Comparative Analysis of Microbiota in Jiani Yaks with Different Rib Structures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Ethical Statement
2.3. DNA Extraction, PCR Amplification, and Sequencing via Illumina Novaseq
2.4. 16S rRNA Gene Sequencing and Bioinformatics Analysis
2.5. Statistical Analysis
3. Results
3.1. Analysis of Sequencing Data
3.2. Ruminal Microbiota Composition of Yaks at Different Taxonomic Levels
3.3. Comparing Microbiota Structure in Yaks
3.4. Functional Prediction of Yaks’ Rumen Microbiota
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- La, Y.; Ma, X.; Bao, P.; Chu, M.; Yan, P.; Liang, C.; Guo, X. Genome-Wide Landscape of MRNAs, LncRNAs, and CircRNAs during Testicular Development of Yak. Int. J. Mol. Sci. 2023, 24, 4420. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Mi, J.; Denman, S.E.; Basangwangdui; Pingcuozhandui; Zhang, Q.; Long, R.; McSweeney, C.S. Changes in Rumen Microbial Community Composition in Yak in Response to Seasonal Variations. J. Appl. Microbiol. 2022, 132, 1652–1665. [Google Scholar] [CrossRef] [PubMed]
- Ge, Q.; Guo, Y.; Zheng, W.; Cai, Y.; Qi, X.; Zhao, S. A Comparative Analysis of Differentially Expressed MRNAs, MiRNAs and CircRNAs Provides Insights into the Key Genes Involved in the High-Altitude Adaptation of Yaks. BMC Genom. 2021, 22, 744. [Google Scholar] [CrossRef] [PubMed]
- Chen, X. Molecular Epidemiological Investigation of Cryptosporidium sp., Giardia duodenalis, Enterocytozoon bieneusi and Blastocystis sp. Infection in Free-Ranged Yaks and Tibetan Pigs on the Plateau. Pak. Vet. J. 2022, 42, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, J.; Zhou, W. The Effect of Animal Husbandry on Economic Growth: Evidence from 13 Provinces of North China. Front. Environ. Sci. 2023, 10, 1085219. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, X.; Zhao, M.; Du, M.; Song, R. Body-Weight Estimation of Plateau Yak with Simple Dimensional Measurement. In Proceedings of the Cyberspace Safety and Security: 11th International Symposium, CSS 2019, Guangzhou, China, 1–3 December 2019; pp. 562–571. [Google Scholar]
- Shah, A.M.; Bano, I.; Qazi, I.H.; Matra, M.; Wanapat, M. “The Yak”—A Remarkable Animal Living in a Harsh Environment: An Overview of Its Feeding, Growth, Production Performance, and Contribution to Food Security. Front. Vet. Sci. 2023, 10, 1086985. [Google Scholar] [CrossRef]
- Mipam, T.D.; Wen, Y.; Fu, C.; Li, S.; Zhao, H.; Ai, Y.; Li, L.; Zhang, L.; Zou, D. Maternal Phylogeny of a Newly-Found Yak Population in China. Int. J. Mol. Sci. 2012, 13, 11455–11470. [Google Scholar] [CrossRef]
- Wan, R.; Zhao, Z.; Zhao, M.; Hu, K.; Zhai, J.; Yu, H.; Wei, Q. Characteristics of Pulmonary Microvascular Structure in Postnatal Yaks. Sci. Rep. 2021, 11, 18265. [Google Scholar] [CrossRef]
- Li, K.; Li, Z.; Zeng, Z.; Li, A.; Mehmood, K.; Shahzad, M.; Gao, K.; Li, J. Prevalence and Molecular Characterization of Cryptosporidium spp. in Yaks (Bos grunniens) in Naqu, China. Microb. Pathog. 2020, 144, 104190. [Google Scholar] [CrossRef]
- Mizrahi, I.; Wallace, R.J.; Moraïs, S. The Rumen Microbiome: Balancing Food Security and Environmental Impacts. Nat. Rev. Microbiol. 2021, 19, 553–566. [Google Scholar] [CrossRef]
- Ma, P.; Hong, Y.; Liu, C.; Sun, Y.; Liu, M.; Yang, Z.; Ma, P.; Wu, H.; Xue, F. Rumen Microbiota Responses to the Enzymatic Hydrolyzed Cottonseed Peptide Supplement under High-Concentrate Diet Feeding Process. Front. Vet. Sci. 2022, 9, 984634. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.; Aleya, L.; Kamel, M. Microbiota’s Role in Health and Diseases. Environ. Sci. Pollut. Res. 2021, 28, 36967–36983. [Google Scholar] [CrossRef] [PubMed]
- Shang, Z.; Tan, Z.; Kong, Q.; Shang, P.; Wang, H.; Zhaxi, W.; Zhaxi, C.; Liu, S. Characterization of Fungal Microbial Diversity in Tibetan Sheep, Tibetan Gazelle and Tibetan Antelope in the Qiangtang Region of Tibet. Mycoscience 2022, 63, MYC578. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Jiang, H.; Zhang, R.; Chen, X.; Yu, H.; Zu, Y.; Tan, S.; Wang, X.; Wang, Q.; Xu, W. Comparative Analysis of Nasal Microbial Community Between Tibetan Sheep with Different Ages. Pak. Vet. J. 2023, 43, 723–731. [Google Scholar] [CrossRef]
- Sauer, M.; Marx, H.; Mattanovich, D. From Rumen to Industry. Microb. Cell Fact. 2012, 11, 121. [Google Scholar] [CrossRef]
- Lin, L.; Xie, F.; Sun, D.; Liu, J.; Zhu, W.; Mao, S. Ruminal Microbiome-Host Crosstalk Stimulates the Development of the Ruminal Epithelium in a Lamb Model. Microbiome 2019, 7, 83. [Google Scholar] [CrossRef]
- Matthews, C.; Crispie, F.; Lewis, E.; Reid, M.; O’Toole, P.W.; Cotter, P.D. The Rumen Microbiome: A Crucial Consideration When Optimising Milk and Meat Production and Nitrogen Utilisation Efficiency. Gut Microbes 2019, 10, 115–132. [Google Scholar] [CrossRef]
- Zeineldin, M.; Barakat, R.; Elolimy, A.; Salem, A.Z.M.; Elghandour, M.M.Y.; Monroy, J.C. Synergetic Action between the Rumen Microbiota and Bovine Health. Microb. Pathog. 2018, 124, 106–115. [Google Scholar] [CrossRef]
- Petruzziello, C.; Saviano, A.; Manetti, L.L.; Macerola, N.; Ojetti, V. The Role of Gut Microbiota and the Potential Effects of Probiotics in Heart Failure. Medicina 2024, 60, 271. [Google Scholar] [CrossRef]
- Ren, Y.; Ciwang, R.; Wang, J.; Mehmood, K.; Ataya, F.S.; Li, K. Effect of Different Feeds on the Fungi Microbiome of Suffolk Crossed with Tibetan Sheep. Life 2023, 13, 2210. [Google Scholar] [CrossRef]
- Bainbridge, M.L.; Cersosimo, L.M.; Wright, A.-D.G.; Kraft, J. Rumen Bacterial Communities Shift across a Lactation in Holstein, Jersey and Holstein × Jersey Dairy Cows and Correlate to Rumen Function, Bacterial Fatty Acid Composition and Production Parameters. FEMS Microbiol. Ecol. 2016, 92, fiw059. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Li, S.; Mu, R.; Guo, J.; Zhao, C.; Cao, Y.; Zhang, N.; Fu, Y. The Rumen Microbiota Contributes to the Development of Mastitis in Dairy Cows. Microbiol. Spectr. 2022, 10, e02512-21. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.; Mao, H.; Wang, J.K.; Liu, J.X.; Yoon, I. Effects of Saccharomyces Cerevisiae Fermentation Product on in Vitro Fermentation and Microbial Communities of Low-Quality Forages and Mixed Diets1. J. Anim. Sci. 2013, 91, 3291–3298. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Li, C.; Chen, Y.; Liu, J.; Zhang, C.; Irving, B.; Fitzsimmons, C.; Plastow, G.; Guan, L.L. Host Genetics Influence the Rumen Microbiota and Heritable Rumen Microbial Features Associate with Feed Efficiency in Cattle. Microbiome 2019, 7, 92. [Google Scholar] [CrossRef]
- Popova, M.; Guyader, J.; Silberberg, M.; Seradj, A.R.; Saro, C.; Bernard, A.; Gérard, C.; Martin, C.; Morgavi, D.P. Changes in the Rumen Microbiota of Cows in Response to Dietary Supplementation with Nitrate, Linseed, and Saponin Alone or in Combination. Appl. Environ. Microbiol. 2019, 85, e02657-18. [Google Scholar] [CrossRef]
- Amin, N.; Schwarzkopf, S.; Kinoshita, A.; Tröscher-Mußotter, J.; Dänicke, S.; Camarinha-Silva, A.; Huber, K.; Frahm, J.; Seifert, J. Evolution of Rumen and Oral Microbiota in Calves Is Influenced by Age and Time of Weaning. Anim. Microbiome 2021, 3, 31. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Q.; Song, J.; Xin, J.; Zhang, S.; Lei, Y.; Yang, Y.; Xie, P.; Suo, H. Comparison of Gut Microbiota of Yaks From Different Geographical Regions. Front. Microbiol. 2021, 12, 666940. [Google Scholar] [CrossRef]
- Wang, R.; Bai, B.; Huang, Y.; Degen, A.; Mi, J.; Xue, Y.; Hao, L. Yaks Are Dependent on Gut Microbiota for Survival in the Environment of the Qinghai Tibet Plateau. Microorganisms 2024, 12, 1122. [Google Scholar] [CrossRef]
- Lan, D.; Xiong, X.; Mipam, T.-D.; Fu, C.; Li, Q.; Ai, Y.; Hou, D.; Chai, Z.; Zhong, J.; Li, J. Genetic Diversity, Molecular Phylogeny, and Selection Evidence of Jinchuan Yak Revealed by Whole-Genome Resequencing. G3 Genes|Genomes|Genet. 2018, 8, 945–952. [Google Scholar] [CrossRef]
- Su, Y.; Su, J.; Li, F.; Tian, X.; Liu, Z.; Ding, G.; Bai, J.; Li, Z.; Ma, Z.; Peppelenbosch, M.P. Yak Gut Microbiota: A Systematic Review and Meta-Analysis. Front. Vet. Sci. 2022, 9, 889594. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, J.; Ahmad, A.A.; Bao, P.; Guo, X.; Long, R.; Ding, X.; Yan, P. Dietary Energy Levels Affect Growth Performance through Growth Hormone and Insulin-Like Growth Factor 1 in Yak (Bos grunniens). Animals 2019, 9, 39. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Liu, C.; Han, X.; Zheng, J.; Zhang, G.; Qi, X.; Du, P.; Liu, L. Tibetan Plateau Yak Milk: A Comprehensive Review of Nutritional Values, Health Benefits, and Processing Technology. Food Chem. X 2023, 20, 100919. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; An, S. Identifying the Biogeographic Patterns of Rare and Abundant Bacterial Communities Using Different Primer Sets on the Loess Plateau. Microorganisms 2021, 9, 139. [Google Scholar] [CrossRef] [PubMed]
- Matheri, F.; Kambura, A.K.; Mwangi, M.; Ongeso, N.; Karanja, E.; Adamtey, N.; Mwangi, E.K.; Mwangi, E.; Tanga, C.; Musyoka, M.W.; et al. Composition, Structure, and Functional Shifts of Prokaryotic Communities in Response to Co-Composting of Various Nitrogenous Green Feedstocks. BMC Microbiol. 2023, 23, 50. [Google Scholar] [CrossRef]
- Nielsen, R.; Xue, Y.; Jonassen, I.; Haaland, I.; Kommedal, Ø.; Wiker, H.G.; Drengenes, C.; Bakke, P.S.; Eagan, T.M.L. Repeated Bronchoscopy in Health and Obstructive Lung Disease: Is the Airway Microbiome Stable? BMC Pulm. Med. 2021, 21, 342. [Google Scholar] [CrossRef]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT Online Service: Multiple Sequence Alignment, Interactive Sequence Choice and Visualization. Brief. Bioinform. 2019, 20, 1160–1166. [Google Scholar] [CrossRef]
- Wongtada, C.; Prombutara, P.; Asawanonda, P.; Noppakun, N.; Kumtornrut, C.; Chatsuwan, T. Distinct Skin Microbiome Modulation Following Different Topical Acne Treatments in Mild Acne Vulgaris Patients: A Randomized, Investigator-blinded Exploratory Study. Exp. Dermatol. 2023, 32, 906–914. [Google Scholar] [CrossRef]
- Lee, M.; Song, J.H.; Park, J.M.; Chang, J.Y. Bacterial Diversity in Korean Temple Kimchi Fermentation. Food Res. Int. 2019, 126, 108592. [Google Scholar] [CrossRef]
- Qi-Xiang, M.; Yang, F.; Ze-Hua, H.; Nuo-Ming, Y.; Rui-Long, W.; Bin-Qiang, X.; Jun-Jie, F.; Chun-Lan, H.; Yue, Z. Intestinal TLR4 Deletion Exacerbates Acute Pancreatitis through Gut Microbiota Dysbiosis and Paneth Cells Deficiency. Gut Microbes 2022, 14, 2112882. [Google Scholar] [CrossRef]
- Hirayama, J.; Tazumi, A.; Hayashi, K.; Tasaki, E.; Kuribayashi, T.; Moore, J.E.; Millar, B.C.; Matsuda, M. A Phylogenetic Comparison of Urease-positive Thermophilic Campylobacter (UPTC) and Urease-negative (UN) C. Lari. J. Basic Microbiol. 2011, 51, 269–278. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, Z.; Jin, Y.; Lu, J.; Feng, D.; Peng, R.; Sun, H.; Mu, X.; Li, C.; Chen, Y. Hepatic Stellate Cell Activation and Senescence Induced by Intrahepatic Microbiota Disturbances Drive Progression of Liver Cirrhosis toward Hepatocellular Carcinoma. J. Immunother. Cancer 2022, 10, e003069. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Jiang, W.; Kosik, R.O.; Song, Y.; Luo, Q.; Qiao, T.; Tong, J.; Liu, S.; Deng, C.; Qin, S.; et al. Gut Microbiota Changes and Its Potential Relations with Thyroid Carcinoma. J. Adv. Res. 2022, 35, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Larabi, A.; Barnich, N.; Nguyen, H.T.T. New Insights into the Interplay between Autophagy, Gut Microbiota and Inflammatory Responses in IBD. Autophagy 2020, 16, 38–51. [Google Scholar] [CrossRef] [PubMed]
- Sittipo, P.; Lobionda, S.; Lee, Y.K.; Maynard, C.L. Intestinal Microbiota and the Immune System in Metabolic Diseases. J. Microbiol. 2018, 56, 154–162. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, G.; Yuan, Z.; He, S.; Wang, R.; Zheng, J.; Mao, H.; Chai, J.; Wu, D. Exploring the Temporal Dynamics of Rumen Bacterial and Fungal Communities in Yaks (Bos grunniens) from 5 Days after Birth to Adulthood by Full-Length 16S and 18S RRNA Sequencing. Front. Vet. Sci. 2023, 10, 1166015. [Google Scholar] [CrossRef]
- Wang, W.; Dong, Y.; Guo, W.; Zhang, X.; Degen, A.A.; Bi, S.; Ding, L.; Chen, X.; Long, R. Linkages between Rumen Microbiome, Host, and Environment in Yaks, and Their Implications for Understanding Animal Production and Management. Front. Microbiol. 2024, 15, 1301258. [Google Scholar] [CrossRef]
- Ren, Y.; Zhaxi, Y.; Liu, M.; Idrees, A.; Li, K. Revealing the Fungi Microbiome Difference of Suffolk Cross with Tibetan Sheep on Plateau. Pak. Vet. J. 2023, 43, 748–756. [Google Scholar] [CrossRef]
- Wang, C.; Wei, S.; Chen, N.; Xiang, Y.; Wang, Y.; Jin, M. Characteristics of Gut Microbiota in Pigs with Different Breeds, Growth Periods and Genders. Microb. Biotechnol. 2022, 15, 793–804. [Google Scholar] [CrossRef]
- Chang, H.; Wang, X.; Zeng, H.; Zhai, Y.; Huang, N.; Wang, C.; Han, Z. Comparison of Ruminal Microbiota, Metabolomics, and Milk Performance between Montbéliarde×Holstein and Holstein Cattle. Front. Vet. Sci. 2023, 10, 1178093. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, X.; Li, A.; Waqas, M.; Gao, X.; Li, K.; Xie, G.; Zhang, J.; Mehmood, K.; Zhao, S.; et al. Characterization of the Microbial Community Structure in Intestinal Segments of Yak (Bos grunniens). Anaerobe 2020, 61, 102115. [Google Scholar] [CrossRef]
- Dowd, S.E.; Callaway, T.R.; Wolcott, R.D.; Sun, Y.; McKeehan, T.; Hagevoort, R.G.; Edrington, T.S. Evaluation of the Bacterial Diversity in the Feces of Cattle Using 16S RDNA Bacterial Tag-Encoded FLX Amplicon Pyrosequencing (BTEFAP). BMC Microbiol. 2008, 8, 125. [Google Scholar] [CrossRef] [PubMed]
- Shanks, O.C.; Kelty, C.A.; Archibeque, S.; Jenkins, M.; Newton, R.J.; McLellan, S.L.; Huse, S.M.; Sogin, M.L. Community Structures of Fecal Bacteria in Cattle from Different Animal Feeding Operations. Appl. Environ. Microbiol. 2011, 77, 2992–3001. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Chen, T.; Green, S.J.; Mutlu, E.; Martin, B.R.; Rumpagaporn, P.; Patterson, J.A.; Keshavarzian, A.; Hamaker, B.R. Physical Inaccessibility of a Resistant Starch Shifts Mouse Gut Microbiota to Butyrogenic Firmicutes. Mol. Nutr. Food Res. 2019, 63, 1801012. [Google Scholar] [CrossRef] [PubMed]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Human Gut Microbes Associated with Obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef]
- Mariat, D.; Firmesse, O.; Levenez, F.; Guimarăes, V.; Sokol, H.; Doré, J.; Corthier, G.; Furet, J.-P. The Firmicutes/Bacteroidetes Ratio of the Human Microbiota Changes with Age. BMC Microbiol. 2009, 9, 123. [Google Scholar] [CrossRef]
- Chai, J.; Weiss, C.P.; Beck, P.A.; Zhao, W.; Li, Y.; Zhao, J. Diet and Monensin Influence the Temporal Dynamics of the Rumen Microbiome in Stocker and Finishing Cattle. J. Anim. Sci. Biotechnol. 2024, 15, 12. [Google Scholar] [CrossRef]
- Kang, S.; Khan, S.; Webb, R.; Denman, S.; McSweeney, C. Characterization and Survey in Cattle of a Rumen Pyrimadobacter sp. Which Degrades the Plant Toxin Fluoroacetate. FEMS Microbiol. Ecol. 2020, 96, fiaa077. [Google Scholar] [CrossRef]
- Feehan, B.; Ran, Q.; Dorman, V.; Rumback, K.; Pogranichniy, S.; Ward, K.; Goodband, R.; Niederwerder, M.C.; Lee, S.T.M. Novel Complete Methanogenic Pathways in Longitudinal Genomic Study of Monogastric Age-Associated Archaea. Anim. Microbiome 2023, 5, 35. [Google Scholar] [CrossRef]
- Yu, H.; Li, X.-X.; Han, X.; Chen, B.-X.; Zhang, X.-H.; Gao, S.; Xu, D.-Q.; Wang, Y.; Gao, Z.-K.; Yu, L.; et al. Fecal Microbiota Transplantation Inhibits Colorectal Cancer Progression: Reversing Intestinal Microbial Dysbiosis to Enhance Anti-Cancer Immune Responses. Front. Microbiol. 2023, 14, 1126808. [Google Scholar] [CrossRef]
- Gates, T.J.; Yuan, C.; Shetty, M.; Kaiser, T.; Nelson, A.C.; Chauhan, A.; Starr, T.K.; Staley, C.; Subramanian, S. Fecal Microbiota Restoration Modulates the Microbiome in Inflammation-Driven Colorectal Cancer. Cancers 2023, 15, 2260. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Zhang, W.; Kulyar, M.F.-A.; Ullah, K.; Han, Z.; Qin, J.; Bi, C.; Wang, Y.; Li, K. Comparative Analysis of Gut Microbiota in Healthy and Diarrheic Yaks. Microb. Cell Fact. 2022, 21, 111. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Ali, M.; Sun, J.; Li, X.; Fouad, D.; Iqbal, M.; Kulyar, M.F.e.A.; Wu, Y.; Li, K. Protective Effects of Abrus Cantoniensis Hance Against Liver Injury through Modulation of Intestinal Microbiota and Liver Metabolites. Ecotoxicol. Environ. Saf. 2024, 279, 116495. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xiao, S.; Dai, X.; Tang, Z.; Wang, Y.; Ali, M.; Ataya, F.S.; Sahar, I.; Iqbal, M.; Wu, Y.; et al. Multi-Omics Analysis and the Remedial Effects of Swertiamarin on Hepatic Injuries Caused by CCl4. Ecotoxicol. Environ. Saf. 2024, 282, 116734. [Google Scholar] [CrossRef] [PubMed]
- Somerville, V.; Thierer, N.; Schmidt, R.S.; Roetschi, A.; Braillard, L.; Haueter, M.; Berthoud, H.; Shani, N.; von Ah, U.; Mazel, F.; et al. Genomic and Phenotypic Imprints of Microbial Domestication on Cheese Starter Cultures. Nat. Commun. 2024, 15, 8642. [Google Scholar] [CrossRef]
- Shu, W.-S.; Huang, L.-N. Microbial Diversity in Extreme Environments. Nat. Rev. Microbiol. 2022, 20, 219–235. [Google Scholar] [CrossRef]
- Larsen, O.F.A.; Claassen, E. The Mechanistic Link between Health and Gut Microbiota Diversity. Sci. Rep. 2018, 8, 2183. [Google Scholar] [CrossRef]
- Feng, G.; Xie, T.; Wang, X.; Bai, J.; Tang, L.; Zhao, H.; Wei, W.; Wang, M.; Zhao, Y. Metagenomic Analysis of Microbial Community and Function Involved in Cd-Contaminated Soil. BMC Microbiol. 2018, 18, 11. [Google Scholar] [CrossRef]
- Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut Microbiota Functions: Metabolism of Nutrients and Other Food Components. Eur. J. Nutr. 2018, 57, 1–24. [Google Scholar] [CrossRef]
Samples | Input | Filtered | Denoised | Merged | Non-Chimeric | Non-Singleton |
---|---|---|---|---|---|---|
DL1 | 117,767 | 111,901 | 109,502 | 98,404 | 94,984 | 94,799 |
DL2 | 105,711 | 100,836 | 99,149 | 90,214 | 81,242 | 81,069 |
DL3 | 108,722 | 103,117 | 101,001 | 89,637 | 80,366 | 80,123 |
DL4 | 103,819 | 98,525 | 95,849 | 86,138 | 83,484 | 83,280 |
DL5 | 105,596 | 100,486 | 97,966 | 87,297 | 84,504 | 84,279 |
DL6 | 102,098 | 97,069 | 95,360 | 86,388 | 79,023 | 78,887 |
PL1 | 102,147 | 96,919 | 93,892 | 75,369 | 67,920 | 67,414 |
PL2 | 114,436 | 108,751 | 105,686 | 88,862 | 82,447 | 81,949 |
PL3 | 117,157 | 110,999 | 108,047 | 90,483 | 81,909 | 81,477 |
PL4 | 104,603 | 99,068 | 96,858 | 84,893 | 81,013 | 80,739 |
PL5 | 115,905 | 110,008 | 107,712 | 95,028 | 87,835 | 87,485 |
PL6 | 102,098 | 97,069 | 95,360 | 86,388 | 79,023 | 78,887 |
Samples | Domain | Phylum | Class | Order | Family | Genus |
---|---|---|---|---|---|---|
DL1 | 38 | 2 | 80 | 48 | 470 | 785 |
DL2 | 18 | 0 | 39 | 43 | 259 | 353 |
DL3 | 24 | 1 | 51 | 36 | 238 | 506 |
DL4 | 44 | 0 | 43 | 53 | 438 | 767 |
DL5 | 31 | 1 | 63 | 48 | 370 | 645 |
DL6 | 17 | 0 | 35 | 46 | 227 | 382 |
PL1 | 45 | 1 | 58 | 66 | 377 | 938 |
PL2 | 39 | 0 | 88 | 69 | 327 | 982 |
PL3 | 54 | 1 | 56 | 51 | 375 | 953 |
PL4 | 37 | 0 | 56 | 69 | 378 | 848 |
PL5 | 35 | 2 | 61 | 54 | 307 | 682 |
PL6 | 9 | 0 | 31 | 22 | 201 | 298 |
Sample | Chao1 | Faith pd | Goods Coverage | Observed Species | Pielou_e | Shannon | Simpson |
---|---|---|---|---|---|---|---|
PL1 | 2578.435063 | 177.9602049 | 0.999036585 | 2573.4 | 0.869369371 | 9.849485164 | 0.996796838 |
PL2 | 2768.300767 | 178.4356119 | 0.997354902 | 2726.7 | 0.883354722 | 10.08167354 | 0.997965194 |
PL3 | 2523.677172 | 170.8505634 | 0.997637525 | 2488.5 | 0.864121407 | 9.748203389 | 0.997230552 |
PL4 | 2557.35822 | 172.4558957 | 0.998032572 | 2527.6 | 0.868535719 | 9.817537509 | 0.997148782 |
PL5 | 2225.421595 | 185.735405 | 0.997328358 | 2175.9 | 0.827317848 | 9.172796771 | 0.994368572 |
PL6 | 1113.989904 | 105.2390167 | 0.999183361 | 1100.5 | 0.754510713 | 7.623530424 | 0.982014854 |
DL1 | 2541.719479 | 169.0619051 | 0.997731212 | 2494.3 | 0.874597844 | 9.869327067 | 0.996916464 |
DL2 | 1316.166035 | 116.0392654 | 0.998836719 | 1299.1 | 0.767046622 | 7.93378748 | 0.987871152 |
DL3 | 1681.467705 | 151.0525443 | 0.998638415 | 1663 | 0.790611692 | 8.459203729 | 0.990012752 |
DL4 | 2494.898704 | 159.2174989 | 0.998313633 | 2466.4 | 0.883252138 | 9.9526533 | 0.99768237 |
DL5 | 2284.533438 | 160.0005751 | 0.998326125 | 2258.9 | 0.836061389 | 9.314895059 | 0.993691643 |
DL6 | 1268.09727 | 118.4587605 | 0.999041269 | 1254.5 | 0.792330395 | 8.155373126 | 0.990705739 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cidan, Y.; Lu, S.; Wang, H.; Wang, J.; Ali, M.; Fouad, D.; Ataya, F.S.; Zhu, Y.; Basang, W.; Li, K. Comparative Analysis of Microbiota in Jiani Yaks with Different Rib Structures. Life 2024, 14, 1458. https://doi.org/10.3390/life14111458
Cidan Y, Lu S, Wang H, Wang J, Ali M, Fouad D, Ataya FS, Zhu Y, Basang W, Li K. Comparative Analysis of Microbiota in Jiani Yaks with Different Rib Structures. Life. 2024; 14(11):1458. https://doi.org/10.3390/life14111458
Chicago/Turabian StyleCidan, Yangji, Sijia Lu, Hongzhuang Wang, Jia Wang, Munwar Ali, Dalia Fouad, Farid S. Ataya, Yanbin Zhu, Wangdui Basang, and Kun Li. 2024. "Comparative Analysis of Microbiota in Jiani Yaks with Different Rib Structures" Life 14, no. 11: 1458. https://doi.org/10.3390/life14111458
APA StyleCidan, Y., Lu, S., Wang, H., Wang, J., Ali, M., Fouad, D., Ataya, F. S., Zhu, Y., Basang, W., & Li, K. (2024). Comparative Analysis of Microbiota in Jiani Yaks with Different Rib Structures. Life, 14(11), 1458. https://doi.org/10.3390/life14111458