R.; Yang, X.; Xiao, W.; Zhang, Y.; Bai, Y.; Wu, H. Triglycerides are a predictive factor for arterial stiffness: A community-based 4.8-year prospective study. Lipids Health Dis. 2016, 15, 97. [Google Scholar] [CrossRef]
- Sang, Y.; Cao, M.; Wu, X.; Ruan, L.; Zhang, C. Use of lipid parameters to identify apparently healthy men at high risk of arterial stiffness progression. BMC Cardiovasc. Disord. 2021, 21, 34. [Google Scholar] [CrossRef]
- Kim, M.; Kim, M.; Yoo, H.J.; Lee, E.; Chae, J.S.; Lee, S.H.; Lee, J.H. A promoter variant of the APOA5 gene increases atherogenic LDL levels and arterial stiffness in hypertriglyceridemic patients. PLoS ONE 2017, 12, e0186693. [Google Scholar] [CrossRef]
- Liu, W.N.; Hsu, Y.C.; Lu, C.W.; Lin, S.C.; Wu, T.J.; Lin, G.M. Serum malondialdehyde-modified low-density lipoprotein is a risk factor for central arterial stiffness in maintenance hemodialysis patients. Medicina 2024, 60, 697. [Google Scholar] [CrossRef]
Characteristic | All Participants (n = 92) | Control Group (n = 59) | Aortic Stiffness Group (n = 33) | p Value |
---|---|---|---|---|
Age (years) | 57.96 ± 14.46 | 55.10 ± 15.01 | 63.068 ± 12.02 | 0.011 * |
Peritoneal dialysis vintage (months) | 48.54 (21.03–81.42) | 51.24 (22.92–80.76) | 34.20 (18.12–82.68) | 0.523 |
Body mass index (kg/m2) | 25.11 ± 4.39 | 23.84 ± 3.63 | 27.40 ± 4.75 | <0.001 * |
Waist circumference (cm) | 91.60 ± 11.37 | 88.54 ± 10.72 | 97.06 ± 10.56 | <0.001 * |
Carotid–femoral PWV (m/s) | 9.58 ± 1.67 | 8.60 ± 0.88 | 11.34 ± 1.26 | <0.001 * |
Systolic blood pressure (mmHg) | 149.46 ± 22.44 | 145.76 ± 21.04 | 156.06 ± 23.65 | 0.034 * |
Diastolic blood pressure (mmHg) | 87.76 ± 14.93 | 87.02 ± 15.91 | 89.09 ± 13.12 | 0.526 |
Total cholesterol (mg/dL) | 160.29 ± 43.57 | 162.97 ± 47.11 | 155.52 ± 36.58 | 0.434 |
Triglyceride (mg/dL) | 123.50 (82.00–192.00) | 104.00 (76.00–167.00) | 151.00 (105.00–223.00) | 0.025 * |
Fasting glucose (mg/dL) | 112.00 (94.25–137.00) | 112.00 (94.00–134.00) | 112.00 (93.50–154.50) | 0.858 |
Albumin (mg/dL) | 3.53 ± 0.35 | 3.58 ± 0.33 | 3.45 ± 0.36 | 0.088 |
Blood urea nitrogen (mg/dL) | 61.77 ± 21.99 | 63.92 ± 23.14 | 57.94 ± 19.52 | 0.213 |
Creatinine (mg/dL) | 10.49 ± 3.39 | 10.94 ± 3.49 | 9.68 ± 3.10 | 0.089 |
Total calcium (mg/dL) | 9.63 ± 0.58 | 9.55 ± 0.58 | 9.78 ± 0.55 | 0.060 |
Phosphorus (mg/dL) | 5.26 ± 1.34 | 5.36 ± 1.42 | 5.08 ± 1.17 | 0.332 |
Intact parathyroid hormone (pg/mL) | 184.35 (79.98–446.88) | 228.10 (83.40–447.00) | 160.60 (40.25–399.50) | 0.227 |
C-reactive protein (mg/dL) | 0.18 (0.11–0.94) | 0.16 (0.11–0.38) | 0.36 (0.14–1.88) | 0.012 * |
MDA-oxLDL (μg/ mL) | 1.31 (0.41–6.88) | 1.05 (0.18–3.68) | 3.13 (0.84–12.39) | 0.001 * |
Weekly Kt/V | 1.97 (1.71–2.17) | 1.91 (1.69–2.18) | 1.99 (1.77–2.14) | 0.474 |
Peritoneal Kt/V | 1.76 ± 0.39 | 1.77 ± 0.42 | 1.74 ± 0.34 | 0.708 |
Total clearance of creatinine (L/week) | 58.13 ± 16.40 | 57.73 ± 16.35 | 58.84 ± 16.72 | 0.758 |
Peritoneal clearance of creatinine (L/week) | 47.39 ± 12.34 | 47.80 ± 12.30 | 46.66 ± 12.58 | 0.674 |
Female, n (%) | 51 (55.4) | 35 (59.3) | 16 (48.5) | 0.316 |
Diabetes, n (%) | 39 (42.4) | 15 (25.4) | 24 (72.7) | <0.001 * |
Hypertension, n (%) | 68 (73.9) | 44 (74.6) | 24 (72.7) | 0.846 |
CAPD, n (%) | 60 (65.2) | 41 (69.5) | 19 (57.6) | 0.250 |
ARB use, n (%) | 52 (56.5) | 33 (55.9) | 19 (57.6) | 0.879 |
β-blocker use, n (%) | 35 (38.0) | 24 (40.7) | 11 (33.3) | 0.486 |
CCB use, n (%) | 49 (53.3) | 29 (49.2) | 20 (60.6) | 0.291 |
α-blocker use, n (%) | 10 (10.9) | 7 (11.9) | 3 (9.1) | 0.682 |
Statin use, n (%) | 29 (31.5) | 19 (32.2) | 10 (30.3) | 0.851 |
Fibrate use, n (%) | 26 (28.3) | 15 (25.4) | 11 (33.3) | 0.419 |
Variables | Odds Ratio | 95% Confidence Interval | p Value |
---|---|---|---|
MDA-oxLDL, 1 μg/ mL | 1.171 | 1.021–1.342 | 0.024 * |
Diabetes, present | 7.685 | 1.879–31.436 | 0.005 * |
Body mass index, 1 kg/m2 | 1.965 | 1.270–3.038 | 0.002 * |
Systolic blood pressure, 1 mmHg | 1.040 | 1.006–1.074 | 0.020 * |
Age, 1 year | 1.061 | 0.997–1.129 | 0.062 |
Waist circumference, 1 cm | 0.864 | 0.746–1.001 | 0.051 |
Triglyceride, 1 mg/dL | 1.005 | 0.999–1.010 | 0.084 |
C-reactive protein, 1 mg/dL | 1.623 | 0.887–2.971 | 0.116 |
Variables | Carotid–Femoral Pulse Wave Velocity (m/s) | ||||
---|---|---|---|---|---|
Uni-Variable Regression | Multi-Variable Regression | ||||
r | p Value | Beta | Adjusted R2 | p Value | |
Age (years) | 0.350 | 0.001 * | 0.201 | 0.028 | 0.023 * |
Log-PD vintage (months) | 0.044 | 0.678 | – | – | – |
Body mass index (kg/m2) | 0.437 | <0.001 * | 0.236 | 0.057 | 0.006 * |
Waist circumference (cm) | 0.258 | 0.013 * | |||
Systolic blood pressure (mmHg) | 0.376 | <0.001 * | 0.246 | 0.035 | 0.004 * |
Diastolic blood pressure (mmHg) | 0.070 | 0.506 | – | – | – |
Total cholesterol (mg/dl) | −0.079 | 0.456 | – | – | – |
Log-Triglyceride (mg/dL) | 0.230 | 0.028 * | – | – | – |
Log-Glucose (mg/dL) | 0.062 | 0.556 | – | – | – |
Albumin (mg/dL) | −0.116 | 0.271 | – | – | – |
Blood urea nitrogen (mg/dL) | −0.104 | 0.324 | – | – | – |
Creatinine (mg/dL) | −0.006 | 0.952 | – | – | – |
Total calcium (mg/dL) | 0.131 | 0.214 | – | – | – |
Phosphorus (mg/dL) | −0.092 | 0.382 | – | – | – |
Log-iPTH (pg/mL) | −0.157 | 0.136 | – | – | – |
Log-CRP (mg/dL) | 0.318 | 0.002 * | – | – | – |
Log-MDA-oxLDL (μg/ mL) | 0.469 | <0.001 * | 0.253 | 0.212 | 0.005 * |
Log-Weekly Kt/V | 0.069 | 0.515 | – | – | – |
Peritoneal Kt/V | 0.050 | 0.635 | – | – | – |
Total clearance of creatinine (L/week) | −0.004 | 0.973 | – | – | – |
Peritoneal clearance of creatinine (L/week) | −0.013 | 0.905 | – | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.-C.; Wang, C.-H.; Tang, C.-C.; Lin, Y.-L.; Lai, Y.-H.; Kuo, C.-H.; Hsu, B.-G. Serum Malondialdehyde-Modified Low-Density Lipoprotein Level May Be a Biomarker Associated with Aortic Stiffness Among Patients Undergoing Peritoneal Dialysis. Life 2024, 14, 1385. https://doi.org/10.3390/life14111385
Chang Y-C, Wang C-H, Tang C-C, Lin Y-L, Lai Y-H, Kuo C-H, Hsu B-G. Serum Malondialdehyde-Modified Low-Density Lipoprotein Level May Be a Biomarker Associated with Aortic Stiffness Among Patients Undergoing Peritoneal Dialysis. Life. 2024; 14(11):1385. https://doi.org/10.3390/life14111385
Chicago/Turabian StyleChang, Yu-Chi, Chih-Hsien Wang, Chi-Chong Tang, Yu-Li Lin, Yu-Hsien Lai, Chiu-Huang Kuo, and Bang-Gee Hsu. 2024. "Serum Malondialdehyde-Modified Low-Density Lipoprotein Level May Be a Biomarker Associated with Aortic Stiffness Among Patients Undergoing Peritoneal Dialysis" Life 14, no. 11: 1385. https://doi.org/10.3390/life14111385
APA StyleChang, Y.-C., Wang, C.-H., Tang, C.-C., Lin, Y.-L., Lai, Y.-H., Kuo, C.-H., & Hsu, B.-G. (2024). Serum Malondialdehyde-Modified Low-Density Lipoprotein Level May Be a Biomarker Associated with Aortic Stiffness Among Patients Undergoing Peritoneal Dialysis. Life, 14(11), 1385. https://doi.org/10.3390/life14111385