The Effect of Arterial Elongation on Isolated Common Iliac Artery Pathologies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Participants
2.2. Image Processing
2.3. Statistical Analysis
3. Results
3.1. Patient Demographics, Anthropometric Data, and Cardiovascular Risk Factors
3.2. Lesion Characteristics
3.3. Arterial Elongation
3.4. Aortic Bifurcation Geometry
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Criqui, M.H.; Matsushita, K.; Aboyans, V.; Hess, C.N.; Hicks, C.W.; Kwan, T.W.; McDermott, M.M.; Misra, S.; Ujueta, F.; American Heart Association Council on Epidemiology and Prevention; et al. Lower Extremity Peripheral Artery Disease: Contemporary Epidemiology, Management Gaps, and Future Directions: A Scientific Statement from the American Heart Association. Circulation 2021, 144, e171–e191, Erratum in Circulation 2021, 144, e193. [Google Scholar] [CrossRef] [PubMed]
- Criqui, M.H.; Aboyans, V. Epidemiology of peripheral artery disease. Circ. Res. 2015, 116, 1509–1526, Erratum in Circ. Res. 2015, 117, e12. [Google Scholar] [CrossRef] [PubMed]
- Virtanen, J.; Varpela, M.; Biancari, F.; Jalkanen, J.; Hakovirta, H. Association between anatomical distribution of symptomatic peripheral artery disease and cerebrovascular disease. Vascular 2020, 28, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Chiabrando, J.G.; Garagoli, F.D.; Abraham Foscolo, M.M.; Corna, G.; Fleitas, M.L.M.; Valle-Raleigh, J.; Medina de Chazal, H.A.; Berrocal, D.H.; Rabellino, J.M.; Bluro, I.M. Clinical impact of the infrapatellar location in symptomatic peripheral arterial disease patients. Arch. Cardiol. Mex. 2022, 93, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Zeller, T. Current state of endovascular treatment of femoro-popliteal artery disease. Vasc. Med. 2007, 12, 223–234. [Google Scholar] [CrossRef]
- Piffaretti, G.; Fargion, A.T.; Dorigo, W.; Pulli, R.; Gattuso, A.; Bush, R.L.; Pratesi, C.; ILIACS Registry Group. Outcomes From the Multicenter Italian Registry on Primary Endovascular Treatment of Aortoiliac Occlusive Disease. J. Endovasc. Ther. 2019, 26, 623–632. [Google Scholar] [CrossRef]
- Fargion, A.T.; Masciello, F.; Pratesi, C.; Pratesi, G.; Torsello, G.; Donas, K.P.; pELVIS Registry collaborators. Results of the multicenter pELVIS Registry for isolated common iliac aneurysms treated by the iliac branch device. J. Vasc. Surg. 2018, 68, 1367–1373.e1. [Google Scholar] [CrossRef]
- Sandhu, R.S.; Pipinos, I.I. Isolated iliac artery aneurysms. Semin. Vasc. Surg. 2005, 18, 209–215. [Google Scholar] [CrossRef]
- Joosten, M.M.; Pai, J.K.; Bertoia, M.L.; Rimm, E.B.; Spiegelman, D.; Mittleman, M.A.; Mukamal, K.J. Associations between conventional cardiovascular risk factors and risk of peripheral artery disease in men. JAMA 2012, 308, 1660–1667. [Google Scholar] [CrossRef]
- Fenelli, C.; Gargiulo, M.; Prendes, C.F.; Faggioli, G.; Stavroulakis, K.; Gallitto, E.; Stana, J.; Spath, P.; Rantner, B.; Tsilimparis, N. Effect of iliac tortuosity on outcomes after iliac branch procedures. J. Vasc. Surg. 2022, 76, 714–723.e1. [Google Scholar] [CrossRef]
- Chen, P.L.; Hsu, H.L.; Chen, I.M.; Chen, Y.Y.; Chou, K.Y.; Kuo, T.T.; Shih, C.C. The Impact of Aortic Tortuosity on Delayed Type I or III Endoleak after Endovascular Aortic Repair. Ann. Vasc. Surg. 2017, 41, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Mach, M.; Poschner, T.; Hasan, W.; Szalkiewicz, P.; Andreas, M.; Winkler, B.; Geisler, S.; Geisler, D.; Rudziński, P.N.; Watzal, V.; et al. The Iliofemoral tortuosity score predicts access and bleeding complications during transfemoral transcatheter aortic valve replacement: DataData from the VIenna Cardio Thoracic aOrtic valve registrY (VICTORY). Eur. J. Clin. Investig. 2021, 51, e13491. [Google Scholar] [CrossRef] [PubMed]
- Crowhurst, J.A.; Campbell, D.; Raffel, O.C.; Whitby, M.; Pathmanathan, P.; Redmond, S.; Incani, A.; Poon, K.; James, C.; Aroney, C.; et al. Using DynaCT for the assessment of ilio-femoral arterial calibre, calcification and tortuosity index in patients selected for trans-catheter aortic valve replacement. Int. J. Cardiovasc. Imaging 2013, 29, 1537–1545. [Google Scholar] [CrossRef] [PubMed]
- Huynh, C.; Liu, I.; El Khoury, R.; Zhou, B.; Braun, H.; Conte, M.S.; Hiramoto, J. Iliac artery calcification score stratifies mortality risk estimation in patients with chronic limb-threatening ischemia undergoing revascularization. J. Vasc. Surg. 2023, 78, 184–192. [Google Scholar] [CrossRef]
- Reber, P.U.; Brunner, K.; Hakki, H.; Stirnemann, P.; Kniemeyer, H.W. Incidence, classification and therapy of isolated pelvic artery aneurysm. Chirurg 2001, 72, 419–424. (In German) [Google Scholar] [CrossRef] [PubMed]
- Zettervall, S.L.; Schanzer, A. ESVS 2024 Clinical Practice Guidelines on the Management of Abdominal Aorto-iliac Artery Aneurysms: A North American Perspective. Eur. J. Vasc. Endovasc. Surg. 2024, 67, 187–189. [Google Scholar] [CrossRef] [PubMed]
- Dósa, E.; Hirschberg, K.; Apor, A.; Járányi, Z.; Entz, L.; Acsády, G.; Hüttl, K. Echolucent or predominantly echolucent femoral plaques predict early restenosis after eversion carotid endarterectomy. J. Vasc. Surg. 2010, 51, 345–350. [Google Scholar] [CrossRef]
- 3D Slicer Image Computing Platform. 3D Slicer. Available online: https://www.slicer.org (accessed on 6 August 2023).
- Kikinis, R.; Pieper, S.D.; Vosburgh, K. 3D Slicer: A platform for subject-specific image analysis, visualization, and clinical support. In Intraoperative Imaging Image-Guided Therapy; Ferenc, A.J., Ed.; Springer: New York, NY, USA, 2014; pp. 277–289. ISBN 978-1-4614-7656-6/978-1-4614-7657-3. [Google Scholar]
- Kapur, T.; Pieper, S.; Fedorov, A.; Fillion-Robin, J.C.; Halle, M.; O’Donnell, L.; Lasso, A.; Ungi, T.; Pinter, C.; Finet, J.; et al. Increasing the impact of medical image computing using community-based open-access hackathons: The NA-MIC and 3D Slicer experience. Med. Image Anal. 2016, 33, 176–180. [Google Scholar] [CrossRef]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef]
- Pinter, C.; Lasso, A.; Fichtinger, G. Polymorph segmentation representation for medical image computing. Comput. Methods Programs Biomed. 2019, 171, 19–26. [Google Scholar] [CrossRef]
- Antiga, L.; Piccinelli, M.; Botti, L.; Ene-Iordache, B.; Remuzzi, A.; Steinman, D.A. An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 2008, 46, 1097–1112. [Google Scholar] [CrossRef] [PubMed]
- The Vascular Modelling Toolkit. VMTK. Available online: https://www.vmtk.org (accessed on 28 July 2024).
- Ferrari, M.; Urtis, M.; Giuliani, L.; Lionetti, A.; Bortolotto, C.; Prati, F. CATE (Coronary Artery Tortuosity Evaluator): A Semi-Automatic Tool for Quantitative Assessment of Coronary Artery Tortuosity from CT Angiography. In Proceedings of the 2024 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Eindhoven, The Netherlands, 26–28 June 2024; pp. 1–6. [Google Scholar]
- Chen, L.; Wang, G.; Balu, N.; Mossa-Basha, M.; Zhao, X.; Li, R.; He, L.; Hatsukami, T.S.; Hwang, J.-N.; Yuan, C. Simultaneous Intracranial Artery Tracing and Segmentation from Magnetic Resonance Angiography by Joint Optimization from Multiplanar Reformation. In Machine Learning and Medical Engineering for Cardiovascular Health and Intravascular Imaging and Computer Assisted Stenting; Liao, H., Balocco, S., Wang, G., Zhang, F., Liu, Y., Ding, Z., Duong, L., Phellan, R., Zahnd, G., Breininger, K., et al., Eds.; Springer: Cham, Switzerland, 2019; pp. 201–209. ISBN 978-3-030-33327-0. [Google Scholar]
- Szőnyi, Á.; Balázs, G.; Nyárády, B.B.; Philippovich, M.; Horváth, T.; Dósa, E. Effect of Sex, Age, and Cardiovascular Risk Factors on Aortoiliac Segment Geometry. J. Clin. Med. 2024, 13, 1705. [Google Scholar] [CrossRef]
- Pafili, K.; Gouni-Berthold, I.; Papanas, N.; Mikhailidis, D.P. Abdominal aortic aneurysms and diabetes mellitus. J. Diabetes Complicat. 2015, 29, 1330–1336. [Google Scholar] [CrossRef] [PubMed]
- Shantikumar, S.; Ajjan, R.; Porter, K.E.; Scott, D.J. Diabetes and the abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg. 2010, 39, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Ku, D.N. Blood flow in arteries. Annu. Rev. Fluid. Mech. 1997, 29, 399–434. [Google Scholar] [CrossRef]
- Alastruey, J.; Siggers, J.H.; Peiffer, V.; Doorly, D.J.; Sherwin, S.J. Reducing the data: Analysis of the role of vascular geometry on blood flow patterns in curved vessels. Phys. Fluids 2012, 24, 031902. [Google Scholar] [CrossRef]
- Zabielski, L.; Mestel, A.J. Helical flow around arterial bends for varying body mass. J. Biomech. Eng. 2000, 122, 135–142. [Google Scholar] [CrossRef]
- Liu, X.; Sun, A.; Fan, Y.; Deng, X. Physiological significance of helical flow in the arterial system and its potential clinical applications. Ann. Biomed. Eng. 2015, 43, 3–15. [Google Scholar] [CrossRef]
- Liu, X.; Pu, F.; Fan, Y.; Deng, X.; Li, D.; Li, S. A numerical study on the flow of blood and the transport of LDL in the human aorta: The physiological significance of the helical flow in the aortic arch. Am. J. Physiol. Heart Circ. Physiol. 2009, 297, H163–H170. [Google Scholar] [CrossRef]
- Gallo, D.; Steinman, D.A.; Morbiducci, U. An insight into the mechanistic role of the common carotid artery on the hemodynamics at the carotid bifurcation. Ann. Biomed. Eng. 2015, 43, 68–81. [Google Scholar] [CrossRef]
- Morbiducci, U.; Ponzini, R.; Gallo, D.; Bignardi, C.; Rizzo, G. Inflow boundary conditions for image-based computational hemodynamics: Impact of idealized versus measured velocity profiles in the human aorta. J. Biomech. 2013, 46, 102–109. [Google Scholar] [CrossRef] [PubMed]
- De Nisco, G.; Kok, A.M.; Chiastra, C.; Gallo, D.; Hoogendoorn, A.; Migliavacca, F.; Wentzel, J.J.; Morbiducci, U. The Atheroprotective Nature of Helical Flow in Coronary Arteries. Ann. Biomed. Eng. 2019, 47, 425–438. [Google Scholar] [CrossRef] [PubMed]
- Parker, L.P.; Powell, J.T.; Kelsey, L.J.; Lim, B.; Ashleigh, R.; Venermo, M.; Koncar, I.; Norman, P.E.; Doyle, B.J. Morphology and Hemodynamics in Isolated Common Iliac Artery Aneurysms Impacts Proximal Aortic Remodeling. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1125–1136. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Zhang, S. Effect of arterial curvature on hemodynamics and mass transport. Biorheology 2019, 56, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Papaioannou, T.G.; Stefanadis, C. Vascular wall shear stress: Basic principles and methods. Hellenic J. Cardiol. 2005, 46, 9–15. [Google Scholar] [PubMed]
- Joly, F.; Soulez, G.; Lessard, S.; Kauffmann, C.; Vignon-Clementel, I. A Cohort Longitudinal Study Identifies Morphology and Hemodynamics Predictors of Abdominal Aortic Aneurysm Growth. Ann. Biomed. Eng. 2020, 48, 606–623. [Google Scholar] [CrossRef]
- Dobrin, P.B. Elastin, collagen, and some mechanical aspects of arterial aneurysms. J. Vasc. Surg. 1989, 9, 396–398. [Google Scholar] [CrossRef]
- Dobrin, P.B.; Baker, W.H.; Gley, W.C. Elastolytic and collagenolytic studies of arteries: Implications for the mechanical properties of aneurysms. Arch. Surg. 1984, 119, 405–409. [Google Scholar] [CrossRef]
- Roach, M.R.; Burton, A.C. The effect of age on the elasticity of human iliac arteries. Can. J. Biochem. Physiol. 1959, 37, 557–570. [Google Scholar] [CrossRef]
- Wang, H.F.; Wang, D.M.; Wang, J.J.; Wang, L.J.; Lu, J.; Qi, P.; Hu, S.; Yang, X.M.; Chen, K.P. Extracranial Internal Carotid Artery Tortuosity and Body Mass Index. Front. Neurol. 2017, 8, 508. [Google Scholar] [CrossRef]
- Mochida, M.; Sakamoto, H.; Sawada, Y.; Yokoyama, H.; Sato, M.; Sato, H.; Oyama, Y.; Kurabayashi, M.; Tamura, J.; Sakamaki, T. Visceral fat obesity contributes to the tortuosity of the thoracic aorta on chest radiograph in poststroke Japanese patients. Angiology 2006, 57, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Sugerman, H.; Windsor, A.; Bessos, M.; Wolfe, L. Intra-abdominal pressure, sagittal abdominal diameter and obesity comorbidity. J. Intern. Med. 1997, 241, 71–79. [Google Scholar] [CrossRef] [PubMed]
Parameters | Stenosis Group (n = 20) | Occlusion Group (n = 20) | Aneurysm Group (n = 20) | Control Group (n = 40) | p-Value |
---|---|---|---|---|---|
Age (years), median (IQR) | 67 (64.8–76) | 65 (61–70.8) | 70.5 (62.8–78.3) | 66.5 (60.8–71.3) | 0.076 |
Male sex, n (%) | 15 (75) | 11 (55) | 19 (95) | 27 (67.5) | 0.035 |
Anthropometric data, median (IQR) | |||||
Weight (kg) | 75 (69.5–87.5) | 73.5 (64.8–85.3) | 88 (80.8–97.3) | 76.5 (68–86) | 0.006 |
Height (cm) | 172 (166.5–174.3) | 167.5 (163.5–174.3) | 176 (169.5–180) | 170 (164.3–175) | 0.033 |
BMI (kg/m2) | 25.5 (23.5–28.6) | 26.2 (23.5–28.6) | 29.7 (26.3–32. 9) | 27.2 (26.3–30.7) | 0.021 |
BSA (m2) | 1.9 (1.8–2.1) | 1.9 (1.7–2) | 2 (2–2.2) | 1.9 (1.8–2) | 0.005 |
CV risk factors, n (%) | |||||
Obesity | 4 (20) | 3 (15) | 9 (45) | 14 (35) | 0.126 |
Smoking | 9 (45) | 9 (45) | 8 (40) | 10 (25) | 0.302 |
Hypertension | 17 (85) | 16 (80) | 16 (80) | 34 (85) | 0.935 |
Diabetes mellitus | 8 (40) | 4 (20) | 1 (5) | 18 (45) | 0.008 |
Hyperlipidemia | 17 (85) | 17 (85) | 15 (75) | 28 (70%) | 0.458 |
CKD | 1 (5) | 0 (0) | 1 (5) | 3 (7.5%) | 0.664 |
Lesion characteristics | |||||
Stenosis grade (%), median (IQR) | 75 (70–80) | 100 (100–100) | NA | NA | <0.001 |
Lesion length (mm), median (IQR) | 16.5 (12.8–25) | 47 (39–53.3) | NA | NA | 0.006 |
Mild calcification, n (%) | 7 (35) | 9 (45) | NA | NA | 0.605 |
Moderate calcification, n (%) | 8 (40) | 6 (30) | NA | NA | 0.651 |
Severe calcification, n (%) | 5 (25) | 5 (25) | NA | NA | 0.925 |
Diameter (mm), median (IQR) | NA | NA | 37 (33.5–47.3) | NA | NA |
TI (%), median (IQR) | Ipsilateral iliac artery (with pathology) | Contralateral iliac artery (without pathology) | p-Value |
Stenosis group | 9.97 (6.89–15.67) | 12.14 (7.12–15.87) | 0.296 |
Occlusion group | 5.12 (3.46–8.63) | 7.01 (5.76–13.31) | <0.001 |
Aneurysm group | 30.48 (24.15–39.56) | 26.58 (23.2–35.59) | 0.668 |
Right iliac artery (without pathology) | Left iliac artery (without pathology) | p-Value | |
Control group | 13.49 (4.26–16.18) | 9.42 (4.75–14.68) | 0.232 |
AAC (×1000), median (IQR) | Ipsilateral iliac artery (with pathology) | Contralateral iliac artery (without pathology) | p-Value |
Stenosis group | 16.3 (12.25–20.73) | 17.7 (13.33–22) | 0.076 |
Occlusion group | 11.65 (8.65–14.91) | 15.4 (12.2–20.7) | <0.001 |
Aneurysm group | 31.2 (27.34–35.19) | 27.44 (25.43–30.28) | 0.001 |
Right iliac artery (without pathology) | Left iliac artery (without pathology) | p-Value | |
Control group | 18.77 (10.13–26.64) | 16.51 (11.83–22.83) | 0.160 |
Dependent Variables | Independent Variables | Beta | CI for Beta | p-Value | |
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
TI—infrarenal aorta | Patient group | −0.36 | −0.011 | −0.03 | <0.001 |
TI—ipsilateral iliac artery | Patient group | −0.49 | −0.05 | −0.16 | <0.001 |
Age | 0.38 | 0.002 | 0.007 | <0.001 | |
TI—contralateral iliac artery | Patient group | −0.36 | −0.043 | −0.015 | <0.001 |
Age | 0.4 | 0.003 | 0.006 | <0.001 | |
AAC—infrarenal aorta | Patient group | −0.33 | −0.002 | −0.001 | <0.001 |
Age | 0.26 | 0.000 | 0.001 | 0.007 | |
AAC—ipsilateral iliac artery | Patient group | −0.3 | −0.004 | −0.001 | <0.001 |
Age | 0.42 | 0.000 | 0.001 | <0.001 | |
Obesity | 0.17 | 0.000 | 0.007 | 0.045 | |
AAC—contralateral iliac artery | Patient group | −0.29 | −0.003 | −0.001 | <0.001 |
Age | 0.42 | 0.000 | 0.001 | <0.001 | |
Obesity | 0.17 | 0.000 | 0.006 | 0.047 |
Iliac take-off angles (°), median (IQR) | Ipsilateral side (with pathology) | Contralateral side (without pathology) | p-Value |
Stenosis group | 31.92 (24.46–37.81) | 30.35 (24.17–39.95) | 0.819 |
Occlusion group | 23.13 (18.84–36.92) | 28.79 (22.43–38.51) | 0.413 |
Aneurysm group | 37.3 (17.31–42.78) | 30.75 (23.75–41.8) | 0.816 |
Right side (without pathology) | Left side (without pathology) | p-Value | |
Control Group | 23.98 (20.36–32.04) | 28.11 (22.13–35.36) | 0.565 |
Iliac planarity angles (°), median (IQR) | Ipsilateral side (with pathology) | Contralateral side (without pathology) | p-Value |
Stenosis group | 8.77 (3.25–19.82) | 12.95 (6.11–16.94) | 0.117 |
Occlusion group | 13.34 (5.46–17.71) | 7.63 (2.42–10.77) | 0.940 |
Aneurysm group | 9.77 (6.12–17.1) | 9.83 (6–15.6) | 0.765 |
Right side (without pathology) | Left side (without pathology) | p-Value | |
Control group | 6.42 (3.53–11.37) | 8.6 (3.69–11.77) | 0.436 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szőnyi, Á.; Nyárády, B.B.; Philippovich, M.; Dobai, A.; Sari, E.A.; Szőnyi, A.; Nagy, A.I.; Dósa, E. The Effect of Arterial Elongation on Isolated Common Iliac Artery Pathologies. Life 2024, 14, 1440. https://doi.org/10.3390/life14111440
Szőnyi Á, Nyárády BB, Philippovich M, Dobai A, Sari EA, Szőnyi A, Nagy AI, Dósa E. The Effect of Arterial Elongation on Isolated Common Iliac Artery Pathologies. Life. 2024; 14(11):1440. https://doi.org/10.3390/life14111440
Chicago/Turabian StyleSzőnyi, Ádám, Balázs Bence Nyárády, Márton Philippovich, Adrienn Dobai, Ekrem Anil Sari, András Szőnyi, Anikó Ilona Nagy, and Edit Dósa. 2024. "The Effect of Arterial Elongation on Isolated Common Iliac Artery Pathologies" Life 14, no. 11: 1440. https://doi.org/10.3390/life14111440
APA StyleSzőnyi, Á., Nyárády, B. B., Philippovich, M., Dobai, A., Sari, E. A., Szőnyi, A., Nagy, A. I., & Dósa, E. (2024). The Effect of Arterial Elongation on Isolated Common Iliac Artery Pathologies. Life, 14(11), 1440. https://doi.org/10.3390/life14111440